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Abstract

Recently, the Highly Constrained BackPRojection (HYPR) and HYPR with Local Reconstruction
(HYPR LR) methods have been introduced to reconstruct magnitude images from a series of
highly undersampled data while preserving high spatial and temporal resolution and high SNR in
applications with spatiotemporal correlations. However, these conventional HYPR algorithms are
limited to the generation of magnitude images and, therefore, have limitations in their potential
applications. In this work, the HYPR LR algorithm has been modified to extend the use of
algorithms in the HYPR family to applications that require processing of complex data, such as
MR chemical shift imaging (CSI), or spectroscopic imaging. The proposed method processes the
magnitude information the same way as in original HYPR LR processing. In addition, it improves
the phase images by subtracting the phase map of a synthesized composite image. The feasibility
and efficiency of this algorithm has been demonstrated on CSI of cortical bone, Achilles tendon
and a healthy volunteer on a clinical 3T scanner.
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INTRODUCTION

Cortical bone in the mature skeleton has a very short To* and its signal is typically not
detectable with conventional MR sequences (1). The T,* of cortical bone is about 200 to
500 ps, while the shortest echo times (TE) achievable with conventional spin-warp
sequences is usually several milliseconds. This leads to the typical dark appearance of bone
and prohibits the evaluation of its T,*. One approach to acquire detectable signal from short
To* tissue is the use of the ultrashort TE (UTE) sequences (1-5). UTE imaging employs a
novel type of slice selection, rapid transmit/receive switching, radial mapping of k-space,
and variable-rate selective excitation in order to start signal acquisition almost immediately
after rf excitation (< 10 ps). In addition, suppression of signals from long T,* tissue is
usually utilized to achieve better visualization of bone.
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While UTE sequences can be effective in providing anatomical information, further
diagnostic information can be gained by combining UTE with spectroscopic methods
(UTESI) (6). In UTESI, images are acquired at progressively increasing TEs with a UTE
sequence. As in echo-planar spectroscopic imaging (EPSI) (7,8), performing a Fourier
transform on the imaging series over various TEs will generate a corresponding
spectroscopic image series with high spatial resolution and low spectral resolution. This
chemical shift imaging (CSI) has been used for the separation of fat and water and the
extraction of other metabolic information including the study of bone disease in humans
(2,6,9).

However, due to limits in acceptable patient scan time, the spatial and temporal resolutions
are compromised if images at all the TEs are fully sampled. One approach to accelerate the
imaging process is the use of radial undersampling. In projection reconstruction (PR), the
spatial resolution is determined by the readout resolution alone and the number of
projections can be reduced without a direct loss in resolution. However, the cost of the
angular undersampling is a decreased signal-to-noise ratio (SNR) and apparent streak
artifacts that can be tolerable in certain imaging applications. Therefore, novel
reconstruction methods that can reduce streak artifacts and maintain a high SNR for each TE
image would be desirable, such as view sharing of high spatial frequencies (10-12), but it
causes increased temporal window due to the use of high frequency data from neighboring
frames (13).

Recently, the Highly Constrained BackPRojection (HYPR) (14) technique has been
proposed to allow for high undersampling while maintaining waveform fidelity in dynamic
contrast-enhanced MR angiography (CE-MRA) and high SNR in the individual time frames,
reducing the artifact level and providing high spatial and temporal resolution. HYPR LR
(HYPR with Local Reconstruction) represents a variation of this approach, and has been
shown to have improved waveform fidelity (15). While HYPR was originally developed for
time series in dynamic imaging, it can be applied to other image series that share
information among the series, such as UTESI. For example, each echo image can be treated
as a “time frame” as in MRA and the composite image can be made by summing over all or
a subset of the echo images. However, the current HYPR-like algorithms are inherently
limited to the processing of magnitude images only. Therefore, they are not suitable for
applications requiring the processing of complex data, such as CSI.

In this work, we present a version of the HYPR LR algorithm, which is an intrinsically
complex reconstruction method providing all the benefits of HYPR LR in the magnitude
domain and streak reduction in the phase domain. This approach was validated in numerical
phantom simulations, and then demonstrated by in vitro experiments and an in vivo
volunteer study using the UTESI technique. A series of echo images were acquired, starting
from the minimal TE achievable with progressively increasing and equally-spaced TEs. The
gradient diagram for the UTESI pulse sequence used in this paper is described in detail in
Ref. (6).

