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A model nanometer-sized hydrophobic receptor-ligand system in aqueous solution is studied by the
recently developed level-set variational implicit solvent model �VISM�. This approach is compared
to all-atom computer simulations. The simulations reveal complex hydration effects within the
�concave� receptor pocket, sensitive to the distance of the �convex� approaching ligand. The ligand
induces and controls an intermittent switching between dry and wet states of the hosting pocket,
which determines the range and magnitude of the pocket-ligand attraction. In the level-set VISM, a
geometric free-energy functional of all possible solute-solvent interfaces coupled to the local
dispersion potential is minimized numerically. This approach captures the distinct metastable states
that correspond to topologically different solute-solvent interfaces, and thereby reproduces the
bimodal hydration behavior observed in the all-atom simulation. Geometrical singularities formed
during the interface relaxation are found to contribute significantly to the energy barrier between
different metastable states. While the hydration phenomena can thus be explained by capillary
effects, the explicit inclusion of dispersion and curvature corrections seems to be essential for a
quantitative description of hydrophobically confined systems on nanoscales. This study may shed
more light onto the tight connection between geometric and energetic aspects of biomolecular
hydration and may represent a valuable step toward the proper interpretation of experimental
receptor-ligand binding rates. © 2009 American Institute of Physics. �doi:10.1063/1.3242274�

I. INTRODUCTION

Hydrophobic interactions drive apolar molecules to stick
together in an aqueous solution.1–4 Such interactions occur in
many biological processes, ranging from the formation of
large molecular complexes1 and protein folding5 to the con-
duction through transmembrane channels,6 and recognition
between drug compounds and their molecular targets.7 In
particular, the solvent-mediated interaction between a ligand
and a hydrophobic receptor plays a key role in biomolecular
assembly processes, such as protein-ligand recognition,7–12

the binding of the human immunodeficiency virus13 or the
dengue virus14 to human cells, the inhibition of influenza
virus infectivity,15 or in synthetic host-guest systems.16 Ex-
periments and explicit-water molecular dynamics �MD�

simulations suggest that the concave nature of the host ge-
ometry imposes a strong hydrophobic constraint and can lead
to very weakly hydrated pockets,2,7–12,17 prone to nanoscale
capillary evaporation triggered by an approaching
ligand.7,11,18 This so-called dewetting transition has been also
observed in other protein geometries, such as hydrophobic
protein cores and ion channels.2,17 It has been speculated that
dewetting may lead to a fast host-guest recognition acceler-
ating the hydrophobic collapse and binding rates of the
ligand into its pocket.7,8,11 But a deeper physical understand-
ing of these sensitive hydration effects in hydrophobic rec-
ognition seems to be still elusive.

A theoretical description of molecular hydration, and in
particular hydrophobic effects, can allow for fast and accu-
rate prediction of free-energy changes, and hence the struc-
ture, dynamics, and function of an underlying biological sys-
tem. While MD computer simulations with the use of explicit
solvent provide a good insight into hydration effects, they are
computationally expensive, in particular, when it comes to
obtaining thermodynamic quantities. In contrast, implicit sol-
vent models19,20 are generally more efficient, though less ac-
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curate. In such models, water is treated as a continuum and
its description is reduced to that of a solute-solvent interface
and related macroscopic quantities, such as the surface ten-
sion and the position-dependent dielectric constant.

Nearly all of the existing implicit solvent models are
based on the concept of solvent accessible surfaces �SASs�,
solvent excluded surfaces �SESs�, or molecular surfaces
�MSs�.20–25 In these models, the hydration free energy �G is
usually calculated as the sum of two components: nonpolar
��Gnp� and polar ��Gp�. The nonpolar term is often assumed
to be proportional to a given surface area S, i.e., �Gnp��S,
with � being an effective surface tension. In some
approaches,26,27 the nonpolar term is further decomposed
into a surface area dependent cavity component, representing
a work necessary to create an empty cavity within a solvent
that would accommodate the solute, and a term describing
solute-solvent van der Waals interactions. Accounting for
electrostatic interactions, the polar term is usually approxi-
mated with the use of Poisson–Boltzmann28–35 or generalized
Born36–38 models. Although successful in many cases, these
models often lack generality, since they rely on many
system-dependent, adjustable parameters �e.g., individual
atomic surface tensions�. Furthermore, with an a priori de-
fined solute-solvent interface, they cannot account for drying
effects whose eventual occurrence would change both the
surface area and interface position, hence affecting both non-
polar and polar components of the free energy. It was also
shown that the occurrence of drying transition may depend
equally on confinement radius,39 strength of surface-water
dispersive interactions,40 as well as on electric field acting on
water molecules.41,42 In order to successfully account for
such dependences, the model should explicitly couple solute
topography and solute-solvent interactions.

