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The theoretical understanding of encapsulated microbubble response to high-frequency ultrasound
(HFUS) excitation is still limited although some novel experimental HFUS contrast imaging
techniques have been well developed. In this paper, the higher-order modal (HOM) contributions to
the scattered field are studied for such microbubbles driven by 1-100 MHz ultrasound. An exact
solution of all small-amplitude vibrational modes of a single encapsulated microbubble in water is
given by the wave scattering theory (WST) method and compared to results obtained from Church’s
Rayleigh—Plesset-like model for the small-amplitude radial oscillation of a microbubble in an
incompressible fluid. From numerical results, we show that the HOM field contribution is significant
for scattering properties from individual Nycomed microbubbles with normalized frequency =0.2.
It is also shown that the multiple scattering is strengthened for monodispersed Deﬁnity®
microbubbles of 3 um radius at frequencies >40 MHz. However, comparisons between the
authors’ analyses and known experimental data for polydispersed Deﬁnity® microbubbles indicate
that the HOM contributions are insignificant in attenuation estimation at frequencies <50 MHz. In
conclusion, the WST model analysis suggests that HOM scattering is an important consideration for
single bubbles but may be less critical in the modeling of polydispersed Deﬁnity® bubbles at high

frequencies. © 2009 Acoustical Society of America. [DOI: 10.1121/1.3203917]

PACS number(s): 43.35.Bf, 43.35.Ei, 43.20.Fn [CCC]

l. INTRODUCTION

Low-frequency ultrasound imaging systems clearly lack
the spatial resolution to examine the microcirculation, al-
though details obtained at this level may be important to both
clinical and basic medical science, for example, in the hyper-
tensive microcirculation (James er al., 2006). Recently, mi-
crobubble contrast agents have been successfully extended to
a variety of high-frequency ultrasound (HFUS) imaging sys-
tems and have made possible non-invasive slow blood flow
measurements and targeted molecular imaging with high
contrast in the microcirculation (Lanza et al., 1997; Goertz
et al., 2007b; Goessling et al., 2007; Needles et al., 2008;
Yeh et al., 2008). In support of these imaging methods, the
acoustic properties of microbubbles at higher frequencies
have also been intensively studied through experimental ob-
servations of attenuation and nonlinear scattering activities
(e.g., Moran et al., 2002; Goertz et al., 2006; Goertz et al.,
2007a; Cheung et al., 2008). However, the understanding of
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microbubble dynamics at high frequencies is still incom-
plete, especially with regard to knowledge of resonant
bubble sizes, attenuation prediction, and nonlinear scattering
mechanisms. Similarly, the acoustic radiation forces on mi-
crobubbles subject to HFUS have not been investigated al-
though some targeted applications have already been re-
ported (Lanza er al., 1997; Rychak er al., 2007).

Multiple models have been employed for studying the
dynamics of encapsulated microbubble contrast agents in the
conventional frequency range (1-10 MHz). The most com-
mon models rely on Rayleigh-Plesset-like (RPL) ordinary
differential equations and account for only bubble radial pul-
sation (de Jong et al., 1994; Church, 1995; Hoff, 2001). Ana-
Iytical solutions for both linear and nonlinear scattering from
individual microbubbles encapsulated by a shell of Kelvin—
Voigt viscoelastic solid are provided in such RPL models.
Multiple scattering of bubbles was thus achieved in sound
dispersion and attenuation (Church, 1995; Hoff, 2001) by
Foldy’s theory (Foldy, 1945). The RPL model has been ex-
tensively developed for various contrast microbubbles with
different encapsulations and surrounding liquids (Sarkar
et al., 2005; Doinikov and Dayton, 2007); it has also been
proven effective in predicting the sound properties of ultra-
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sound contrast agents in conventional ultrasound imaging
(Frinking and de Jong, 1998; Coussios ef al., 2004). How-
ever, RPL models only consider the radial pulsation of
bubbles and usually assume a uniform internal gas pressure,
i.e., no inertial effect of the gas core. These approximations
may not be appropriate for microbubbles subject to HFUS
field. At higher frequencies, the wavelength decreases to the
order of magnitude of some particle sizes and falls into an
intermediate wavelength regime in which the higher-order
contracting movements become important and anisotropic
scattering begins to appear (McClements, 1996; Ye, 1996).
Moreover, the shell properties for Deﬁnity® bubbles esti-
mated by modeling experimental attenuation measurements
with an RPL-based method differed between the low- and
high-frequency regimes, as reported by Goertz et al. (2007a).
This would imply that traditional modeling methods need to
be improved for microbubble oscillation at high frequencies,
with the higher-order modal (HOM) scattering contribution
requiring particular attention.

