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Several psychophysical models for masked detection were evaluated using reproducible noises. The
data were hit and false-alarm rates from three psychophysical studies of detection of 500-Hz tones
in reproducible noise under diotic �N0S0� and dichotic �N0S�� conditions with four stimulus
bandwidths �50, 100, 115, and 2900 Hz�. Diotic data were best predicted by an energy-based
multiple-detector model that linearly combined stimulus energies at the outputs of several
critical-band filters. The tone-plus-noise trials in the dichotic data were best predicted by models that
linearly combined either the average values or the standard deviations of interaural time and level
differences; however, these models offered no predictions for noise-alone responses. The decision
variables of more complicated temporal models, including the models of Dau et al. ��1996a�. J.
Acoust. Soc. Am. 99, 3615–3622� and Breebaart et al. ��2001a�. J. Acoust. Soc. Am. 110, 1074–
1088�, were weakly correlated with subjects’ responses. Comparisons of the dependencies of each
model on envelope and fine-structure cues to those in the data suggested that dependence upon both
envelope and fine structure, as well as an interaction between them, is required to predict the
detection results. © 2009 Acoustical Society of America. �DOI: 10.1121/1.3206583�

PACS number�s�: 43.66.Dc, 43.66.Ba, 43.66.Pn �RYL� Pages: 1906–1925
I. INTRODUCTION

The traditional goal of psychophysical experiments ex-
amining masked detection has been to characterize threshold
signal-to-noise ratios �SNRs� as functions of physical param-
eters of the stimuli �e.g., signal frequency, noise bandwidth,
and interaural phase difference of the signal�. These thresh-
old SNRs have been estimated using masker waveforms
drawn on each trial without replacement from an effectively
infinite set, such that no sample of masking noise is ever
presented more than once. More recently, a number of stud-
ies have collected data using reproducible maskers �e.g.,
Pfafflin and Matthews, 1966; Ahumada and Lovell, 1971;
Ahumada et al., 1975; Gilkey et al., 1985; Siegel and Col-
burn, 1989; Isabelle and Colburn, 1991; Isabelle, 1995; Isa-
belle and Colburn, 2004; Evilsizer et al., 2002; Davidson et
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al., 2006�, allowing each sample of masking noise to be pre-
sented numerous times. These studies characterize detection
responses for each individual stimulus waveform in a set of
masking noise samples, rather than describing a single
threshold estimated using maskers from an infinite set of
noise waveforms. Such data present a more rigorous test for
models of masked detection because, in addition to predict-
ing average threshold, the models must predict detection sta-
tistics for individual waveforms. As shown here and in other
works, models that accurately predict average thresholds
may fail to predict responses to individual waveforms �e.g.,
Isabelle, 1995; Isabelle and Colburn, 2004�.

The models tested in this study were selected because
they have successfully predicted reproducible noise data in
the past �e.g., Fletcher, 1940; Ahumada and Lovell, 1971;
Ahumada et al., 1975; Gilkey and Robinson, 1986�, because
they have been used with some success to predict thresholds
for a broad spectrum of psychophysical detection tasks �e.g.,
Dau et al., 1996a, 1996b; Breebaart et al., 2001a, 2001b,

2001c�, because they are straightforward adaptations of ob-
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served physiological phenomena �e.g., McAlpine et al.,
2001; Marquardt and McAlpine, 2001�, or because they use a
processing strategy that involves an interaction between
stimulus envelope and fine structure �e.g., Goupell and Hart-
mann, 2007�. The interaction of envelope and fine structure
was of particular interest because such an interaction has
been suggested by recent empirical studies of detection of
low-frequency tones in reproducible maskers �Davidson,
2007; Davidson et al., 2009�.