Recently, Dzubiella et al.43,44 developed a variational
implicit solvent model �VISM�. The basic idea of this ap-
proach is to introduce a free-energy functional of the solute-
solvent interface geometry, coupling both the nonpolar and
polar contributions, as well as allowing for curvature correc-
tion of the surface tension in order to approximate the
length-scale dependence of molecular hydration.45 Minimiz-
ing the functional determines a stable equilibrium solute-
solvent interface, providing at the same time the hydration
free energy of the system. This way, a solute-solvent inter-
face is an output of the theory, resulting automatically from
balancing the different contributions to the free energy.
Cheng et al.46 first developed a level-set method47–49 for the
robust numerical realization of the variational modeling and
thus for a versatile description of arbitrarily shaped solute-
solvent interfaces. �See also the related work in Ref. 50.�
Importantly, level-set interface evolution easily captures to-
pological changes, e.g., surface fusions and breakups which
are directly related to molecular binding and unbinding.

In this work we apply the level-set VISM to a generic
receptor-ligand model that consists of a hemispherical nano-
scopic pocket embedded in a paraffin wall and a methane
molecule allowed to move in and out of the pocket.
Previously reported, detailed MD explicit solvent
simulations18,51,52 revealed strong hydrophobic interactions
between the solutes, augmented by the occurrence of drying

inside the pockets. A proper description of hydrophobic ef-
fects in the considered system is challenging for an implicit
solvent model due to the simultaneous presence of solutes
involving three different hydration regimes, representative
for small, large, and concave objects �methane molecule, flat
wall, and concave pockets, respectively�.

Our extensive numerical results show good agreement
with the reported MD calculations. In particular, level-set
VISM has been able to �1� calculate efficiently and quantita-
tively the free energy of the system; �2� locate the equilib-
rium solute-solvent interface accurately compared with MD
simulations extracted from water density profiles; and �3�
capture the bimodal hydration behavior of the system that is
characterized by the coexistence of two local minima of the
free energy. All of our results indicate that the variational
solvation theory and the related level-set method have the
potential to capture hydrophobic interactions of relatively
large systems even quantitatively. We believe this is a prom-
ising start to understand such important interactions in the
context of implicit solvent.

The rest of the paper is organized as follows: In Sec. II,
we introduce the generic system under consideration and
briefly review the VISM and its numerical evaluation by the
level-set method developed previously.43,44,46,50 In Sec. III,
we report simulation and numerical results of our level-set
VISM calculations of the model system and discuss and in-
terpret the findings. Finally, in Sec. IV, we draw conclusions
and present an outlook to further necessary extensions of our
approaches.

II. SYSTEM AND METHODS

A. Hydrophobic receptor-ligand system

We consider a simple model of a hydrophobic receptor-
ligand system consisting of a hemispherical nanoscopic
pocket and a methanelike molecule �see Fig. 1�. The solvent
distribution, and the potential of mean force �PMF� between
the two solvated objects, were previously examined in a se-
ries of MD simulations18,51,52 with the use of the TIP4P ex-
plicit solvent model.

The pocket is embedded in a rectangular wall, composed
of neutral particles aligned in a hexagonal close packed grid
of 1.25 Å lattice constant interacting with the Lennard-Jones
�LJ� potential. The LJ parameters of the wall particles, �
=0.010 kJ /mol and �=4.152 Å, are adjusted in such a way

FIG. 1. Schematic view of the pocket-ligand system, showing a methane
molecule �Me� at distance d from pocket of radius R �left�. Snapshot from
MD simulation of the R8 system �right�.
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that the resultant material corresponds to paraffin. Those pa-
rameters are the same as in the work by Setny and Geller51

and Setny.52 It should be noted that even though the value of
� parameter, governing the strength of attractive part of LJ
potential, is rather small, the resulting well depth in wall-
water interaction potential is of 2.93 kJ/mol due to tight
packing of wall particles. Accordingly, the wall-water attrac-
tive forces should be regarded as representative for realistic
hydrophobic material.

The wall surface is oriented in xy-plane, with a hemi-
spherical pocket of radius R centered at �0, 0, 0�. We con-
sider pockets of two different radii: R=8 Å �system R8� and
R=5 Å �system R5�. The ligand, a single neutral LJ
sphere representing a methane molecule �with the use of
united atom optimized potentials for liquid simulations pa-
rameters �=0.4983 kJ /mol and �=3.730 Å�,53 is allowed
to move perpendicular to the wall surface along the pocket
symmetry axis �the z-axis�. Its position with respect to wall
surface is denoted as d �see Fig. 1�.

B. MD simulations

MD simulations are carried out with the use of CHARMM

program. Temperature and the pressure of the system corre-
sponds to 298 K and 1 bar. Periodic boundary conditions
were applied in xy-direction with the use of particle mesh
Ewald summation for electrostatic interactions. A cutoff of
12 Å is used for van der Waals interactions. In order to
obtain potentials of mean force, an umbrella sampling with
subsequent weighted histogram analysis method is used.
Methane positions along the z-axis, ranging from d=12 Å to
the pocket bottom �defined as the distance where methane-
wall repulsion reaches 1kBT, and being d=−3.8 Å and d
=−1.8 Å in R8 and R5 systems, respectively� are sampled in
series of consecutive windows, evenly spaced by 0.5 Å. The
simulation time for each window is 2 ns. A more detailed
description of the system setup and MD simulations can be
found in previous work.18

C. Variational implicit solvent models

We denote by � the region of the entire solvation sys-
tem. It is divided into the solute region �m �m means mol-
ecule�, the solvent region �w �w means water�, and the
solute-solvent interface � that separates the solute region �m

from the solvent region �w �see Fig. 2�. The solute-solvent
interface can possibly have many separated components. We
assume that there are N solute atoms in the system that are

located at r1 , . . . ,rN inside �m. In this continuum-solvent
model, the solvent density distribution is simply ��r�=�0 in
the solvent region �w, where �0 is the bulk density of the
solvent, and ��r�=0 in the solute region �m. For our under-
lying receptor-ligand system, the region �m consists of both
the wall and methane molecular regions.