The wave scattering theory (WST) has also been em-
ployed in the past decade in studies of the dynamics of en-
capsulated microbubble surrounded by water and oscillating
in the linear regime (Ye, 1996; Allen et al., 2001; Hu et al.,
2004; Chen and Zhu, 2005). The WST method was originally
developed for object detection by the underwater acoustics
industry and has been intensively used to predict acoustic
scattering from both spherical and cylindrical scatterers im-
mersed in various surrounding fluids over the past two de-
cades (Ayres et al, 1987; Gaunaurd and Werby, 1991;
Hasheminejad and Safari, 2005; Mitri and Fellah, 2006).
While the RPL equation is derived from a fluid velocity po-
tential, through simplification it is reduced to a simple dy-
namic mass-spring system for the radial oscillation of the
bubble without any shape oscillations. In contrast, the wave-
based interaction between ultrasound and bubble in the WST
method is retained in its description of multi-modal velocity
potentials of the acoustic waves propagating through the sur-
rounding fluid, the shell layer, and the internal gas. The first
modal component of this velocity potential corresponds to
the radial oscillation, and each additional mode represents a
non-spherical oscillation mode of unique shape complexity.
Under the quasi-equilibrium approximation and the small-
amplitude assumption, all the oscillation modes are orthogo-
nal and the total scattering of the bubble can be found from
their linear summation. As a result, the WST method reveals
directionality of the scattering. Ye (1996) first used the WST
method to model the contrast microbubble as an individual
elastic shell in inviscid water and qualitatively compared his
results with Church’s viscoelastic shell bubble model in in-
compressible, viscous water. He noted that the scattering by
Albunex® bubbles from WST prediction could be highly an-
isotropic at frequencies above resonance. Allen et al. (2001)
studied the reflectivity and scattering directivity of mi-
crobubble at high driving frequencies with the WST model
and proposed the potential applicability of “shell” Lamb
waves, which propagate as symmetric (flexural) and anti-
symmetric (extensional) modes of deformation in a curved
plate idealized for shell. The double-layered shell, which is
typically used for encapsulated drug delivery, has never been
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FIG. 1. Schematic sketch of the model.

explored by the RPL model but was investigated using the
WST model by Hu et al. (2004). The employment of WST
provides an alternative method to predict the acoustic scat-
tering properties of contrast microbubbles. However, previ-
ous WST studies provided only initial theoretical details, and
the HOM components were actually found to be negligible
for microbubbles in conventional ultrasound imaging. No
comparisons between the WST and RPL models have been
performed, and the multiple scattering of contrast mi-
crobubbles due to anisotropic effects has not been predicted
with the WST model. The significance of the HOM scatter-
ing contribution in microbubbles under higher frequency ex-
citation is still pending.

The aim of this work is to assess the HOM contributions
to scattering at both low- and high-frequency excitations as
modeled by the WST model and to compare them to a
dilatation-only model. This is accomplished with the follow-
ing steps. First, the modeling of the same encapsulated mi-
crobubble by both WST and RPL methods is outlined. Sec-
ond, the HOM contributions to the total scattering of the
microbubble are compared within the WST method, and suc-
cessively, the acoustic scattering properties of the mi-
crobubbles such as scattering cross section, attenuation, and
acoustic radiation forces are simulated by both models and
are compared to reveal the significance of HOM contribu-
tions. Finally, a discussion follows for physical interpreta-
tions of differences between the two models and the pros-
pects of the WST method in modeling of microbubble
response at high frequencies.

Il. METHOD

The encapsulated microbubble model consists of a
spherical shell located in a spherical coordinate system,
shown in Fig. 1. An incident plane ultrasound wave excites
the bubble in the direction #=0. The gas enclosed by the
shell is assumed to be air, and the surrounding fluid is water.
The bubble geometry is given by inner radius R;, outer ra-
dius R,, and shell thickness d. The shell is considered to be a
thin monolayer of Kelvin—Voigt-type viscoelastic solid. The
water is assumed to be inviscid and compressible for the
wave scattering analyses. The incident ultrasound pressure is
sufficiently small such that the vibration of the bubble can be
approximated as a spherical oscillation within the linear re-
gime. For simplicity, the damping due to liquid viscosity and
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thermal conductivity, as well as surface tension effects, are
ignored because they have been proven to be of little impor-
tance for micron-sized encapsulated microbubbles in the fre-
quency range of 1-100 MHz by previous studies (Church,
1995; Hoff, 2001).