II. METHODS

A. Target data

Data sets from three psychophysical studies �Isabelle,
1995; Evilsizer et al., 2002; Isabelle and Colburn, 2004;
Davidson, 2007; Davidson et al., 2009� that shared similar
experimental methods are modeled in this work. In these
studies, an approximate threshold was estimated, drawing
from an infinite set of masker waveforms without replace-
ment, first in a two-interval up/down tracking experiment
and subsequently verified in a single-interval experiment
with fixed SNR. Then a fixed-SNR �i.e., at the estimated
threshold�, single-interval experiment was performed with a
small �25–100� closed set of reproducible maskers. On each
trial, the masker was randomly drawn, with replacement,
from the closed set, with the constraint that all tone-plus-
noise �T+N� and noise-alone �N� waveforms were presented
an equal number of times during the course of the entire
experiment �50–100 presentations, depending on the study�.
Upon completion of the experiment, the hit rate, or propor-
tion of “yes” responses when the tone was present �P�Y �T
+N��, and the false-alarm rate, or proportion of yes response
when the tone was not present �P�Y �N��, were calculated
separately for each individual masker waveform in the set.
The resulting set of hit and false-alarm rates is termed the
detection pattern. Note that although these hit and false-
alarm rates could be used to calculate some performance
metric �e.g., P�C�, d�, etc.� on a per noise waveform basis,
that was not the focus here. Instead, N and T+N trials were
considered separately, and the hit and false-alarm rates were
used to estimate the tendency of the subject to respond “tone
present” �presumably, based on how much a particular wave-
form “sounded like” it contained the tone�.

Hit and false-alarm rates from Isabelle �1995� �Study 1�,
Evilsizer et al. �2002� �Study 2�, and Davidson et al. �2009�
�see also Davidson, 2007� �Study 3� served as the data for the
modeling presented in this study. These data were selected
because collectively, they established a set of detection pat-
terns estimated under diotic �N0S0� and dichotic �N0S�� in-
teraural configurations, with several noise bandwidths �50
�Study 3�, 100 �Study 2�, 115 �Study 1�, and 2900 Hz �Study
2��, at a single tone frequency of 500 Hz. Study 1 examined
the N0S� configuration only, whereas the other studies exam-
ined N0S0 and N0S� configurations and used the same noise
masker samples under both conditions.

In contrast to Studies 1 and 2, in which the sets of
maskers were randomly generated, Study 3 examined four
stimulus sets under each interaural configuration. These

stimulus sets were denoted E1F1, E2F2, E1F2, and E2F1, with
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E denoting envelope and F denoting fine structure. Corre-
sponding stimuli �N or T+N� within the E1F1 and E1F2

stimulus sets and within the E2F1 and E2F2 stimulus sets
shared the same temporal envelopes. Similarly, correspond-
ing stimuli within the E1F1 and E2F1 stimulus sets and within
the E1F2 and E2F2 stimulus sets shared the same fine struc-
tures �i.e., had the same zero crossings�. The energies of T
+N and N waveforms were equalized for all N0S0 stimuli in
Study 3, thus eliminating detection cues related to overall
energy. Davidson et al. �2009� and Davidson �2007� pro-
vided details regarding stimulus construction for Study 3.

B. General modeling strategy

The models were implemented without internal noise
and without a decision stage. The output of each model �i.e.,
the decision variable� was calculated and compared to the
responses of each subject on a waveform-by-waveform basis.
To do this, the value of P�Y �T+N� or P�Y �N� obtained for
each subject in response to each waveform was converted to
a z-score using the inverse cumulative normal distribution
function1 as in Evilsizer et al. �2002�. This conversion is
equivalent to corrupting the model’s decision variable �DV�
with normally-distributed, additive internal noise. That is, it
was assumed that the subject’s DV was the sum of external
and internal noise components, DV=DVext+DVint. The ex-
ternal component, DVext, was computed in response to the
external stimulus and was assumed to be fixed across trials
on which the same stimulus waveform was presented, but to
vary across stimulus waveforms. The internal component,
DVint, was assumed to be randomly drawn from a normal
distribution with mean equal to zero and constant variance,
independent of the trial or waveform presented. Under these
assumptions, the z-score provides an estimate proportional to
the distance from the subject’s criterion to DVext for a par-
ticular waveform and subject. �Criterion variation, if present,
is one form of internal noise and is not separately considered
here.� Thus, the computed �noise-free� DV of a correct model
should be linearly related to these z-scores �i.e., both the
subject z-scores and the model DV should be linearly related
to DVext�. The proportion of variance accounted for by each
model was simply computed as the square of the Pearson
product-moment correlation �r2� between the model DV and
the subject z-score.2 Because it was assumed a priori that
different subjects might employ different detection strategies
�indeed, this appears to have been the case, at least in Study
3�, each model was compared to each subject’s data indi-
vidually �the analyses did not consider data that were aver-
aged across subjects or attempt to predict the across-subject
variance�. Previous studies that modeled data that were av-
eraged across subjects have been able to explain more of the
variance in the data �e.g. Isabelle, 1995; Isabelle and Col-
burn, 2004; Davidson et al., 2006�; however, in those studies
there were energy differences across waveforms that were
presumably a common source of variation in the detection
patterns that could be enhanced by averaging.

