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Abstract

Background: Zipf’s discovery that word frequency distributions obey a power law established parallels between biological
and physical processes, and language, laying the groundwork for a complex systems perspective on human
communication. More recent research has also identified scaling regularities in the dynamics underlying the successive
occurrences of events, suggesting the possibility of similar findings for language as well.

Methodology/Principal Findings: By considering frequent words in USENET discussion groups and in disparate databases
where the language has different levels of formality, here we show that the distributions of distances between successive
occurrences of the same word display bursty deviations from a Poisson process and are well characterized by a stretched
exponential (Weibull) scaling. The extent of this deviation depends strongly on semantic type – a measure of the logicality
of each word – and less strongly on frequency. We develop a generative model of this behavior that fully determines the
dynamics of word usage.

Conclusions/Significance: Recurrence patterns of words are well described by a stretched exponential distribution of
recurrence times, an empirical scaling that cannot be anticipated from Zipf’s law. Because the use of words provides a
uniquely precise and powerful lens on human thought and activity, our findings also have implications for other overt
manifestations of collective human dynamics.

Citation: Altmann EG, Pierrehumbert JB, Motter AE (2009) Beyond Word Frequency: Bursts, Lulls, and Scaling in the Temporal Distributions of Words. PLoS
ONE 4(11): e7678. doi:10.1371/journal.pone.0007678

Editor: Enrico Scalas, University of East Piedmont, Italy

Received July 9, 2009; Accepted September 21, 2009; Published November 11, 2009

Copyright: � 2009 Altmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by JSMF Grant No. 21002061 (J. B. P.) and NSF DMS-0709212 (A. E. M.). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: motter@northwestern.edu

Introduction

Research on the distribution of time intervals between successive

occurrences of events has revealed correspondences between

natural phenomena on the one hand [1,2] and social activities on

the other hand [3–5]. These studies consistently report bursty

deviations both from random and from regular temporal distribu-

tions of events [6]. Taken together, they suggest the existence of a

dynamic counterpart to the universal scaling laws in magnitude and

frequency distributions [7–11]. Language, understood as an

embodied system of representation and communication [12], is a

particularly interesting and promising domain for further explora-

tion, because it both epitomizes social activity, and provides a

medium for conceptualizing natural and biological reality.

The fields of statistical natural language processing and

psycholinguistics study language from a dynamical point of view.

Both treat language processing as encoding and decoding of

information. In psycholinguistics, the local likelihood (or predict-

ability) of words is a central focus of current research [13]. Many

widely used practical applications of statistical natural language

processing, such as document retrieval based on keywords, also

exploit dynamic patterns in word statistics [10,14,15]. Particularly

important for these applications, and also noticed in different

contexts [16–21], is the non-uniform distribution of content words

through a text, suggesting that connections to the previous

discoveries about inter-event distributions may be revealed through

a systematic investigation of the recurrence times of different words.

With the rise of the Internet, large records of spontaneous and

collective language are now available for scientific inquiry [22–24],

allowing statistical questions about language to be investigated

with an unprecedented precision. At the same time, large-scale

text mining and document classification is of ever-increasing

importance [25]. The primary datasets used in our study are

USENET discussion groups available through Google (http://

groups.google.com). These exemplify spontaneous linguistic inter-

actions in large communities over a long period of time. We first

focus on the N~2,128 words that occurred more than 10,000
times between Sept. 1986 and Mar. 2008 in a (2 108-word)

discussion group, talk.origins. The data were collated chronolog-

ically, maintaining the thread structure (see Text S1, Databases).

Here, we show that long-time word recurrence patterns follow a

stretched exponential distribution, owing to bursts and lulls in

word usage. We focus on time scales that exceed the scale of

syntactic relations, and the burstiness of the words is driven by their

semantics (that is, by what they mean). The burstiness of physical

events and socially contextualized choices makes words more
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bursty than an exponential distribution. However, we show that

words are typically less bursty than other human activities [26] due

to their logicality or permutability [27,28], technical constructs of

formal semantics that index the extent to which the meanings and

usage of words are stable over changes in the discourse context.

Our quantitative analysis of the empirical data confirms the

inverse relationship between burstiness and permutability. The

model we develop to explain these observations shares the

generative spirit of local (n-gram) and weakly non-local models

of text classification and generation [29–31]. However it focuses

on long time-scales, picking up at temporal scales where studies of

local predictability and coherence leave off [13]. We verify the

generality of our main findings using different databases, including

books of different genres and a series of political debates.