In VISMs, the solvation free energy G is defined as a
functional of a possible solute-solvent interface � �or the
volume-exclusion function of �m defined to be 0 in �m and
1 elsewhere� in the form43

G��� = PVol��m� + �
�

dS�lv�1 − 2�H�r�� + �0�
�w

d3rU�r�

= GP + �GS + G�� + GLJ, �1�

where P is the difference in bulk pressure between the liquid
and vapor phase, Vol��m� the volume of �m, �lv the liquid-
vapor interface tension, � a coefficient for the curvature cor-
rection of �lv in mean curvature H�r�, and

U�r� = �
i=1

N

ULJ
�i��r − ri� , �2�

sums over the LJ interactions of all N solute atoms �ligand
and wall atoms� with the water, where ULJ

�i� is the LJ potential
corresponding to the ith solute atom at ri. The curvature
correction term in Eq. �1�,

G� = − 2�lv��
�

dSH�r� ,

has been used in the scaled-particle theory54–57 for spherical
solutes only, in a generalized theory of capillarity,58 and in
the same mathematical form in the morphometric approach
which has been applied to fluids and the solvation of model
proteins.59,60

A necessary condition for an interface � to be an energy-
minimizing solute-solvent interface is that the first variation
in the free-energy functional �Eq. �1�� with respect to the
location change of the interface vanishes at �, i.e., 	�G���
=0 at every point of the boundary �. This leads to the partial
differential equation �PDE�43

	�G��� = P + 2�lv�H�r� − �K�r�� − �0U�r� = 0, �3�

where K�r� in Eq. �2� is the local Gaussian curvature. This
equation is a generalization of the classical Laplace equation
of capillarity,58,61 extrapolated to microscales by the local
curvature and explicit consideration of local dispersion
interactions.

The geometrical PDE Eq. �3� is in general extremely
difficult to solve analytically and numerically. To find the
free-energy minimizing solute-solvent interface �min, we
then turn to numerical optimization using the level-set
method that is described below.

For our level-set VISM calculations, we use a set of
parameters matching or approximating the MD conditions:
P=0 bar, �lv=59 mJ /m2 for TIP4P water,62 and �0

=0.033 Å−3. The pressure difference P between the water
liquid and gas state is �1 bar at the normal conditions stud-
ied here. On a nanometer scale �V�nm3� this term is very

n
Γ

Ω
i

N

. .
.

.
.

..

1.
.Ωm

r

r

r
w

FIG. 2. Geometry of a solute-solvent system. Solute atoms are at positions
r1 , . . . ,rN in the volume �m separated by the interface � from the solvent
region �w. Here n denotes the unit normal at the interface �.
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small and can be safely neglected when compared to the
interfacial and dispersion energy terms. The value of the �
parameter, governing the magnitude of curvature correction
term, is usually estimated to be between 0.8 and 1.0 Å.63–65

In our previous calculations utilizing the VISM approach, we
found that �=1.0 Å provided the best agreement with hydra-
tion free energies of simple solutes.46 For the current MD
simulation settings, however, hydration free energy of meth-
ane molecule was best reproduced for �=0.8 Å. As, in prin-
ciple, � is the only freely adjustable parameter in our model,
we decided to consider both the mentioned values in subse-
quent calculations, thus obtaining the ability to evaluate
the influence of curvature correction term on the model
performance.

D. The level-set method for free-energy minimization

We have developed a level-set method to numerically
find the free-energy minimizing solute-solvent interface for
the functional Eq. �1�.46,50 In this method, we begin with an
initial guess of the surface surrounding all the solute atoms,
and then move the surface in the direction of the steepest
descent of the free energy to relax the system to a minimum.

The starting point of the level-set method is to identify a
surface � in three-dimensional �3D� space as the zero level-
set �i.e., the zero level surface� of a function 
=
�r�:47–49

�= 	r :
�r�=0
. The function 
=
�r� is called a level-set
function of the surface �. The unit normal vector n at the
interface �, the mean curvature H, and the Gaussian curva-
ture K can all be expressed in terms of the level-set function



n =
�


��
�
, H =

1

2
� · n, K = n · adj�He�
��n , �4�

where He�
� is the 3�3 Hessian matrix of the function 

whose entries are all the second order partial derivatives �ij

2 

of the level-set function 
, and adj�He�
�� is the adjoint
matrix of the Hessian He�
�. The level-set function is deter-
mined by the so-called level-set equation

�t
 + vn��
� = 0, �5�

where vn is the normal velocity at the point r on the surface
��t�. This normal velocity vn=vn�r�t�� of each point r=r�t�
on the surface �=��t� at time t is defined by

vn = vn�r�t�� =
dr�t�

dt
· n .