A. Outline of WST on encapsulated microbubbles

Ye's (1996) Albunex® bubble model consisted of a
spherical gas-filled bubble coated with a layer of elastic
solid; an exact solution for its wall motion was obtained
based on the literature of Hasegawa et al. (1993). The vector
wave potentials in the work of Hasegawa et al. are expanded
with factors for each eigenterm using a differential form of
the associated Legendre function. In contrast, other contribu-
tions (Ayres and Gaunaurd, 1987; Ayres er al., 1987) ex-
panded the vector potentials as sums of modal series without
any differential forms of Legendre function. This so-called
“Debye potential” expansion method has been widely used,
and it has proved to be more numerically robust for model-
ing contrast microbubbles (Allen et al., 2001). Allen et al.
(2001) extended the calculations from elastic to viscoelastic
shell models by directly applying the viscoelastic material
parameters from Ayres et al. (1987) into the scattering matrix
for an elastic shell. Chen and Zhu (2005) gave a rigorous
derivation for the matrix elements of a Kelvin—Voigt vis-
coelastic shell model and proved that they are the same as
those for the elastic shell model of Ayres ef al. (1987). In this
work, Chen and Zhu’s results are quoted below to outline
key steps and variables.

Let the potentials of incident and scattering waves in
water be noted as ®@; and ®,, respectively, and the potential
inside the shell be ®,. Let ®,,V, denote the longitudinal
and shear wave potentials propagating in the solid layer,
which satisfy the Helmholtz equations,

(V2 +i3)®,=0, (V2+i)W¥,=0, (1)
where k; and k, are acoustic wave numbers in the solid shell
layer and given as complex forms by Ayres and Gaunaurd
(1987). The Lamé parameters of various shell materials are
given in the complex forms by A=A,+iwh, and u=G;
+iwu,. The real and imagery parts represent elastic and vis-
cous properties of the shell, respectively.

Expanding the acoustic field in each of the three media
in terms of norm modes and taking the symmetry into ac-
count, it yields

o0

;= D>, (2n+1)(0)"),(k;7)P,(cos B, (2a)
n=0

oo

D, =Dy, (2n+ 1)(i)"a,h P (kr)P,(cos O™, (2b)
n=0

D, =Dy (2n+ 1)(i)"fju(ksr) Py(cos G)e" (2¢)
n=0
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o

Dy =Dy 20+ 1)(0)"[byjnlkgr) + cony(kgr)]
n=0

X P,(cos B)e™", (2d)

©

W, =), 20+ 1)(0)"[dyji(kyr) + e, (k,r)]
n=0

X P,(cos B)e!, (2e)

where k; and k5 are the wave numbers in the water and in the
gas, respectively, P,(-) is the Legendre polynomial of order
n, j,(-) is the spherical Bessel function of order n, n,(-) is
the spherical Neumann function of order n, and hil)(-) is the
spherical Hankel function of the first kind. Finally, the coef-
ficients a,,b,,c,.d,,e,,f, are unknowns determined by the
boundary conditions noted below; a,, specifically is the scat-
tering coefficient. Under this framework, the determination
of the sound scattering from an encapsulated bubble comes
down to the evaluation of the a,,.

Solution begins by applying the following approximate
boundary conditions at the two spherical interfaces between
the media: (1) the continuity of normal displacement u,; (2)
the continuity of normal stress 7,,; (3) the tangential stress
T,p Must be zero; six equations are obtained:

At the water-shell interface (r=R,),

7,=0. (3a)

1 4 _
7-rr_i_Trr_Tz r

rr

ul+ul =,
At the shell-gas interface (r=R)),
w=u, T.=1, 7'39= 0. (3b)

re rr rr

Here, the superscripts denote the following: 1, incident
waves; 2, waves propagating in the layer; 3, waves propagat-
ing in the inner air; 4, scattering waves.

Substituting the velocities and displacements in Eq. (6)
of Ayres and Gaunaurd (1987) into the six boundary equa-
tions, the corresponding matrix equation is obtained,

0 ap a3 ay as ag||a, 0
0 ay ap ay ays ay || by 0
0 ap a3 ay a5 0 Cn | _ 0 )
ay ap oy ay as 0 d, ay
as; as) as3 asy ass 0 €, as
i 0 agp ag ag ags 0 | _f oL 0 |

From this matrix equation, we can solve for the scattering
coefficients (a,) by Cramer’s rule. The elements of the ma-
trices a;;(i,j=1-6) are also determined by the matrix equa-
tion, and their expressions can be found from appendices of
previous literature (Ayres et al., 1987; Chen and Zhu, 2005).
Using asymptotic expansions of Hankel functions, the
scattering from an encapsulated microbubble in the far field
can be expressed in terms of a modal series as follows:
0= (0= S Greapeos.
n=0 n=0
Here, f(6) is the scattering (form) function. Each term f,,(6)
represents the nth partial wave of the scattering. Generally,
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only the monopole scattering, i.e., the first term f,, needs to
be considered for Rayleigh scatterers (k;R,<<1). It is also
stated that the extinction cross section and the sound reflec-
tivity of the bubble are proportional to the imaginary part of
forward scattering f(0) and the amplitude of backward scat-
tering f(7), respectively (Ye, 1996). The scattering function
can also be linked to the scattering cross section,

o,(0) = 4mlf(O)*. (6)