METHODS

Theory

The proposed complex HYPR LR method, as shown in Fig. 1, is an extension of the original
HYPR LR algorithm and can be performed in three steps: 1) Each undersampled TE image
is reconstructed using Filtered BackProjection (FBP), resulting in images with low SNR and
dominating streak artifacts. 2) A composite image is generated using either all or a subset of
TE images and a weighting image is calculated by normalizing the lowpass filtered current
TE image by the lowpass filtered composite image resampled at the corresponding

Magn Reson Med. Author manuscript; available in PMC 2010 July 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wang et al.

Page 3

projection angles. 3) The complex HYPR LR image is calculated as the multiplication of the
composite image and the weighting image. However, the proposed complex version of the
HYPR LR differs from the original HYPR LR in two aspects. First, instead of calculating
the magnitude of image data before HYPR LR processing, all the images throughout the
complex reconstruction process are kept as complex-valued. Second, instead of low-pass
filtering the complex images directly (i.e. filtering the real and imaginary channel
separately), the filtration is applied only to the magnitude data, and phase information is
kept un-filtered. The reason for doing this is that the complex filtering procedure would
introduce a band artifact along a line where sharp phase change exists. A simple numerical
phantom containing two regions with abrupt phase change and a set of in vivo images
(imaging parameters presented in in vivo experiment section) are used to illustrate this
problem, as shown in Fig. 2. For numerical phantom, both regions in the phantom have
comparable intensities but different phases (phase of = on the left and zero phase on the
right). Direct filtering of the complex image over the boundary region will cause signal
cancellation, which results in an incorrect black band in the output magnitude image. In the
invivo image, similar dark band artifacts are also observed if the complex blurring scheme
was used.

Similar to the conventional HYPR LR algorithm (Eq. [2] in Ref. (15))., the final complex
HYPR LR time frame can be expressed as

B,
1=I.-1=I.-—
#=lc vl g )

where I refers to the complex composite image, ly is the complex weighting image, By is
the filtered TE images and B¢ is the filtered re-sampled composite image. Filtering only
applies to magnitude channel, i.e.,

Bi=exp(i-¢) - (L|®F) ()

B.=exp (i . gai) : (|I('| ® F) 3

where F is the filter kernel, I; is the complex-valued time frame obtained by reconstructing
the real and imaginary channel separately using the FBP algorithm, and 7. " is the unfiltered

re-sampled composite image. ¢; and ¢, * are the phase of Iand 7. , respectively.
Specifically, the magnitude and phase of the final HYPR LR image can be written as

|B| | ®F
Ll=lr] =] 2= ]-
=Pl =Pl el )
Cu=PcHPy=Pc+Pr — ¢, )

From Eq. 4, we know that this method processes the magnitude of the HYPR LR images in
the same way as the original HYPR LR (Eq. [2] in Ref. (15)). Therefore, image signal-to-
noise ratio (SNR) is determined by the composite image, and streaks are reduced by
normalizing the time frame to the re-sampled composite image. Furthermore, according to
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Eqg. 5, this method assigns the phase of the time frame data to the HYPR LR image with
steak artifacts mitigated by subtracting the FBP of the composite at each of the synthesized
time frame angles. This is exactly the McKinnon-Bates algorithm in the phase domain (16).
Rewriting Eq. 5, we have

Pu=PctPy (6)

Pw=Pr — ‘Ptc (7)

Fig. 3 uses in-vivo images to illustrate the streak reduction in phase domain based on Eq. 6
and Eq. 7. Both the phase of the FBP image (Fig. 3d) and the phase of the resampled
composite image (Fig. 3e) have severe streak artifacts. However, streaks in both phase
images are due to the undersampled acquisition at the same projection angles, therefore they
are coherent and can be effectively reduced by subtracting one from the other, providing a
relative streak-free phase map of the weighting image (Fig. 3c). The phase of the HYPR LR
image is calculated as the sum of the composite phase image and the weighting phase image,
and it is considered to have reduced streaks. Therefore, by taking advantage of the property
of complex division in Eq. 1, HYPR LR processing in magnitude domain and McKinnon-
Bates in phase domain can be achieved simultaneously.