Methods

We are interested in the temporal distribution of each word w.

All words are enumerated in order of appearance, i~1, 2,:::, N,

where i plays the role of the time along the text. The recurrence

time tw
j ~iw

jz1{iw
j is defined by the number of words between two

successive uses (iw
j and iw

jz1) of word w (plus one). For instance, the

first appearances of the word the in the abstract above are at

ithe
1 ~22, ithe

2 ~41, ithe
3 ~44, ithe

4 ~50, :::, leading to a sequence of

recurrence times tthe
1 ~19, tthe

2 ~3, tthe
3 ~6, :::. We are interested

in the distribution fw tð Þ of t~tw
j , j~1,:::,Nw. The mean

recurrence time, called by Zipf the wavelength of the word [7],

is given by StwT~N=Nw:1=nw [2] (hereafter we drop w from

our notation). It is mathematically convenient to consider t to be a

continuous time variable (an assumption that is justified by our

interested in t&1) and to use the cumulative probability density

function defined by F tð Þ:
ð?

t

f ~ttð Þd~tt, which satisfies F 0ð Þ~1

and

ð?
0

F tð Þdt~

ð?
0

tf tð Þdt~StT~1=n.

The first point of interest is how the distribution f tð Þ [or F tð Þ]
deviates from the exponential distribution

fP tð Þ~me{mt, FP tð Þ~e{mt, ð1Þ

where StT~1=n leads to m~n. The exponential distribution is

predicted by a simple bag-of-words model in which the probability m
of using the word is time independent and equals n (a Poisson

process with rate m~n) [14,15,19,25,29], as observed if the words

in the text are randomly permuted. Deviations are caused by the

way that people choose their words in context. Numerous studies,

as reviewed in Ref. [32], already demonstrate that the language

users dynamically modify their use of nouns and noun phrases as a

function of the linguistic and external context. We analyze such

modifications for all types of words.

Results and Discussion

Figure 1 shows the empirical results obtained for the example

words theory and also in the talk.origins group of the USENET

database. Both words have StT&820 but are linguistically quite

Figure 1. Recurrence time distributions for the words theory (red) and also (blue) in the USENET group talk.origins, a discussion
group about evolution and creationism. Both words have a mean recurrence time of StT&820. (a) Linear-logarithmic representation of f tð Þ,
showing that the decay is slower than the exponential b~1 prediction (1) (black dashed line) and follows closely the stretched exponential
distribution (2) with b~0:46 (R2~0:9984) for theory and b~0:85 (R2~0:9999) for also. For comparison, b~1 yields R2~0:49 for the word theory and
R2~0:9904 for the word also (see Text S1, Fitting Procedures). The inset in (a) shows a magnification for short times. A word-dependent peak at tv50
reflects the domination of syntactic effects and local discourse structure at this scale. (b) Cumulative distribution function F tð Þ in a scale in which the
stretched exponential (2) appears as a straight line. The panels in the inset show 100 occurrences (top to bottom): of the word theory, of the word
also, and of a randomly distributed word (b~1). (c) The probability of word usage m tð Þ for the words theory and also. The data are binned
logarithmically and the straight lines correspond to Eq. (4). (d) Illustration of the generative model for the usage of individual words when b~0:4,
where the spikes indicate the times at which the word is used. The probability ~mm ið Þ of using a word decays as a piece-wise power-law function since
its last use, as determined by Eq. (4). The Poisson case corresponds to constant ~mm. The panels at the bottom show 100 occurrences of words
generated by the model for b~0:4 and b~0:8.
doi:10.1371/journal.pone.0007678.g001
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different: while theory is a common noun, also is an adverb that

functions semantically as an operator. The deviation from the

Poisson prediction (1) is apparent in Fig. 1(a–c): f tð Þ is larger than

the exponential distribution for distances t both much shorter and

much longer than StT, while it is smaller for t&StT. Both words

exhibit a most probable recurrence time t *v 20 and a monoton-

ically decaying distribution f tð Þ for larger times [Fig. 1(a)].

Comparing the insets in Fig. 1(b), one sees that the occurrences of

theory are clustered close to each other in a phenomenon known as

burstiness [6,14,15,19,21]. Due to burstiness, the frequency of the

word theory estimated from a small sample would differ a great deal

as a function of exactly where the sample was drawn. Similar but

lesser deviations are observed for the word also.