The reduced scattering cross section o,(6) is defined here by
,(6) multiplying a factor of 1/4R3 for later convenience.
Here, o,(6) is noted as the “total” reduced scattering cross
section since it is the infinite sum of all contributing scatter-
ing modes, according to Egs. (5) and (6); in practice, how-
ever, the sum is truncated to an approximate representation.
In order to study the modal contributions, we also use the
symbol cr(,’”’(e) to represent the sum truncated to the first m
+1 modes, i.e., mode 0 to mode m; thus, the contribution
from mode m to the total scattering cross section o,(6) in the
WST model is 0'50)(0) for m=0 or 05'")(0)—0?"_1)(6) for m
>0. It is important to note that for a mode m, the sum still
contains lower modal contributions; thus, the contribution
from a single mode is coupled to the modes below it.

B. RPL equation for encapsulated microbubbles

The linear harmonic oscillation of an encapsulated mi-
crobubble can be written in a simple form using the RPL
equation (Church, 1995; Hoff, 2001),

¥+ 285 + wix = pu(p,RTpa)sin wt, (7)

where x is the normalized small displacement to the first
order of the inner shell wall, defined by R;=Ro(1+x), x
<1 where R represents the initial inner shell radius; w, p,,
and p, are the angular driving frequency, the density of shell,
and the acoustic pressure amplitude, respectively. The scat-
tering cross section o, for our model can be given as

2 4
2 P w

Vol (@ - wp)’ + (2Bw)”

0,(Ryp,w) =47R (8)

where

2 ! {3 +
(,UO = KDg
p.rR%Oa

— Ps R
- [1 . (u)_m}
ps /Ry

2 2 -1
pi @Ry pi_ 'Ry
psc 2CO o ,

4G,(R3) - Ry }
3 9
R2()

B=Bact Bsh»  Pac=

2 2
psa €o

B = 244,(R3 ~ R}y

. aPsR%oRgo '

Here, only the damping terms due to acoustic radiation S,
and shell viscosity B, are considered. The above-listed ex-
pressions are simplified from a corresponding Church’s RPL
model (Church, 1995; Khismatullin, 2004). The compress-
ibility of surrounding liquid is neglected here but can be
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TABLE 1. Parameter values for aqueous suspensions of Albunex®,
Deﬁnity®, and Nycomed bubbles. Listed values are given by Church (1995)
except those noted in the footnotes.

(Value)
Symbol Albunex® Deﬁnity® Nycomed Unit
Shell G, (88.8) (190)°4 (12)%F MPa
iy (1.77) (0.07)%¢ - Pas
A, (6.1X10%°  (6.1x10%° (6.1x10%"  MPa
Ay (50)° (50)° e Pas
w\, - - (0.5% 106)* Pa
WL (0.1x10%* Pa
d (15) (0.9) (0.05a)"* nm
s (1100) (1100) (1100) kg m™
Liquid oL (1000) (1000) (1000) kg m™3
Gas ¥ (1.4) (1.06)° (.nf
Po (0.1013) (0.1013) (0.1013) MPa

Allen et al., 2001.
°Chen and Zhu, 2005.
“Cheung et al., 2008.
4Goertz et al., 2007a.
°Hoff, 2001.
Khismatullin, 2004.

implemented by some other RPL models in the low-
frequency limit (Trilling, 1952; Keller and Miksis, 1980).
Finally, the RPL model neglects the surface tension on both
interfaces and the viscous effects of the surrounding liquid in
order to compare with WST, which as noted above does not
include these effects.

lll. RESULTS

The simulation results of both WST and RPL models
were performed using MATLAB® software (Version 14, The
Mathworks Inc., and Natick, MA) and are compared in the
following sections. Three types of contrast bubbles are simu-
lated. We primarily examine Albunex® microbubbles, which
have been best characterized in the literature, especially with
regard to their shell material. In order to compare the theo-
retical models with the existing measurements, lipid-shelled
Deﬁnity® microbubbles are also simulated. Finally, the poly-
mer shell of Nycomed microbubbles is also simulated for
discussion since they have a fixed thickness-to-radius ratio in
contrast to the fixed thickness seen in Albunex® bubbles. All
physical parameters used in the simulations are selected from
previous works and provided in Table I if not specified else-
where. In addition, the Lamé first parameters A, and A\, have
little influence on bubble scattering properties, and consistent
values of 6.1X10* MPa and 50 Pas are selected here
(Chen and Zhu, 2005).