Implementing the models and representing the data in
this way has some important implications. First, this ap-

proach allowed an evaluation of models without developing
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a sophisticated internal noise model; however, many of the
dichotic models considered require internal noise, or some
other modification, to produce non-zero outputs on N trials.
Therefore, those models were not applied on N trials. Sec-
ond, in some cases it was advantageous to combine the out-
puts of two models in order to predict the subjects’ re-
sponses. Because a linear relationship between the decision
variables of the models and the z-scores of the subjects was
expected, linear multiple regression techniques could be ap-
plied.

Although the subjects’ thresholds were estimated using
traditional psychophysical techniques before the experiment
began, estimated thresholds were only used to set the SNR
during the experiment. The analyses reported here do not
attempt to predict thresholds �indeed, N and T+N trials were
analyzed separately�.3 The focus in this study was on the
responses of subjects to individual reproducible stimulus
waveforms �i.e., how likely the subjects were to say the tar-
get was present when that stimulus waveform was pre-
sented�. The SNR for the models and the SNR for the subject
were identical since both responded to identical stimulus
waveforms.

When evaluating the success of these models it is im-
portant to establish an upper limit of expected performance
for any given prediction.4 Isabelle �1995� �see Isabelle and
Colburn, 2004� described that the reasonable upper limit for
predicting their N0S� data �Study 1� was an r2 of about 0.88.
Evilsizer et al. �2002� �Study 2� reported first-half, last-half
correlations that yield predictable variances �VP� �Ahumada
and Lovell, 1971� from 0.80 to 0.97. Predictable variances
for Study 3 �Davidson, 2007; Davidson et al., 2009� ranged
from 0.85 to 0.99 for data averaged across the baseline
stimulus sets in the N0S0 condition and from 0.92 to 0.99 for
the N0S� data. Model results are presented here in terms of
r2; qualitatively similar results presented in terms of an esti-
mate of the proportion of predictable variance explained,
computed as the ratio of r2 over VP, are available in David-
son �2007�.

III. MODEL DESCRIPTIONS, RESULTS, AND
DISCUSSION

A brief description of each diotic and dichotic model is
provided below, along with the results for those models. De-
tailed descriptions of model implementations are provided in
Appendixes A through H. Table I provides a list of the mod-
els studied here and includes a brief description of their de-
cision variables. In the following discussion, the effect of
stimulus energy on each model’s predictions is considered
for both the diotic and dichotic stimulus conditions �i.e., to
what extent is the performance of a model dependent on its
correlation with energy�. Finally, the extent to which each
model relies on stimulus envelope or fine structure is com-
pared to the empirical dependency observed for human sub-
jects in Study 3.

A. Diotic models

There are six sets of models considered here for the

diotic data. The first two are related: single critical-band
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�CB� models and multiple-detector �MD� models that lin-
early combine outputs of multiple critical bands. To date,
detection patterns estimated under diotic conditions have
been best predicted by a MD model �Ahumada and Lovell,
1971; Ahumada et al., 1975; Gilkey and Robinson, 1986;
Davidson et al., 2006�. The MD model accounted for up to
90% of the variance in one subject’s responses in Ahumada
and Lovell �1971� and up to 72% of the variance in one
subject’s responses in Gilkey and Robinson �1986�. David-
son et al. �2006� used the MD model to predict the data of
Study 2 and found that the model accounted for 78%–90% of
the variance in the average subject’s responses, depending on
bandwidth and interaural configuration �monaural �NmSm� or
diotic�. The MD model’s DV is the weighted sum of energies
at the outputs of several auditory filters surrounding the tone
frequency. Thus, the MD model is an extension of Fletcher’s
�1940� proposal that detection responses are determined by
the energy at the output of a single CB centered at the tone
frequency. Davidson et al. �2006� showed that the CB model
predicted 64%–82% of the variance in their average subject’s
responses.

Two simple models that depend on temporal cues were
also considered here: a modified version of the Richards
�1992� envelope-slope �ES� model �Zhang, 2004� and the
phase-opponency �PO� model �Carney et al., 2002�. David-
son et al. �2006� showed that the ES and PO models pre-
dicted about 60% of the variance in narrowband and wide-
band N0S0 and NmSm detection patterns. Neither model has
previously been tested using detection patterns estimated
from stimuli where energy was equalized across stimulus
waveforms �as was the case in Study 3�. Presumably, the
likelihood that the subjects will use temporal cues, and
thereby the success of these models, will increase when en-
ergy cues are not available.