Central to our discussion, Fig. 1 shows that the distributions of

both words can be well described by the single free parameter b of

the stretched exponential distribution

fb tð Þ~abtb{1e{atb

, Fb tð Þ~e{atb

, ð2Þ

where a~ab~ n C(
bz1

b

� ��b

is obtained by imposing StT~1=n,

C is the Gamma function, and 0vbƒ1. Distribution (2), also

known as Weibull distribution, and similar stretched exponential

distributions describe a variety of phenomena [6,23,33–35],

including the recurrence time between extreme events in time

series with long-term correlations [2,36]. The stretched exponential

(2) is more skewed than the simple exponential distribution (1),

which corresponds to the limiting case b~1, but less skewed than a

power law, which is approached for b?0.

A crucial test for the claim that an empirical distribution F tð Þ
follows a stretched exponential Fb is to represent {log F tð Þð Þ as a

function of t in a double logarithmic plot [2]. The straight line

behavior for almost three decades shown in Fig. 1(b), which is

illustrative of the words in our datasets, provides strong evidence

for the stretched exponential scaling (spam-related deviations for

long t are discussed in Text S1, Databases). This is a clear advance

over the closest precedents to our results: (i) In Ref. [8] Zipf

proposed a power-law decay, which would appear as an horizontal

line in Fig. 1b. (ii) Refs. [14,15] compare two non-stationary

Poisson processes for predicting the counts of words in documents

(see Text S1, Counting Distribution); (iii) Ref. [19] proposes a non-

homogeneous Poisson process for recurrence times, using a

mixture of two exponentials with a total of four free parameters;

(iv) Ref. [37] uses the Zipf-Alekseev distribution f tð Þ*t{a{b ln tð Þ,
which we found to underestimate the decay rate for large t and to

leave larger residuals than our fittings (see Text S1, Zipf-Alekseev

Distribution). The stretched exponential distribution was found to

describe the time between usages of words in Blogs and RSS feeds

in Ref. [24]. However, time was measured as actual time and the

same distribution was found for different types of words, suggesting

that their observations are driven by the bursty update of

webpages, a related but different effect. More strongly related to

our study is Ref. [5]’s analysis of email activity, in which a non-

homogeneous Poisson process captures the way one email can

trigger the next.

Generative Model
Motivated by the successful description of the stretched

exponential distribution (2), we search for a generative stochastic

process that can model word usage. We consider the inverse

frequency StT as given and focus on describing how the words are

distributed throughout the text. We assume that our text

(abstractly regarded as arbitrarily long) is generated by a well-

defined stationary stochastic process with finite StT for the words

of interest. We further assume that the probability m tð Þ of using

the word w depends only on the distance t since the last

occurrence of the word. The latter means that we are modeling the

word usage as a renewal process [34,36]. The distribution of

recurrence times is then given by the (joint) probability of having

the word at distance t and not having this word for tvt:

f tð Þ~m tð Þ P
t{1

i~1
1{m ið Þð Þ&m tð Þe{

Ð t

0
m tð Þdt

:

The cumulative distribution function is written as

F tð Þ~e
{
Ð t

0
m tð Þdt

: ð3Þ

The time dependent probability m tð Þ, also known as hazard function,

can be obtained empirically as m tð Þ~f tð Þ=F tð Þ (see Text S1,

Hazard Function). Equation (3) reduces to the exponential

distribution (1) for a time independent probability

m tð Þ~m~1=StT. The stretched exponential distribution (2) is

obtained from (3) by asserting that [34,36,38]

m tð Þ~abt{ 1{bð Þ for 0vbƒ1: ð4Þ

This assertion means that in our model, the probability of using a

word decays as a power law since the last use of that word. This is

further justified by the power-law behavior of m tð Þ determined

directly from the empirical data, as shown in Fig. 1(c) and Text S1,

Fig. 9, and is in agreement with results from mathematical

psychology [39,40] and information retrieval [40]. The Weibull

renewal process we propose can be analyzed formally as a

particular instance of a doubly stochastic Poisson process [41].