To* Quantification

Simulation

The quantification of T,* can be achieved using UTESI by fitting the signal decay as a
function of TE to an exponential decay. In order to account for the background noise, a
constant term can be added to the exponential decay prior to fitting. Mathematically, the
decay curve for a voxel at location -2 can be modeled as

s (7.1)=K (7) -exp (‘TL) e (7)

(8)

where S is the signal intensity, npg accounts for background noise (assumed constant over
time), and K is a constant. Eq. 8 is applicable when the region of interest (ROI) is composed
of or dominated by a single species. The combination of two or more species with
significant chemical shift difference results in an intrinsic phase cancellation of the species
which causes the decay curve to be modulated by an oscillation pattern.

In order to validate the proposed complex HYPR LR algorithm, a simulation was designed
to determine whether both the magnitude and phase information of the complex-valued
image could be processed accurately. This simulation was implemented in Matlab (The
Mathworks Inc. Natick, MA, USA). A numerical phantom containing a circular disk
representing bone marrow and an outer elliptical region representing bone was generated.
The bone marrow was assumed to contain 65% fat and 35 % water (17), both of which had a
To* of 6000 ps. Water was assumed to be the only metabolite that contributed signal to the
outer bone region, with a short To* equal to 400 us. The resonance frequency for fat was set
to —440 Hz relative to water, mimicking invivo conditions on a 3T system. The maximum
signal intensity of bone marrow was set to 80% of the maximum signal intensity of the bone
(considering the effect of long T»* suppression pulse, marrow signal was lower than bone).
Image size was 256x256 and Gaussian white noise with zero mean and a standard deviation
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of 5% of the maximum signal amplitude (corresponding SNR = 20) was added to both the
real and imaginary channels, separately. Images were sampled at minimal TE of 8 ps and at
increments of 80 ps for the subsequent TEs, i.e. TE = 8 pus, 88 ps, 168 ps, ... Each TE image
was radially undersampled, and contained only a few projections that covered k-space
uniformly. The number of projections per echo image was set to three different values such
that the simulation could run at three different undersampling levels. Different composite
window lengths were also used to reconstruct images at each undersampling level. Other
complex HYPR LR reconstruction parameters included Gaussian filtering kernel with filter
size = 10 pixels and ¢ = 7 pixels, which were the same for all the reconstructions.

In vitro Experiment

The proposed complex HYPR LR method was then applied to two types of in-vitro samples,
with data acquired by the UTESI sequence on a clinical 3T system (Signa TwinSpeed, GE
Healthcare Technologies, Milwaukee, WI, USA). In the first in-vitro study, data were
collected from a pig tibia, which typically contains a large circular marrow region at the
center, surrounded by a ring-shaped bone region. Bone is of ultra-short To*, which is
typically on the order of several hundred microseconds. Imaging parameters were listed in
Table 1, vitro#1. Specifically, N, half projections (spokes in k-space) were acquired and
interleaved into Ntg groups with an initial TE of TEq, and a TE increment of ATE
thereafter. For each group, half projections that were 180 degree apart were combined
together to form a full projection, which covered the k-space uniformly. Tl was the inversion
time in the long T, suppression preparation pulse (6). Following the data acquisition, raw
data were transferred to a Linux computer for complex HYPR LR image reconstruction
using Matlab. Different reconstruction parameter settings were used to compare their effects
on the final HYPR LR images in terms of SNR.

The second in-vitro sample experiment was a spectroscopic imaging of a tendon specimen.
Long T, suppression pulses were not used in this application and the imaging parameters are
shown in Table 1, vitro #2. Larger ATE was used for better spectral resolution to obtain a
spectral image very close to fat peak. The complex HYPR LR reconstruction parameters
were: sliding composite window length = 15 TE images, Gaussian filtering kernel size = 10
pixels and Gaussian parameter ¢ = 5 pixels.

In vivo Experiment

RESULTS

Simulation

The proposed algorithm was further validated and confirmed in a volunteer study.
Institutional Review Board permission was obtained prior to this study, in which cortical
bone data from a 30 year old healthy male volunteer were acquired. The quality of the
reconstructed images, intensity vs. TE curve, and the spectra were investigated. To* decay
fitting using maximum likelihood was also performed to evaluate the accuracy of the
complex HYPR LR method. Imaging parameters are also shown in Tablel vivo #1.
Reconstruction parameters were: sliding composite window length = 9 TE images, Gaussian
filtering kernel size = 10 pixels and Gaussian parameter ¢ = 7 pixels.