The velocity is usually extended away from the surface so
that the level-set Eq. �5� can be solved in a finite computa-
tional box.

To apply the level-set method to VISM, we begin with
an initial surface that contains all the solute particles. We
then evolve this initial surface to an equilibrium solute-
solvent interface by relaxing the total free energy of the sys-
tem. As in common practice, we define the normal velocity
vn of level-set evolution to be the negative of the first varia-
tion of the system free energy with respect to the location
change of surface

vn = − 	�G��� = − P − 2�lv�H�r� − �K�r�� + �0U�r� . �6�

This can be identified as a distribution over the interface �.
Here, we choose the unit normal n at � to point from the
solute to the solvent region �see Fig. 2�.

Our level-set algorithm consists mainly of the following
steps: surface initialization; calculation of the normal vector,
mean, and Gaussian curvatures using Eq. �4�; computing the
normal velocity using Eq. �6�; and solving the level-set Eq.
�5�. We choose our level-set computational box to be of size
50�50�50 Å3. We also choose our finite-difference grid
size to be 1 or 0.5 Å. We use central differencing to dis-
cretize the level-set equation using a Courant–Friedrich–
Lewy condition66 �t / ��x�m�Constant with m=2 or 3. The
level-set equation with the normal velocity Eq. �6� is not
always a parabolic equation. We numerically change the
value of � to enforce the parabolicity when it is lost.

In addition to these details that can be found in our pre-
vious work,46,50 we have developed several new numerical
techniques in this work. First, we precompute the values of
potential U�r� defined in Eq. �2� at all the grid points, and
store such values for use in each of the level-set iterations.
Such precomputing allows us to efficiently treat large bio-
molecules of any number of fixed solute atoms for equilib-
rium calculations. Second, we have implemented a local
level-set method. In this method, the level-set Eq. �5� is only
solved on a narrow band around the interface rather than the
entire computational box. This is rational, since the values of
a level-set function, a solution to the Eq. �5�, at points in
such a band determine completely the location of the inter-
face. The width of the band depends on the step size of the
underlying grid. Constant recasting of the level-set function
into signed distance form67 is further used to eliminate
boundary effects of the band that may affect accuracy. The
end result combines the advantages of the level-set approach
with near perfect computational complexity. Finally, we have
developed a semianalytical technique of numerical integra-
tion for calculating the free energy. In this technique, we
convert a 3D integral over part of the region outside the
computational box into a repeated integral of three one-
dimensional integrals, using the spherical coordinate system.
Some of these one-dimensional integrals can then be evalu-
ated analytically. All these new techniques enable us to speed
up much of our calculations. For instance, for the underlying
receptor-ligand system with more than 4000 solute atoms,
one level-set calculation only takes about 5–10 min on a
serial computing processor unit, depending on the resolution
of the numerical grid and initial guess of the interface.

III. RESULTS AND DISCUSSION

A. MD simulation results

MD simulations reveal a nontrivial solvent behavior in
the considered systems. It can be attributed to changes in
topography of hydrophobic confinement resulting from
ligand translocations. In order to quantify the observed ef-
fects, we consider a probability distribution pN of finding
exactly N water molecules inside the given pocket �a water
molecule is regarded as being “inside” when the center of its
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oxygen atom is located at z0�. This allows us to express
the free energy of the system as a function of the pocket
occupancy

G�N� = − kT ln pN + G�.

The resulting free-energy profiles, obtained for selected
ligand positions in the R8 system, are presented in Fig. 3,
along with representative examples of the water density dis-
tribution around the solvated objects.

In the absence of the ligand �effectively for d�9 Å�,
the R8 pocket triggers intermittent expansions and retrac-
tions of the fluidlike phase in its area, characteristic for
wetting-drying transitions. Interestingly, those fluctuations
cover a broad range of metastable states with no apparent
free-energy minimum between N=0 �empty pocket� and
bulklike density, which corresponds to N�11.

The pocket occupancy is significantly affected by the
approaching ligand. For distances 4d9 Å, a slight sta-
bilization of the wet state is observed, probably due to prox-
imity of methane hydration shell that provides relatively
stable interactions for water molecules inside the pocket �see
the water density distribution in Fig. 3�. Around d=5.5 Å,
there forms a second shallow minimum in free-energy distri-
bution, corresponding to a dry state. As the ligand ap-
proaches further, the dry state minimum becomes gradually
more stable, turning to a global minimum for d4 Å. The
now metastable wet state minimum vanishes completely for
d0 Å. At this point, the pocket region becomes dry �see
the water density distribution in Fig. 3� even though it could
easily accommodate the methane hydration shell: under nor-
mal conditions, the first maximum in the water radial distri-
bution function around the methane molecule is at 3.5 Å
from its center, which would correspond to its position at z
�−0.5 Å �for methane center at d=0 Å�, leaving more than
3 Å of water accessible space above the pocket bottom. We
can describe all this behavior also from a more global view

by looking at the average occupancy Nw� versus d. This
quantity is plotted in Fig. 4; it exhibits a maximum at d
=6.5 Å while it jumps down from wet �Nw��6� to dry
�Nw��0� at d�dc with a stable dry state for d�dc.