Our model is illustrated in Fig. 1(d) and can be interpreted as a

bag-of-words with memory that accounts for the burstiness of

word usage. This model does not reproduce the positive

correlations between tj and tjzp [2,6,20], which are usually small

(less than 20% for p~1) but decay slowly with p (see Text S1,

Correlation in tj

� �
). These correlations quantify the extent to which

the renewal model is a good approximation of the actual

generative process, and show that the burstiness of words exists

not only as a departure of f tð Þ from the exponential distribution,

but also as a clustering of small (large) t [6] (see Text S1,

Independence of tj

� �
). The advantage of the renewal description is

that the model (i) can be substantiated to a vast literature

describing power-law decay of memory in agreement with Eq. (4),

see Refs. [39,40] and references therein, and (ii) fully determines

the dynamics (allowing, e.g., the precise derivation of counting

distributions [38], which are used in applications to document

classification [14,15] and information retrieval [40]).

Word Dependence
We have seen in Fig. 1 that the word-dependent deviation from

the exponential distribution is encapsulated in the parameter b:

the smaller the b for any given word, the larger the deviation (see

Text S1, Deviation from the Exponential Distribution). Next we

investigate the dominant effects that determine the value of the

parameter b of a word. Previous research has observed that

frequent function words (such as conjunctions and determiners)

usually are closer to the random (Poisson) prediction while less

frequent content words (particularly names and common nouns) are

more bursty. These observations were quantified using: (i) an

entropic analysis of texts [16]; (ii) the variance of the sequence of

recurrence times [17]; (iii) the recurrence time distribution [19,42];

Beyond Word Frequency

PLoS ONE | www.plosone.org 3 November 2009 | Volume 4 | Issue 11 | e7678



and (iv) the related distribution of the number of occurrences of

words per document [14,15]. Because we have a large database

and do not bin the datastream into documents, we are able to go

beyond these insightful works and systematically examine

frequency and linguistic status as factors in word burstiness.

Our large database allows a detailed analysis of words that,

despite being in the same frequency range, have very different

statistical behavior. For instance, in the range 2,000vStTv3,000,

words with high b (&0:80) include once, certainly, instead, yet, give, try,

makes, and seem; the few words with b &v 0:40 include design, selection,

intelligent, and Wilkins. Corroborating Ref. [14], it is evident that

words with low b better characterize the discourse topic. However,

these examples also show that the distinction between function

words and content words cannot be explanatory. For instance,

many content words, such as the adverbs and verbs of mental

representation in the list just above, have b values as high as many

function words. Here we obtain a deeper level of explanation by

drawing on tools from formal semantics, specifically on type theory

[27,43,44], and on dynamic theories of semantics [45,46], which

model how words and sentences update the discourse context over

time. We use semantics rather than syntax because syntax governs

how words are combined into sentences, and we are interested in

much longer time scales over which syntactic relations are not

defined. Type theory establishes a scale from simple entities (e.g.,

proper nouns) to high type words (e.g., words that cannot be

described using first-order logic, including intensional expressions

and operators). Simplifying the technical literature in the interests

of good sample sizes and coding reliability, we define a ladder of

four semantic classes, as listed in Table 1.

In Fig. 2, we report our systematical analysis of the recurrence

time distribution of all 2,128 words that appeared more than ten

thousand times in our database (for word-specific results see Table

S1). We find a wide range of values for the burstiness parameter b
[0:2vbv0:9, Fig. 2(a,b)] and the stretched exponential distribu-

tion describes well most of the words [R2
median~0:993, Fig. 2(c)].

The Class-specific results displayed in Fig. 2(a–c) show that words

of all classes are accurately described by the same statistical model

over a wide range of scales, a strong indication of a universal

process governing word usage at these scales. Figure 2(b) also

reveals a systematic dependence of b on the semantic Classes:

burstiness increases (b decreases) with decreasing semantic Class.

This relation implies that words functioning unambiguously as

Class 3 verbs should be less bursty than words of the same

frequency functioning unambiguously as common nouns (Class 2).

This prediction is confirmed by a paired comparison in our

database: such verbs have a higher b in 103 out of 116 pairs of

verbs and frequency-matched nouns (sign test, Pƒ8 10{19). The

relation applies even to morphologically related forms of the same

word stem (see Text S1, Lemmatization): for 37 out of the 47 pairs of

Class 3 adjectives and Class 4 adverbs in the database that are

derived with -ly, such as perfect, perfectly, the adverbial form has a

higher b than the adjective form (sign test, Pƒ5 10{5). Figure 2(d)

shows the dependence of b on inverse frequency StT. This figure

may be compared to the TF-IDF (term frequency-inverse

document frequency) method used for keyword identification

[14], but it is computed from a single document (see also Refs.