A. Scattering cross section: Modal contributions

The contributions of the first three modes to the reduced
scattering cross section are examined by the term defined just
below Eq. (6) and shown in Fig. 2. A single Albunex® bubble
with radius of 2 um is selected for investigation. Strong
resonant peaks are observed in the figure at about 10, 56, and
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FIG. 2. Contribution of first three modes of WST model as a function of
driving frequency. The Albunex® bubble is 2 pm in radius.

90 MHz corresponding to these modes; the mode 2 plot in
Fig. 2(c) has a notable peak at the resonant frequency of
mode 1 due to coupling. The figure also shows that mode 0,
i.e., monopole scattering in Fig. 2(a), is far greater in mag-
nitude than modes 1 and 2 and dominates the total scattering
at low frequencies (<20 MHz). The contribution of mode 1
in Fig. 2(b) first becomes significant at 20 MHz and in-
creases rapidly with the driving frequency, exceeding that of
mode 0 above 80 MHz. At 100 MHz, modes O and 1 con-
tribute 0.7 and 1.0 to the total reduced scattering cross sec-
tion of about 1.9. The contribution of the third mode (m
=2) in Fig. 2(c) becomes important at 60 MHz and is ex-
pected to be more significant than the first two modes at
frequencies higher than 100 MHz. It is verified here that the
higher modes contribute greatly to the total scattering of
Albunex® bubbles at high frequencies. Moreover, further cal-
culations for Deﬁnity® bubbles with radius between 1 and
6 wum indicate that, depending on bubble size and shell
properties, the HOM can contribute greatly to the total scat-
tering in the frequency range under 100 MHz. Following
previous work, we explored multiple truncations of the WST
modal sums; this analysis suggested that the first 30 modes
are sufficient to approximately represent the total scattering
at frequencies <100 MHz (error in scattering amplitude
<0.1%). The HOM contribution can be easily seen from the
differences between monopole (mode 0) and total (all
modes) scattering of WST model.

B. Scattering cross section: Directionality

The reduced scattering cross sections of the Albunex®

bubbles with radius either larger or less than the critical ra-
dius R,=1.46 pm (Khismatullin, 2004) are shown in Fig. 3.
To further understand the differences between the methods,
we compare four terms of acoustic scattering: the backward
scattering, the forward scattering, and the monopole scatter-
ing component from the WST model and the scattering from
RPL model. It is apparent for a single Albunex® bubble with
radius 1 wm in Fig. 3(a) that the four curves overlap at
driving frequencies below 20 MHz, but significant differ-
ences begin to appear above 30 MHz. These differences in
the magnitudes of reduced backward scattering and forward
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FIG. 3. Reduced scattering cross sections of Albunex® bubbles with radius
(a) 1 wm and (b) 2 um.

scattering clearly indicate directivity in the scattered field.
Although the monopole is similar to the RPL model, it is
obvious that its scattering also exhibits differences at high
frequencies. From strong to weak, the four terms are in the
order by backward scattering from WST > scattering from
RPL > monopole scattering from WST >forward scattering
from WST. For the large bubbles with 2 um in radius, the
resonances appear in Fig. 3(b) and act as boundaries to sepa-
rate the low- and high-frequency ranges. Identical profiles
are obtained for the four terms in the low-frequency range
<13 MHz, but significant differences between them occur
above resonance. Compared with Fig. 3(a), the scattering
directivity in Fig. 3(b) is strengthened, and the additional
peaks at higher frequencies begin to appear in both backward
and forward scattering. These peaks in scattering cross sec-
tions are associated with various shell Lamb wave modes.
Therefore, the results not only indicate that the monopole
scattering component is dominant for the microbubble scat-
tering at low driving frequencies, as was proved by Ye
(1996), but also demonstrate that shell Lamb waves exist for
Albunex® microbubbles at high frequencies, a finding of
Allen et al. (2001). In addition, our results show that the
RPL and WST models are identical for low ultrasound fre-
quencies, but the HOM contribute greatly to the total at high
frequencies. Further calculations show that the microbubbles
with hard shells have more violent resonance peaks, which
suggests the existence of stronger Lamb waves and greater
HOM contributions at high frequencies.

C. Attenuation

The multiple scattering properties of contrast mi-
crobubbles are usually studied through the attenuation and
dispersion of sound in suspensions. However, attenuation
measurements at HFUS (>10 MHz) are limited. In order to
compare our model predictions against prior experimental
studies (Goertz et al., 2007a), the Deﬁnity® bubbles were
simulated as follows: The effective wave numbers in the mi-
crobubble suspensions following in the RPL and WST mod-
els were calculated by the multiple scattering theories of
Foldy (1945) and Waterman and Truell (1961), respectively.
Figure 4 is the result for monodispersed Deﬁnity® bubbles.
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FIG. 4. Attenuation coefficients A in Deﬂnity® microbubble suspensions.
The bubbles are identical in radii of (a) I um and (b) 3 wm. The bubble
concentrations are (a) 2 X 10° and (b) 5X 10° bubbles/ml.