Finally, two relatively more complex models were
evaluated �Dau et al., 1996a; Breebaart et al., 2001a�. These
models combine temporal and energy information and also
include a basic representation of both peripheral filtering and
adaptation. Each of these models creates an internal-
representation template through an iterative method, and de-
cision variables for the detection task are derived based on
comparisons to this template.

1. CB model

The DV for the CB model �Fig. 1� is the rms output of a
fourth-order gamma-tone filter centered at 500 Hz. The
equivalent rectangular bandwidth �ERB� of the filter was set
at 75 Hz �Glasberg and Moore, 1990�. The CB model was
the simplest model tested in this study and, in general, was
able to predict a significant and substantial proportion of the
variance in the detection patterns for all subjects in Study 2
�Fig. 2�A��. Recall that overall energies were equalized for
all diotic stimuli in Study 3. The CB model made relatively
poor predictions of the detection patterns in the equal-energy
cases,5 as expected. In Study 3, where energy cues were not
available, the predictions of the CB model were significantly

correlated to the detection patterns for only 12 out of 24
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cases for P�Y �T+N� and for only 18 out of 24 cases for
P�Y �N�. This finding is in agreement with the results of
Richards �1992�.

2. MD models

As stated above, the DV of the MD model �Gilkey and
Robinson, 1986� was a weighted sum of energies at the out-
puts of several auditory filters surrounding the tone fre-
quency �Fig. 1�. The MD model �as described in the litera-
ture� uses a fit to the subjects’ data, rather than a decision-
theoretic weighting strategy. Here, we considered both this
classic MD model and a multiple-detector model with sub-
optimal weights �MDS�, which were computed using a
decision-theoretic weighting scheme. This scheme is subop-
timal in the sense that the chosen weights would maximize
d� for the model, not the fit �r2� between the detection pat-
terns for the model and these specific data. Note that these
models were only applied to Study 2, in which the stimulus
bandwidth exceeded one critical band. Appendix A includes

TABLE I. List of models tested in this study.

Model Periphery

N
CBa GT�4�b

MDc GT�4�, MFd

MDS GT�4�, MF
ESe GT�4�, Extract Envf

DAg GT�4�, Adapt. Loopsh

BRi GT�3�, Adapt. Loops, MF
POj GT�4�, AN model,k MF

N
ENl None
sTl None
Sll None
Wstl None
Wavm None
Xstm None
Xavm None
Lpl,n None

FCco GT�4�, AN model

FCno GT�4�, AN model
BRi GT�3�, Adapt. Loops, MF

aFletcher �1940�.
bGT�N� indicates Nth-order gammatone filter.
cAhumada and Lovell �1971�; Ahumada et al. �1975�; Gilkey and Robinson
dMF indicates multiple frequency channels.
eRichards �1992�; Zhang �2004�.
fEnvelope extraction performed using Hilbert transform.
gDau et al. �1996a�.
hAdaptation loops from Dau et al. �1996a�.
iBreebaart et al. �2001a�.
jCarney et al. �2002�.
kAuditory-nerve model of Heinz et al. �2001�.
lIsabelle �1995�.
mGoupell �2005�; Goupell and Hartmann �2007�.
nHafter �1971�.
oMarquardt and McAlpine �2001�.
details of the MD and MDS implementations.
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Plots showing the weights resulting from the fit to the
data �MD model� and from the suboptimal computation
�MDS model� provide insight into the differences between
these models �Fig. 3�. The negative weights for the MD
model found above and below the target frequency were con-
sistent with weighting patterns in previous MD model results
�Ahumada and Lovell, 1971; Ahumada et al., 1975; Gilkey
and Robinson, 1986�, but only positive weights were pos-
sible in the suboptimal weighting scheme because these
weights were derived from rms metrics. Note that the
weights that fit to the responses of S3 for MD with the
100-Hz bandwidth were close to those fitted to the MDS
model. Figure 2 shows that the proportions of variance ac-
counted for by the MD and MDS models were also similar
for that subject. The MDS model made poorer predictions for
subjects that tended to have more negative MD weights, as
expected. In fact, the MDS model predictions were even
more poorly correlated to the data of S2 and S4 than the CB
model predictions. For the MD model, significant and sub-

Decision variable

Energy
Linear combination of energy across channels
Linear combination of energy across channels