[16–18]). Figure 2(d) reveals that b is correlated with StT and that

the Class ordering observed in Fig. 2(b) is valid at all StTs. The

detailed analysis in Fig. 2(e) demonstrates that semantic Class is

more important than frequency as a predictor of burstiness (Class

accounts for 0:32 and log-frequency for 0:26 of the variance of b,

by the test proposed in Ref. [47]).

We are now in a position to discuss why burstiness depends on

semantic Class. A straw man theory would seek to derive the

burstiness of referring expressions directly from the burstiness of

their referents. The limitations of such a theory are obvious: Oxygen

is a very bursty word in our database (b&0:25) though oxygen is

ubiquitous. A more careful observer would connect the burstiness of

words to the human decisions to perform activities related to the

words. For instance, the recurrence time between sending emails is

known to approximately follow a power law [3,5]. However, in our

database the word email is significantly closer to the exponential

(b&0:5) than a power law would predict (b?0). Indeed, a defining

characteristic of human language is the ability to refer to entities and

events that are not present in the immediate reality [48]. These

nontrivial connections between language and the world are

investigated in semantics. An insight on the problem of word usage

can be obtained from Ref. [27], which establishes that the meaning

and applicability of words with great logicality remains invariant

under permutations of alternatives for the entities and relations

specified in the constructions in which they appear. Here we

consider permutability to be proportional to the semantic Classes of

Table 1. As a long discourse unfolds exploring different construc-

tions, we expect words with higher permutability (higher semantic

Class) to be more homogeneously distributed throughout the

discourse and therefore have higher b (be less bursty). Critical to this

explanation is the fact that human language manipulates represen-

tations of abstract operators and mental states [49]. However, the

overt statistics of recurrence times do not need to be learned word

by word. It seems more likely that they are an epiphenomenal result

of the differential contextualization of word meanings. The fact that

the behavior of almost all words deviate from a Poisson process to at

least some extent, indicates that the permutability and usage of

almost all words are contextually restricted to some degree, whether

by their intrinsic meaning or by their social connotations.

Different Databases
In Fig. 3 we verify our main results using databases of different

sizes and characterized by different levels of formality. We

analyzed a second example of a USENET group (U), a series of

political debates (D), two novels (S,W), and a technical book (P)

(for word-specific results see Table S1). The stretched exponential

provides a close fit for frequent words in these datasets [Fig. 3(a,c)],

and a wide and smoothly varying range of bs is observed in each

Table 1. Examples of the classification of words by semantic
types.

Class Name Examples of words

1 Entities Africa, Bible, Darwin

2 Predicates and Relations blue, die, in, religion

3 Modifiers and Operators believe, everyone, forty

4 Higher Level Operators hence, let, supposedly, the

The primitive types are entities e, exemplified by proper nouns such as Darwin
(Class 1), and truth values, t (which are the values of sentences). Predicates or
relations, such as the simple verb die, and the adjective/noun blue, take entities
as arguments and map them to sentences (e.g., Darwin dies, Tahoe is blue). They
are classified as Se,tT (Class 2). The notation Sx,yT denotes a mapping from an
element x in the domain to the image y [43,44]. The semantic types of higher
Classes are established by assessing what mappings they perform when they
are instantiated. For example, everyone is of type SSe,tT,tT (Class 3), because it
is a mapping from sets of properties of entities to truth values [44]; the verb
believe shares this classification as a verb involving mental representation. The
adverb supposedly is a higher order operator (Class 4), because it modifies other
modifiers. Following Ref. [44] (contra Ref. [43]) words are coded by the lowest
type in which they commonly occur (see Text S1, Coding of Semantic Types).
doi:10.1371/journal.pone.0007678.t001
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Figure 2. Dependence of b on semantic Class and frequency for the 2,128 most frequent words of the USENET group talk.origins.
Different classes of words (see Table 1) are marked in different colors. (a) Fitting of b exemplified for four words with R2&R2