Fig. 4(a) shows the reconstructed images from the simulation at various undersampling
factors with different composite window lengths. By using the complex HYPR LR method,
streaks were significantly reduced for all the undersampling levels and SNR was enhanced.
The signal standard deviation from a selected 100 pixels (10x10) ROI was measured for an
undersampling factor of 16, and was found to decrease with longer composite length, Nc.
This is consistent with the conclusion in previous HYPR literature that the SNR of the final
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HYPR image is determined by the composite image. The signal intensity curves of
simulated bone and marrow reconstructed at an undersampling factor of 16 are shown in
Fig. 4(b) and (d), and are in very good agreement with those of the fully sampled phantom
when N¢ =9, as indicated by the open circles. Because bone was designed to contain water
only, the intensity vs. time curve followed an exponential decay as expected. Differently,
marrow was supposed to consist of fat and water with comparable contributions, so a fat/
water oscillation pattern was expected. Fig. 4(d) shows a fat/water oscillation pattern from
the reconstructed marrow signal, which implies that the phases of fat and water were well
preserved in the proposed method. However, the use of a very short composite length, e.g.
Nc=3 (stars in Fig. 4(b) and (d)), results in reduced accuracy. Insufficient composite length
produces a composite image with streak artifacts and the resampling procedure for the
generation of B¢ will further degrade the image quality, therefore reconstruction error
appears.

The contents of the designed bone and marrow can also be confirmed in their spectra, as Fig.
4(c) and (e) show an undersampling factor of 16 and Nc=9. Both spectra are in good
agreement with the spectra of the true phantom. The bone spectrum has a single peak
located at zero frequency with a broad Full Width at Half Maximum (FWHM). This implies
that the artificial bone is made of zero-frequency water and has a very short To*. In contrast,
the marrow spectrum shows a double-peak shape, with one dominant off resonance peak and
one smaller zero-frequency peak. The small central peak corresponds to the water in
marrow, and the dominant peak which is located at about —440 Hz is the fat peak.

In vitro Experiments

Fig. 5 shows the reconstruction results of the pig tibia experiment using different complex
HYPR LR parameter settings. The magnitude of TE images at TE, are shown, with
different composite lengths and Gaussian filter kernel parameters. The improvement of SNR
after complex HYPR LR implementation is significant for all the settings. A ROI containing
100 pixels was drawn in the bone region, and the standard deviation (sd) was measured and
compared with the sd in the FBP image. The sd measurement results show that SNR
increases (sd decreases) with composite length Nc and the FWHM of the Gaussian filtering
kernel.

Fig. 6 shows the results from the tendon sample. The upper oval-shaped region is the tensile
tendon, which is typically dark when using conventional pulse sequences. With this UTESI
sequence, the tendon presents significant signal level at early TE times, especially in the
minimal TE image. The complex HYPR LR image has ability to significantly reduce streak
artifacts, as illustrated in Fig. 6(a) and (b). Fat/water separation is achieved by displaying the
spectroscopic images at corresponding frequencies (—444 Hz and 0 Hz in Fig. 6a). The
interleaved projection in k-space shifts oscillating artifacts to high frequency images and
therefore results in a clean spectroscopic image at low frequency (6). The fascicular pattern
inside the tensile tendon is well identified in the water image, as Fig. 6(c) shows.

In vivo Experiment

Fig. 7 summarizes the results of the volunteer bone study. TE images and spectroscopic
images are shown in Fig. 7(a). In order to illustrate the importance of using magnitude
filtering, the problematic complex filtering was used in the last image of the second row. All
other images appear to have good quality in terms of SNR and streak artifact reduction. The
bone signal decays rapidly with increasing TE, which is consistent with the fact that its
spectrum is bright over a broad range. To* decay fitting was also performed and is shown in
Fig. 7(b). The fitted T,* is 361 ps, which is in agreement with the broad bone spectrum
shown in Fig. 7(c). Fig. 7(d) provides the signal analysis of marrow, and it a shows fat/water
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oscillation pattern. In the analyzed ROI, the marrow contains fat and water with roughly
same percentage in content, as shown in the spectrum (Fig. 7(e)), which will theoretically
give a perfect signal cancellation of fat and water. This is confirmed by the large peak-to-
peak amplitude in the intensity curve.