We see that the predicted attenuation from WST model is
higher than that from the RPL model at frequencies above
resonances; this difference becomes more significant as fre-
quency increases, and larger differences were obtained for
the larger bubble. Furthermore, the HOM contributions to
attenuation in the WST model appear insignificant for
smaller bubbles [1 wm in radius, Fig. 4(a)] but important for
larger bubbles [3 wm in radius, Fig. 4(b)] at high
frequencies >40 MHz; anyhow, both are less important than
the differences between the attenuation due to isotropic scat-
tering of the two models. Moreover, attenuation peaks simi-
lar to those seen in Fig. 3(b) appear at higher frequencies.
Figure 4 refers to monodispersed bubbles; however, in
practice such sharp resonance peaks likely do not exist since
the microbubbles have a broad size distribution ranging from
<1 pm to 10 um. Goertz et al. (2007a) measured the at-
tenuation of polydisperse solutions of Deﬁnity® bubbles over
a broad frequency range (2-50 MHz); these results are com-
pared with corresponding attenuation values computed from
our WST and RPL models and shown in Fig. 5. We specifi-
cally compare our simulations to results from their first vial
of “native” bubbles (decantation time is 30 s), of which the
size distribution and attenuation are given in their Figs. 5(a)
and 4(a), respectively. This vial is selected because it con-
tains a greater fraction of larger bubbles than other vials

0.4
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FIG. 5. Attenuation coefficients A from models and measurements;
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FIG. 6. Primary acoustic radiation forces on the Albunex® bubble in water
as a function of radius under a driving ultrasound pulse wave with peak
negative pressure p,=100 kPa and central frequencies of (a) f=3.5 MHz
and (b) f=50 MHz.

(with longer decantation times or after filters), and so the
HOM contributions from bubble scattering, if present, should
be most apparent. Some observations and conclusions can be
reached: First, the model predictions agree fairly well at fre-
quencies <50 MHz, but the HOM contribution is negligible
at this broad frequency range, in contrast to what is seen in
monodisperse simulations; second, the models offer good
prediction near resonance at around 10 MHz but model-
measurement agreement degrades at frequencies <7 and
>20 MHz. The predicted attenuation peak at low frequen-
cies (<7 MHz), which should correspond to the large
bubbles of radii 6-7 wm, has shifted greatly to a lower fre-
quency range (<3 MHz) in the measured results. Measured
attenuation is also far more than predicted at frequencies
>20 MHz. These disagreements reveal the failure of both
prediction methods and will be discussed in next section.

D. Primary acoustic radiation force

Accurately predicting the acoustic radiation force on the
microbubble subject to the HFUS field is another concern
introduced by the WST model. The primary radiation forces
on the encapsulated microbubbles are calculated by means of
Eq. (12) of Dayton ef al. (1997) and Egs. (23), (24), and (28)
of Hasegawa et al. (1993) for RPL and WST models, respec-
tively. The acoustic radiation forces as a function of bubble
radius are shown for the cases of both low frequency (3.5
MHz) and high frequency (50 MHz) in Figs. 6(a) and 6(b).
The two models predict approximately identical profiles of
acoustic radiation force at 3.5 MHz but predict remarkable
differences for bubbles larger than 2 um in radius at 50
MHz. The differences increase with the bubble radius as
well. Resonant peaks are also shown in the WST result in
Fig. 6(b) and may correspond to natural frequencies of vi-
brational modes. Unlike the conclusions from Fig. 4, the dif-
ference in the results of acoustic radiation forces between
monopole and multi-modal scattering is much larger than
that between monopole scattering and RPL scattering.
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IV. DISCUSSION

Our simulation results highlight four novel points re-
garding the acoustic response of contrast microbubbles at
high frequencies as follows. (1) The HOM contribution is not
negligible at high frequencies. (2) The results of isotropic
scattering from both models are also different at high fre-
quencies. (3) Both models cannot well-predict attenuation in
suspensions with dispersed Definity bubbles. (4) These dif-
ferences are exhibited in multiple acoustic scattering proper-
ties of microbubbles including not only scattering cross sec-
tions and attenuation but also acoustic radiation forces,
which are key parameters of various currently available con-
trast techniques. The results may lead to deeper understand-
ing of the microbubble dynamics, as well as optical usage
and potential applications of contrast microbubbles at HFUS.