median~0:993 (bottom to
top): God, Class 1, b~0:39, StT~586; fundamentalists, Class 2, b~0:45, StT~15,825; listen, Class 3, b~0:56, StT~21,971; seemed, Class 4,
b~0:67, StT~19,564. (b) Histogram of the fitted b, providing evidence that the Class is determinant to the value of b. (c) Quality of fit quantified in
terms of the coefficient of determination R2 between the fitted stretched exponential and the empirical F tð Þ (see Text S1, Quality of Fit). The box-
plots are centered at the median and indicate the 1,2,6,7 octiles. For comparison, an exponential fit with two free parameters yields R2

median~0:907
(see Text S1, Deviation from the Exponential Distribution). (d) Relative dependence of b on Class and StT~1=n (inverse frequency), indicating: running
median on words ordered according to StT (center black line) and 1-st and 7-th octiles (boundaries of the gray region); and running medians on
words by Class (colored lines, Class 1–4, from bottom to top) with illustrative words for each Class. At each StT, large variability in b and a systematic
ordering by Class is observed. (e) Box-plots of the variation of b for words in a given Class. The box-plots in the background are obtained using
frequency to divide all words in four groups with the same number of words of the semantic Classes (first box-plot has words with lowest frequency
and last box-plot has words with highest frequency). The classification based on Classes leads to a narrower distribution of b’s inside Class and to a
better discrimination between Classes.
doi:10.1371/journal.pone.0007678.g002

Figure 3. Stretched exponential recurrence time distributions observed in different databases. The databases consist of the
documentary novel Os Sertões by Euclides da Cunha (S), in Portuguese (N&1:5 105); the USENET group comp.os.linux.misc (U) between Aug. 1993
and Mar. 2008 (N&6 107); the three Obama-McCain debates of the 2008 United States presidential election (D) arranged in chronological order
(N&5 104); an English edition of the novel War and Peace by Leon Tolstoy (W) (N&6 105); and the first English edition of Isaac Newton’s Principia (P)
(N&2 105). All words appearing more than 100 times were considered in S (117 words), D (78 words), P (268 words), and W (633 words), whereas in U
all 733 words appearing more than 10,000 times were used (see Text S1, Databases). (a) Recurrence time distributions for the words quase in S
(b~0:88, StT~1,204, R2~0:996), simple in U (b~0:71, StT~3,397, R2~0:996), would in D (b~0:61, StT~359:5, R2~0:995), voices in W
(b~0:58, StT~3,946, R2~0:994), and diameter in P (b~0:40, StT~1,129, R2~0:975). (b) Histograms of the fitted b for all datasets. Due to sample
size limits, the analysis into semantic Classes is not feasible for the smaller datasets. (c) Box-plots of the coefficient of determination R2 of the
corresponding stretched exponential fit.
doi:10.1371/journal.pone.0007678.g003
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case [Fig. 3(b)]. The technical book exhibits lower b values, which

can be attributed to the predominance of specific scientific terms.

These datasets include examples of texts differing by almost four

orders of magnitudes in size, generated by a single author (books),

a few authors (debates) or a large number of authors (USENET),

in writing and speech (e.g., books vs. debates), and in different

languages (e.g., novels), indicating that the stretched exponential

scaling is robust with regard to sample size, number of authors,

language mode, and language.

Conclusions
The quest for statistical laws in language has been driven both by

applications in text mining and document retrieval, and by the

desire for foundational understanding of humans as agents and

participants in the world. Taking texts as examples of extended

discourse, we combined these research agendas by showing that

word meanings are directly related to their recurrence distributions

via the permutability of concepts across discourse contexts. Our

model for generating long-term recurrence patterns of words, a bag-

of-words model with memory, is stationary and uniformly

applicable to words of all parts of speech and semantic types. A

word’s position along the range in the memory parameter in the

model, b, effectively captures its position in between a power-law

and an exponential distribution, thus capturing its degree of

contextual anchoring. Our results agree with Ref. [49] in

emphasizing both the specific ability to learn abstract operators

and the broader conceptual-intentional system as components in the

human capability for language and in its use in the flow of discourse.

Analogies between communicative dynamics and social dynamics

more generally are suggested by the recent documentation of heavy-

tailed distributions in many other human driven activities [3,5,26].

They indicate that tracing linguistic activities in the ever larger

digital databases of human communications can be a most

promising tool for tracing human and social dynamics [22]. The

stretched exponential form for recurrence distributions that derives

from our model and the empirical finding it embodies are thus

expected to also find applicability in other areas of human endeavor.

Supporting Information
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