DISCUSSION

A novel and intrinsically complex HYPR-LR reconstruction was shown to simultaneously
improve SNR in the magnitude channel and reduce streak artifact in the phase channel for
radially undersampled projection MRI data. This was validated in computer simulations and
demonstrated in in vitro and in vivo MRI data. The reason that the UTESI data can be
undersampled is that the image object is composed of several regions, and the temporal
behavior within each local region is relatively homogeneous. So even though the dataset is
not necessarily spatially sparse, there is still data redundancy in the temporal-spatial domain
and HYPR-like algorithms can help exploit this type of data redundancy. By radially
undersampling, the number of echo images, N, acquired within clinically acceptable time
can be increased, and therefore the spectral resolution, Af = 1/(N -ATE), the spectral
bandwidth, or both can be improved.

The general strategy of the proposed method is to treat echo images in UTESI as “time
frames” in MRA where the original HYPR and HYPR LR algorithm can significantly
reduce the spatial streak artifacts without compromising the SNR. By summing all or a
subset of echo images, the UTE composite image is clean and has high SNR. However, the
magnitude and the phase in the composite image are usually not the same as in one specific
echo image. Then by wisely synthesizing a weighting image lyy, the correct magnitude and
phase information of this echo image is fed into the composite image and a complex HYPR
LR image is generated.

The proposed complex HYPR LR algorithm, as well as other HYPR-like methods, should be
differentiated from previously reported view-sharing technique (10-12). In view-sharing
technique, images are constructed by incorporating high spatial frequency data from
neighboring time frame to reduce the streak artifacts due to undersampling. This results in
degraded temporal resolution. In HYPR-like algorithms, the composite image is generated
by averaging all the images within a composite window; therefore, the temporal information
in the composite image is very poor. However, HYPR-like algorithms further correct the
temporal information by multiplying the composite image by a synthesized weighting
image, and it has been shown to have better temporal response than view-sharing
approaches (13).

The choice of undersampling factor and reconstruction parameters, such as composite
length, filter type and size, in the proposed complex HYPR LR method should be made
considering the following factors. First, the degree of undersampling is limited by the
sparsity of the image object, acceptability of streak artifacts and tolerable reconstruction
error. As Fig. 4 shows, at very high undersampling level, residual streak artifacts are always
visible and cannot be entirely removed no matter what composite length is used. Second,
because the image is not necessarily sparse, and it is very common that two regions, such as
bone and marrow, are directly connected to each other, even the proposed magnitude
blurring method will still cause inaccuracy or cross-talk at the region boundaries. This effect
can be reduced by decreasing the FWHM of the filtering kernel. From this standpoint, a
smaller filter is favorable, and HYPR LR is generally superior to original HYPR in this
UTESI application, because original HYPR has a large 1/r global filtering (detailed
comparison between HYPR and HYPR LR is presented in Ref. (15). However, SNR will be
compromised if the filter is too small. Based on all the results shown in this paper, our
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experience with the complex HYPR LR method suggests that an image-space Gaussian
kernel with size of 10 pixels and o of 7 pixels is a good choice for bone and tendon imaging.
The reconstructed images show much better SNR with acceptable spatial cross-talk. Third,
the composite length, N¢, should be long enough such that the composite image is free of
streak artifacts and has high SNR. An insufficient composite length results in reconstruction
error, as the simulation results suggest. On the other hand, a very long composite length in
this UTESI application is unfavorable, because longer TE images have low SNR and
including them in the composite image will not provide increased SNR.

Some spatial blurring artifacts observed in the UTE bone and tendon imaging are not due to
the blurring procedure in HYPR LR reconstruction; however, they are partially due to the
chemical shift artifacts that are related to radial acquisition and partially caused by rapid T,*
decay during readout. These types of blurring artifacts can be removed using water-fat
separation methods (18-20) and will be investigated in the future.