The hydration behavior is much simpler in the small R5
system. The R5 pocket, which can accommodate a few water
molecules, stays preferably dry through most of the simula-
tion time, with G�N� having a single minimum at N=0, irre-
spective of ligand position. This is consistent with experi-
ments on the similarly sized ligand-binding pocket of the
bovine �-lactoglobuline protein, which has been found to be
always empty of water.12

We note here that an intermittent switching behavior
between dry and wet states has been observed directly in
other geometries such as plate-like68 or channel-like
confinements.39,41,42,69 The height of the energy �activation�
barrier for nucleation of a bubble governs the kinetics of the
transition.70–72

B. Results of level-set variational implicit solvent
calculations

1. Initial solute-solvent interfaces

The solvent fluctuations observed in the R8 system pose
a significant challenge to our model, since minimization of a
free-energy functional with a given initial guess can only
provide one solution describing a static solvent distribution.
In order to address this issue we consider various different
initial solvent boundaries. Provided the ability of VISM to
efficiently describe interface fusions and breakups during its
propagation, relaxation of the solute-solvent interface should
either converge to a single solution, independent of the initial
state and thus indicating a single global free-energy mini-
mum, or to few distinct, metastable states, each reached from
a different pool of initial conditions, indicating possible fluc-
tuations of the solvent.

We found that all relevant solutions can be reached from
three classes of initial solute-solvent interfaces �Fig. 5�: �a� a
single surface that loosely wraps the wall and the ligand
together; �b� two separate surfaces that tightly follow the van
der Waals surface of the solutes; �c� two separate surfaces,
one enveloping the wall but not penetrating into the pocket
and the other being equivalent to the methane van der Waals

FIG. 3. Left side: free energy G�N� of the R8 system as a function of pocket
occupancy for different ligand distances d from the wall, where N is the
number of water molecules inside the pocket. The error bars are obtained by
block averaging of pN distribution. Right side: scaled water density ���
distribution for selected ligand positions �intersections of the system along
the z-axis�. �=1.0 equals bulk water density of 0.033 Å−3.
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FIG. 4. Average water occupancy Nw� in the R8 pocket from MD simula-
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surface. Those three initial conditions are further referred to
as single loose �SL� surface, two tight �TT� surfaces, and two
loose �TL� surfaces, respectively.

2. Final solute-solvent interfaces

Starting our analysis with the R8 case, we note that the
number of existing solutions depends on the ligand position
�distance d�. It gives rise to three distinct free-energy
branches for G�d�, which are plotted in Fig. 6, along with its
individual contributions GS, G�, and GLJ �see Eq. �1��. Illus-
trative examples of the corresponding final solute-solvent in-
terfaces are presented in Fig. 5. At first, let us focus on the
results obtained with a curvature correction parameter �
=1.0 Å, leaving the discussion of effects related to its
changes for the next section.

For d�7 Å, two solutions are observed, each describ-
ing two separate solute-solvent surfaces. In both cases the
interface around the methane molecule closely follows its
van der Waals surface �when starting from the SL type of
initial solute-solvent interface it requires surface to breakup
during its subsequent relaxation�. The pocketed wall is sur-
rounded either by �a� solute-solvent interface that remains
outside the pocket and corresponds to its dry state �2s-dry in
Fig. 5� or �b� the solute-solvent interface that closely follows
the pocket contours and corresponds to its wet state �2s-wet
in Fig. 5�. The former solution is reached from both SL and
TL initial states while the latter from TT.

The existence of two different solutions indicates pos-
sible wetting-dewetting transitions within the pocket. How-
ever, contrary to the MD-derived free-energy dependence
G�N�, the dry state is favored over the wet by about 2 kBT.

Also, unlike in G�N�, there seems to be a free-energy barrier
between the two, as otherwise the wet state would relax to
the dry state.

It is interesting to note that the 2 kBT difference is rela-
tively small compared to differences in the individual free-
energy components. The surface energy GS of the 2s-wet
state is about 15 kBT greater than of 2s-dry, but is ideally
compensated by a lower solute-solvent dispersion energy
GLJ. The 2 kBT offset turns out to be identical to the differ-
ence in the surface correction term, G�. While the perfect
compensation of GS and G� may be coincidental, such result
may also indicate that the energy penalty for a concave sur-
face is overestimated by the form of G� used here, thus dis-
favoring the wet pocket state.

For d7 Å, there appears a third solution, reached from
the SL type of initial solute-solvent interface, which de-
scribes a single solvent surface enveloping both the pocket
and the ligand together �1s in Fig. 5�. Initially, this kind of
solution has the highest free energy due to the large penalty
for its concave curvature and relatively unfavorable disper-
sion energy arising from solvent expulsion from the region
between the solutes. However, as the pocket-methane sepa-
ration decreases, it gradually becomes the most favorable
solution, predominantly owing to its smallest surface area.