It is seen in Fig. 3 that monopole scattering from WST
model and scattering from current RPL model are slightly
different from each other. This difference is more evident in
Figs. 4 and 6(b) and may be due to the following two rea-
sons. First, the effect of liquid compressibility is ignored in
Eq. (8) but is included in WST model, which, based on prior
work (Church, 1995; Hoff, 2001), should lead to consider-
able errors at high frequencies. Second, in the RPL model, it
is assumed that the air pressure stays uniform, but the WST
model takes the gas inertial effects into consideration. At
high frequencies, the time period is so short that the internal
energy in the air may become spatially nonuniform during
the oscillation. As a result of these issues, we believe the
WST model may be more reasonable to predict microbubble
responses to HFUS field.

The gas inertial effects can be further discussed by the
modeling of thermal behavior within the microbubble. It has
been previously reported that the selection of polytropic ex-
ponent k depends on the encapsulation properties and was
given by complex expressions (Hoff, 2001). Selected value
for k in RPL models varies from 1.0 to 7, representing iso-
thermal to adiabatic behavior of gas (Sarkar er al., 2005;
Goertz et al., 2007a). An empirical value of 1.1 is also found
to best match numerical and analytical solutions for the case
of Nycomed and Albunex® microbubbles within conven-
tional frequency range (Khismatullin, 2004). The modeling
of heat conduction through the Albunex® bubble wall in
WST is investigated by the comparisons in Fig. 7. It is seen
from Figs. 7(a) and 7(b) that the resonance slightly shifts
when the WST plot is compared to both isothermal and em-
pirical RPL plots; in Fig. 7(c), the WST result best matches
for an adiabatic RPL model. It has been demonstrated that
whether the compression process is isothermal or adiabatic
for free bubble oscillation depends on the ratio of thermal
diffusion length to bubble radius defined by the parameter
x=Dy/ R (Prosperetti et al., 1988). The large and small
values of y indicate nearly isothermal and adiabatical behav-
ior of gas, respectively. Obviously, the value of y also has a
reciprocal relation to the driving frequency. In other words,
the value of y will be much smaller and thus represents the
adiabatic behavior of gas at high frequencies. The WST is
shown here to display adiabatic gas behavior and may thus
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FIG. 7. Reduced scattering cross sections of single Albunex® bubble as a
function of driving frequency. The polytropic exponents are (a) 1.0 (left), (b)
1.1 (center), and (c) 1.4 (right).

be a good model for encapsulated microbubbles subject to
high frequencies.

The failure of both models in predicting the attenuation
of Deﬁnity® suspensions at higher frequencies in Fig. 5 ex-
cludes the HOM contribution, liquid compressibility, and gas
inertial effects. Alternative explanations here may link to the
material properties of lipid shells, which are different from
those of polymer and albumin encapsulation (Sarkar er al.,
2005; Doinikov and Dayton, 2007). Disagreement above 20
MHz could also be attributed to nonlinear shell response due
to shear-thinning and strain-softening material properties
(Tsiglifis and Pelekasis, 2008; Doinikov et al., 2009). How-
ever, it is necessary to state that the importance of HOM
scattering should be reexamined for other types of contrast
agents, especially those with a greater number percentage of
large bubbles or encapsulated by thick, hard shells, or driven
at even higher frequencies >100 MHz. One good example
is Imagent® bubbles, which have a mean size of 6.0 um.
Moreover, from the shift of the measured attenuation peak at
frequencies <7 MHz, we believe that further investigation
is warranted to examine problems such as theoretical model-
ing of lipid shells and experimental design of acoustic mea-
surements.

The significance of the HOM contribution to the primary
acoustic radiation forces on the microbubble subject to the
HFUS has been exhibited in Fig. 6(b) for larger bubbles. As
is known, the second scattering mode (m=1) has a dipole
pattern in scattering directivity and results in a unidirectional
radiation force that enables the detection of bubble transla-
tional motion. It is thus indicated that bubble manipulation
by ultrasound will be violently impacted by the anisotropic
scattering for high-frequency targeted contrast applications
such as drug delivery and molecular imaging. It is also no
doubt that the frequencies applied in upcoming microbubble-
assisted ultrasound techniques will get higher, and thus it
will lead to considerable HOM contributions for even
smaller microbubbles.