One limitation of this complex HYPR LR method, however, is the phase cancellation in the
composite image. In this method, composite images are generated by summing Nc FBP TE

images, and the SNR of the composite is \/17( times bigger than each FBP image. But it is
possible that the summation of the complex signals from FBP images will cause signal
cancellation, and therefore result in a very low signal level and low SNR in the generated
composite image. If this happens, this method does not have the SNR gain and will fail. The
phase change within a composite window is given by A = 2rt-Afg ATE- N¢. Generally, N¢
should be chosen such that A does not exceed = to avoid significant cancellation, therefore,
N¢ <1/(2AfitATE). However the presence of T,* decay will mitigate this problem and the
restriction on N can be relaxed.

In other applications where composite cancellation is unavoidable, special treatment to the
composite images is needed. One alternative to summing complex images to obtain the
composite image is to acquire a single separate, fully or even over-sampled image with high
SNR at minimal TE, and to use it as the composite for the complex HYPR LR
reconstruction. By doing so, cancellation will not occur and the high SNR of the composite
can be guaranteed.

The proposed complex HYPR LR method is a non-iterative reconstruction algorithm that
does not require any training data and can deal with complex dataset in an elegant way.
Iterative HYPR-like algorithms have been introduced to improve temporal waveform
fidelity and seem to be more robust in the case of significant motion (21-23). It also is likely
that an iterative version of this complex HYPR LR method can reduce the discrepancy
shown in Fig. 4(b) and (d). Future work may also include multi-echo UTESI with complex
HYPR LR reconstruction to improve the spectral resolution.

CONCLUSION

In this work, a complex HYPR LR reconstruction method was proposed and validated in
simulation, in-vitro and in-vivo studies using the UTESI technique. It has been demonstrated
that this approach can be used to reduce scan time with given SNR or increase the SNR for a
fixed scan time with high in-plane spatial resolution. Streak artifacts reduction is also
achieved in the phase domain. Future work may include the extension of this method to
other applications in which complex information is intrinsically needed, such as phase
contrast MRI and hyperpolarized C-13 spectroscopic imaging.
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Schematic Diagram of the complex HYPR LR reconstruction algorithm. For simplicity, this
diagram shows the case in which all the time frames are combined to produce a complex
composite image. The filtration is only applied to the magnitude channel in the formation of

B; and Bc¢. All the boxes in the diagram are intrinsically complex-valued data.
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Figure 2.

A numerical phantom example (a) and an in vivo example (b) showing the band artifacts
caused by filtering complex images directly. The third column shows the blurred magnitude
images obtained by the proposed magnitude filtering method, while the last column
corresponds to magnitude images reconstructed using the straightforward complex blurring
scheme. Arrows in the last column show the typical band artifacts due to signal cancellation

due to complex filtering.
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Figure 3.
Formation of the phase in the complex HYPR LR algorithm. The first and second rows
correspond to Eq. 6and Eq. 7, respectively.
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Figure 4.

Simulation results. Panel (a) shows the original image and the reconstructed images using
different composite lengths at various undersampling levels. Standard deviation measured
from a 100-pixel ROl is displayed for x16 setup, and sdg is the standard deviation measured
in the actual phantom. (b) and (d) show the signal vs. TE curves from simulated bone and
marrow, using two different composite lengths. (c) and (e) are the corresponding spectra of
simulated bone and marrow, using composite length of 9 images.
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Figure 5.

Comparison of the FBP TE image and the complex HYPR LR images reconstructed using
different parameters at TEpn. The first column shows the profiles of Gaussian filter kernel
with size = 10 pixels with three different values of the kernel standard deviation . Signal
standard deviation from a 100-pixel ROI was measured for each parameter setting. Images
reconstructed from in vitro experiment sample #1.
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Figure 6.

Results of in-vitro experiment sample #2. Magnitude image at TE=8us reconstructed from
simple FBP algorithm (a) and complex HYPR LR method (b). Spectroscopic image at water
peak (c) and fat peak (d) are also shown. Fascicular pattern inside the tensile tendon is well
depicted in the water image.
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Figure 7.

Results from volunteer study. Panel (a) shows the complex HYPR LR time frames at
selected TEs and the corresponding spectroscopic images at 8 selected frequencies around
the water peak. The last image in the second row shows the bright ghosting artifacts if using
direct complex filtering method. Graph (b) to (e) shows the signal intensity vs TE curve and
the spectrum of an 8 by 8 ROI drawn from bone and marrow, respectively. Zero-padding to
512 points was performed prior to Fourier transform along the time dimension.
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