The 2s-dry solution exists only until d�4 Å, where the
final solute-solvent interface corresponding to the TL type

FIG. 5. Examples of initial �left� and finally converged �right� solute-solvent
interfaces in the R8 system. The shown 3D interfaces on the right are level-
set solutions of the VISM Eq. �3�. We also show a 2D view by intersecting
through the system’s symmetry axis �shaded area: pocketed wall; blue lines:
interfaces�. Arrows indicate directions of the observed topological changes.
The occurrence of a given topological change depends on methane-pocket
distance d �see text for details�. −4 −2 0 2 4 6 8 10 12

d/Å

A

B

C

D

1.0 0.8τ =

G(d)

GS(d)

Gτ(d)

GLJ(d)

2 kBT

2s−wet
2s−dry

1s

FIG. 6. Solvation free-energy branches for the R8 system and the contribu-
tions from the individual free-energy functional components vs d, obtained
for two values of the curvature correction parameter �=1.0 Å �empty sym-
bols� and �=0.8 Å �filled symbols�. All curves are shifted with respect to
the reference 2s-dry state. Notation: G�d�=total solvation free energy;
GS�d�=surface area term; G��d�=curvature correction term; GLJ�d�=LJ
term.
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initial solute-solvent interface merges together into a 1s so-
lution. Also at this point the 1s solution becomes more stable
than the 2s-wet, which indicates that the region between the
two solvated objects becomes preferably dry. It perfectly re-
produces the trend observed in the MD-derived G�N� distri-
butions �Fig. 3�, where the preference toward dry over wet
state is observed, starting at the critical distance of 4 Å.

As d decreases further, the 2s-wet solution becomes
even more unfavorable. It is caused by increase in dispersion
energy, arising from partial loss of pocket-solvent interac-
tions due to the proximity of the region void of solvent oc-
cupied by the methane molecule. At d�0 Å, the 2s-wet
state collapses to the 1s-dry state, which remains the only
solution for d0 Å. Again, those changes in topology of the
solvent distribution are in close agreement with MD results
that indicate a complete extinction of the wet state as the
methane molecule passes through d=0 Å.

In the R5 system, irrespective of the considered initial
solvent boundaries, all observed final solutions describe a
dry pocket �see Fig. 7� consistent with the experiments.12 For
large ligand distances there is only a single solution that
represents two separate surfaces �2s-dry state�. For d7 Å,
the initial SL interface relaxes to the 1s state, while the initial
TT interface still results in the 2s-dry solution. Similarly as
in the R8 system, the 1s state has initially a higher free
energy than the 2s-dry state, due to the penalty for its con-
cave curvature and relatively unfavorable dispersion energy.
As the ligand separation decreases, a large decrease in sur-
face area allows the 1s state to become more stable than
2s-dry. The crossover, which may be interpreted as expulsion
of a water layer from the region between methane and the
pocket, occurs at d�4 Å. The now metastable 2s-state ex-
ists until d�2 Å, and for smaller separations the only ob-
served solution is 1s.

3. Influence of curvature correction

The most notable influence of changing the curvature
correction parameter � is on the stabilization of the 1s state
with respect to the 2s-dry state �Figs. 6–8�. For �=0.8 Å, in
both R8 and R5 systems, the 1s state exists at a relative
larger solute separation and has relatively lower free energy
than for �=1.0 Å. At a relatively large intersolute distance,
this stabilization is mostly due to the difference in the surface
area term, as with smaller � the relaxing interface tends to
optimize �decrease� its surface area rather than curvature.
The surface area effect is counterbalanced to some extent by
a more favorable dispersion energy for the case of �
=1.0 Å. It is due to the fact that for a larger � the interface
exhibits the tendency to remain close to methane molecule
owing to a greater benefit from maintaining a convex surface
shape. This simultaneously leads to a greater solvent-
occupied volume and more favorable solute-solvent interac-
tions. Figure 8 displays two-dimensional �2D� projections of
the final, equilibrium solute-solvent interface for the R8 sys-
tem at various distances and with �=0.8 Å and �=1.0 Å,
respectively. Notice that for d=5.0 Å the solute-solvent in-
terface is 1s for �=0.8 Å but is 2s-dry for �=1.0 Å.

At small d, the relative stabilization of 1s state for �
=0.8 Å is almost entirely due to the curvature correction
term G�. It can be explained by noting that transferring the
methane molecule deep into the pocket corresponds to its
removal from the solvent during which changes in surface
area and dispersion energy relative to the 2s-dry state are the
same for both � values. On the contrary, the effective surface
tension associated with the convex methane surface is larger
for �=0.8 Å, hence leading to a larger free-energy gain upon
the change in solvent interface area.