Microbubble usage in HFUS imaging may also be opti-
mized by means of WST model. As introduced above, the
monopole scattering is dominant only if the normalized fre-
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FIG. 8. Scattering cross sections of single Nycomed bubble as a function of
normalized frequency.

quency k;R,<<1, indicating that such scattering is on par
with the scattering from radial pulsation predicted by the
RPL model for contrast microbubbles at frequencies
<10 MHz. However, this condition is partially violated for
contrast microbubbles at higher frequencies, and in such in-
termediate wavelength regimes the HOM contribution be-
comes significant. Figure 8 shows the scattering cross sec-
tions for various terms as a function of normalized frequency
for Nycomed bubbles, which has a fixed value of 5% for
thickness-to-radius ratio (Hoff, 2001). It is seen that the dif-
ferences due to the HOM start at k;R,=0.2. Further calcula-
tions lead to a range of start points of kR, from 0.1 to 0.4 for
other types of shells. This result is instructive for optimized
usage of contrast bubbles in HFUS applications. A contour
plot of kR, is given in Fig. 9. Given a certain frequency, one
may use the plot to find the corresponding threshold of
bubble radius below which the HOM contribution is negli-
gible. For example, the HOM contribution to scattering in
bubbles with radius <1 um is negligible at 50 MHz if the
start point k;R,=0.2 (Nycomed bubbles). This indicates that
the WST analyses instead of the RPL method should be ap-
plied for predictions on single scattering of bubbles >1 um
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FIG. 9. Contour plot of normalized frequency.
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in radius and multiple scattering for suspensions of which a
great portion of the bubbles >1 wm in radius.

Shell Lamb waves are essential signals of the contrast
microbubble. Simulation results have shown that optimized
design of material properties and geometry of the shell can
maximize the response of the Lamb wave for a specific fre-
quency (Allen et al., 2001). This may make possible novel
HFUS contrast techniques in ophthalmology, dermatology
and oncology and so on, based on detection of shell Lamb
waves within the total scattering spectrum of microbubbles
seeded in complex structures of microcirculation. In under-
water acoustics, the modal verification and peak detection
are realized by the partial wave decomposition of the scat-
tering form function in the analyses of resonance scattering
theory (Gaunaurd and Werby, 1991). This approach may be
useful for detection of Lamb waves for encapsulated mi-
crobubbles and is a topic of ongoing study.

The WST model holds both advantages and disadvan-
tages against various RPL models in modeling of encapsu-
lated microbubble dynamics at high frequencies. Besides the
HOM contribution, it has also been shown previously that
liquid compressibility is no longer negligible for Mach num-
bers comparable to unity (Hoff, 2001). For time-harmonic
scattering, the radial velocity of the bubble shell outer inter-

face is Rz ~2mfR,, and thus the Mach number of the fluid is
M=27fR,/co=kR,. Developed RPL models, such as the
Triling or Keller—Miksis equations, are restricted by M <1,
but WST method works for any k;R,. In addition, studies on
the microbubble responses at high frequencies can be ex-
tended to more practical linear WST models. For example, a
viscous-liquid WST model can be used to evaluate bubbles
in blood. However, the nonlinear oscillation of microbubbles
has never been incorporated in WST models and is under
further investigation. To date, the RPL models continue to be
used for the evaluation of nonlinear effects.
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NOMENCLATURE

R, = Inner radius of the shell
R, = Outer radius of the shell
d Shell thickness

6 = Scattering angle
®; = Potential of the incident waves
@, = Potential of the scattering waves
®, = Wave potential in the air
@, = Scalar potential in the shell
W, = Vector potential in the shell

Mg = Shear viscosity of the shell material
G, = Shear modulus of the shell material
N, = Elastic Lamé’s first parameter

N\, = Viscous Lamé’s first parameter
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k; = Wave number in water

Wave number of the shear waves in the shell

k; = Wave number of the longitudinal waves in
the shell

= Wave number in the air

=
I

3
P,(-) = Legendre polynomial of order n
Jn(+) = Spherical Bessel function of order n
n,(-) = Spherical Neumann function of order n
hf: (-) = Spherical Hankel function of the first kind of

order n
a, = Scattering coefficient
, Normal displacement

s
Il

7, = Normal stress
7, = Tangential stress
a;; = Elements of the scattering matrix

(i,j=1-6)

f(6) = Scattering function in the far field
fn.(0) = Scattering function of mode n

fo = Monopole scattering function
f(0) = Forward scattering function
f(m) = Backward scattering function

o, = Scattering cross section

o, = Reduced scattering cross section
Uim) = o, calculated by truncation of first (m+1)

modes

p, = Density of the shell material

p; = Density of water

B, = Damping due to acoustic radiation
Bsn = Damping due to shell viscosity

B = B+ By, total damping

P, = Acoustic pressure amplitude

po = Hydrostatic pressure in the surrounding
liquid

R,y = Inner radius of the shell at =0

Outer radius of the shell at =0

f = Driving frequency

=
IS
Il

o = 2f, angular driving frequency
wy = Resonant angular frequency

c¢o = Sound speed in water

k = Polytropic exponent

v = Ratio of specific heats

Sound attenuation coefficient
Primary acoustic radiation force
D, = Gas thermal diffusivity
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