Surprisingly, the free-energy difference between the
2s-wet and 2s-dry states in the R8 system, governing the
physically interesting balance between pocket wetting and
dewetting, appears to be not particularly sensitive to the con-
sidered change in the � value. A detailed analysis of the
free-energy components plotted in Fig. 6 reveals that the
almost perfect compensation of differences in GS and GLJ

between the 2s-wet and 2s-dry states, described above for
�=1.0 Å, holds also for �=0.8 Å.

Indicated by the higher surface area energy GS, the
2s-wet interface penetrates deeper into the pocket for �

−4 −2 0 2 4 6 8 10

d/Å
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D

1.0 0.8τ =

G(d)
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Gτ(d)

GLJ(d)

2 kBT
2s−dry

1s

FIG. 7. Same as Fig. 6 but now for the R5 system.

FIG. 8. Bisected view of the final solute-solvent interfaces corresponding to
the minimum in the free energy Eq. �1� for the R8 system at various ligand
distances and �=0.8 and 1.0 Å, respectively.
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=0.8 Å �such behavior is expected due to the smaller energy
penalty associated with the concave interface for smaller ��.
At the same time, however, it gains more favorable disper-
sion energy GLJ than in the corresponding 2s-wet state for
�=1.0 Å, which accounts for a similar GS-GLJ compensa-
tion. In both cases also G� has almost the same value when
compared to the 2s-dry state. Based on those observations, it
seems, that the metastable solvent behavior observed in MD
for large solute separations could have been at least partially
reproduced with a � value close to 0.

It is worth stressing that the derivation of the curvature
correction term is typically based on the assumption of con-
vex and weakly curved solute geometries,55,58,59 and its sym-
metry with respect to the sign of the mean curvature should
not be expected. The obtained results indicate the need for
asymmetric higher order terms in the general curvature ex-
pansion of the surface tension for larger curvatures if
possible.73 A heuristic but perhaps more feasible approach
may just rely on two different � coefficients used for positive
and negative curvatures, respectively.

4. Potentials of mean force

The changes in the hydration free energy of the system,
resulting from different placements of methane molecule
along the z-axis, correspond to the solvent-mediated contri-
butions to the methane-pocket interaction. It can be directly
compared to the simulation results after subtracting the inter-
solute �vacuum� interaction from the total MD-derived PMF.

As described above, for most pocket-methane separa-
tions, the level-set VISM results provide multiple local free-
energy minima that for a given d correspond to an ensemble
	�
m of the most probable solvent configurations. Accounting
for this fact, we express the actual free energy of the system
as

G = − kBT ln �
	�
m

e−G���/kBT + G�, �7�

where G� is an arbitrary constant chosen to satisfy the con-
dition that G�d→��=0.

The obtained PMFs are presented in Fig. 9 together with
MD simulation results and predictions of a simple model
based on solvent accessible surface area �SASA�. For the
SASA model we used the effective surface tension parameter
of 0.73 kJ /mol /Å2 that provides agreement with methane
hydration free energy obtained in our MD simulations.

The level-set VISM results are in overall good, semi-
quantitative agreement with MD. In both R8 and R5 systems,
the onset of strong pocket-methane attraction around d
�4 Å, accompanied by expulsion of solvent from between
the two objects, corresponds well to the distance where the
1s state becomes the most favorable one. Such a good agree-
ment was not achieved by the SASA model in the R8 case,
because the larger pocket can easily accommodate a methane
molecule together with its associated SAS. Again, it under-
lines the ability of VISM to predict drying even though the
solvent is sterically able to remain in the considered area. An
ensemble averaging performed to estimate the average water
occupancy in the R8 system from our level-set VISM
approach

Nw� =
�	�
m

Nw���e−G���/kBT

�	�
m
e−G���/kBT , �8�

yields qualitative agreement with the MD as shown in Fig. 4,
i.e., a maximum at d�6.0 and 0 values for ddc.

In contrast to the SASA based model, VISM successfully
reproduces a �1kBT free-energy barrier for pocket-methane
association in the R5 system. A close inspection of individual
free-energy branches and their components �Fig. 7� indicates
that this barrier can be attributed to increase in dispersion
energy resulting from displacement of water from vicinity of
R5 pocket, as well as to the development of concave solvent
boundary bridging the two solutes. These correspond to the
formation of surface singularities in the level-set relaxation
of interface. The free-energy barrier occurs at the transition
from the most favorable 2s-dry state to 1s state. By looking
at the corresponding topological changes in the solvent dis-
tribution, it can be interpreted as the onset of methane dehy-
dration which agrees well with previous analysis of the MD
results.18 The free-energy barrier in the R5 system can thus
be attributed to the disruption of the methane hydration shell.

The free-energy barrier predicted by VISM in the R8
system, although smaller than in R5 case, is overestimated
relative to MD. As observed in MD simulations, the lack of
a barrier in the R8 system may be related to a more efficient
arrangement of solvent around the methane molecule; when
it approaches the larger pocket, there is less constraining
geometry of hydrophobic medium in this case. Thus, possi-
bly depending on subtle solvent-solvent interactions, this ef-
fect is not accounted for in the VISM calculations.

The comparison of the results obtained for both values
of the �-parameter highlights the important role of curvature
corrections in predicting the onset of drying and attraction.
Surprisingly, the smaller � value seems to promote and sta-
bilize the dry state, even though it provides a lower energetic
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FIG. 9. Solvent-mediated PMF between the pocket and the ligand at a
distance d for the systems R8 �top� and R5 �bottom�. Level-set VISM results
are calculated from the ensemble-average Eq. �7� over all existing free-
energy branches �see Figs. 5 and 6� and are shown for �=1.0 Å �circles�
and �=0.8 Å �squares�. Notation: MD=MD simulation results and SASA
=solvation free energy from SASA model.
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cost of maintaining a concave solvent boundary and hence
the wet pocket state. It indicates that the dominant influence
on the observed wetting-drying transition and the associated
free-energy values stems from changes in the methane hy-
dration. Indeed, dehydration of its convex surface, necessary
for solvent expulsion from the region between methane and
the pocket, is more favorable for smaller �, thus likely ex-
plaining the observed trend. Those conclusions are also sup-
ported by MD simulations18,52 which indicate that the convex
solvent boundary is more stable than a planar or concave
one, and that the major contribution to the methane—pocket
PMF comes from methane dehydration rather than pocket
dewetting.

IV. CONCLUSIONS AND OUTLOOK

We have applied our level-set VISM to analyze hydra-
tion effects associated with ligand binding in a generic hy-
drophobic receptor-ligand system. Using explicit solvent MD
simulations as a reference, we managed to reproduce the key
aspects of the nontrivial solvent behavior: �1� wetting-
dewetting transitions in the larger R8 binding pocket and
their dependence on receptor-ligand separation, �2� a com-
plete dewetting of the smaller R5 binding pocket consistent
with experiments,12 and �3� solvent expulsion from the inter-
solute region governing the critical distance of strong attrac-
tion and binding. Reproduction of these effects remains be-
yond the reach of simple surface area based models, while it
appears to be crucial for proper description of systems in-
volving complex geometry of hydrophobic constraints.

The predicted free-energy changes remain in a good, al-
most quantitative agreement with MD-derived solvent con-
tribution to ligand-receptor interactions. In particular, VISM
reproduces well the free-energy barrier for pocket-ligand as-
sociation in the R5 case, however at the same time, overes-
timates the barrier in R8 case. While still requiring further
investigation, such ability may represent the first step toward
obtaining a method that provides a means for proper inter-
pretation of experimental receptor-ligand binding rates.8

Analysis of distinct contributions to the free-energy
functional reveals an interesting interplay between the sur-
face area term GS and the dispersion energy term GLJ in the
regions enclosed by the hydrophobic medium. The surface
term favors contraction of the solvent interface while the
dispersion term promotes expansion of the wet phase, which
results in a subtle balance necessary to reproduce wetting-
dewetting transitions. Strikingly, such balance seems to exist
even though neither of the two free-energy components de-
pend directly on fitted parameters.

In turn, the adjustable magnitude of the curvature correc-
tion term G� appears to determine the onset of topological
changes in the solvent distribution occurring upon ligand
translocation. It is still unclear how to choose the relevant �
parameter value, however, the range between 0.8 and 1.0 Å
considered here seems to be reasonable. The current form of
G� is justified on the ground of previous theories,55,58,59

nonetheless, its applicability to concave interfaces is ques-
tionable. Accordingly, a formal derivation of curvature ex-

pansion of surface tensions that remains valid in a negative
curvature range is an open, interesting problem.

Despite its simplicity, the considered model system is
particularly challenging for an implicit solvent approach as it
contains convex, flat, and concave hydrophobic surfaces in-
volving different hydration regimes in explicit solvent. A
close agreement with MD simulation results observed for
both considered pocket sizes and for the whole range of
receptor-ligand separations, indicates a sound physical basis
of the VISM. The level-set method proved to be a suitable
numerical approach to solve the underlying problem of free-
energy functional minimization, owing to its ability to ro-
bustly describe topological changes in the solvent distribu-
tion such as volume fusions or breakups.

As a minimization based method, VISM is prone to find-
ing local hydration free-energy minima that apparently exist
even in relatively simple model systems like the ones con-
sidered here. The only stable solutions of the VISM partial
differential Eq. �3� are global or local minima in the free-
energy landscape of all existing interfaces. Currently our
method does not allow fluctuations or trial moves of the
interface or parts of the interfaces. Thus, minima mining or
importance sampling, as employed in Monte Carlo schemes,
are currently not possible, but are vital directions for the
future development of level-set VISM. However, as the local
minima are high probability equilibrium states, the ensemble
average sampling Eq. �7� gives a good and representative
account for the “real” free-energy systems as we have dem-
onstrated in the comparison to the atomistic computer
simulations.

Encountering the local minima may be problematic in
some applications due to the need of exhaustive search of the
available solution space. A necessary further step which ex-
pands the usability of VISM is the inclusion of thermal in-
terface fluctuations �maybe as used for membranes74� and the
true dynamical propagation of the interface75,76 driven by the
free-energy landscape Eq. �1�. Ideally, such extension would
allow for a true implicit solvent MD approach.
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