Average slope of the envelope
Similarity to peripherally transformed “noisy” tone template

Difference from peripherally transformed noise-alone template
Monaural cross-frequency coincidence detection

Energy
Standard deviation �Std� of ITDs

Std of ILDs
Linear combination of Stds of ITD and ILD

Linear combination of averages of ITD and ILD
Std of linear combination of ITD and ILD

Average of linear combination of ITD and ILD
Std of linear combination of ITD and ILD

Linear combination of time-delayed binaural cross correlations
and cancellations

Linear combination of time-delayed normalized binaural cross
correlations and cancellations

Difference from peripherally transformed noise-alone template

6�.
0S0

0S�

�198
stantial predictions were made for all subjects’ detection pat-
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lines�.
terns for P�Y �T+N� and for 7 out of 8 cases for P�Y �N�,
whereas while the MDS model prediction reached signifi-
cance in 6 out of 8 cases for P�Y �T+N� and in 5 out of 8
cases for P�Y �N�. The amount of variance predicted by the
MDS model was lower than that predicted by the MD model
in all but one case. It should be noted that the MD model
includes a fit to the subject data, which partly explains the
success of this model �see discussion of this issue in David-
son et al., 2006� relative to the models that have fixed pa-
rameter values, except for the mean and slope of the regres-
sion line. However, Davidson et al. �2006� showed that the
weighting strategy of the MD model produced r2 values sig-
nificantly greater than would be expected by simply adding
free parameters to the CB model.6 Overall, the MD model
accounted for more of the variance in the subjects’ detection
patterns than any other model tested in this study. Davidson
et al. �2006� found relatively little variation across subjects
in the diotic results �e.g., as compared to the dichotic results,
see below�, which contributes to the success in fitting these
data sets with a single model.

3. ES model

A modified version of Richards’ �1992� ES model
�Zhang, 2004� was evaluated. The ES model estimates the
rate and magnitude of fluctuation in the stimulus envelope as
a decision variable. Although, as will be shown later, enve-
lope fluctuation co-varies with stimulus energy when energy
variations are present, the ES model is not strictly dependent
on energy, and this model can make meaningful predictions
even when energy is normalized, as it was in Study 3. Imple-
mentation details for the ES model are described in Appen-

RMS

RMS
w1

RMS

wi

wn

H(t) Envelope
Slope

DetectorAL

ANCF1

ANCF2

CB

MD, MDS

DA, BR

ES

PO
∫
t

FIG. 1. Block diagrams of the models used to predict N0S0 detection pat-
terns. The models listed from top to bottom are CB, critical band �Fletcher,
1940�; MD, multiple detector with fit weights �Ahumada and Lovell, 1971;
Ahumada et al., 1975; Gilkey and Robinson, 1986�; MDS, multiple detector
with suboptimal �independent channel� weights; ES, envelope slope �Rich-
ards, 1992; Zhang, 2004� DA, Dau model �Dau et al., 1996a�; BR, Breebaart
model �Breebaart et al., 2001a�; PO, phase opponency �Carney et al., 2002�.
H�t� denotes the Hilbert transform used to recover the absolute value of the
complex-analytic signal. AL denotes the adaptation loops as described in
Dau et al. �1996a�. AN denotes the auditory-nerve model of Heinz et al.
�2001�.
dix B.
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FIG. 2. Proportion of variance explained �r2� in the z-scores of �A�
P�Y �T+N� and �B� P�Y �N� by the N0S0 model predictions. Model abbre-
viations from left to right: CB, critical band; MD, multiple detector; MDS,
multiple detector with suboptimal weights; ES envelope slope; DA, Dau;
BR, Breebaart; and PO, phase opponency. Different subjects are indicated
with different symbols connected with lines to facilitate intersubject and
cross-model comparisons. Note that subject identification numbers do not
correspond to the same subjects across studies. The critical r2 value for a
significant prediction would be 0.16 for comparison of one model to the
detection pattern for one subject. A Bonferroni correction was used to com-
pensate for the comparison of each subject’s data to seven models in Study
2 resulting in a criterion of significance for r2 equal to 0.28 and for five
models in Study 3 resulting in a criterion equal to 0.26 �horizontal-dashed
FIG. 3. Weights computed for MD and MDS models for the 100- and
2900-Hz data in Study 2. Weights are shown for the four subjects. Note that
weights in each condition were normalized to the maximum weight �occur-
ring at 500 Hz�. These weights correspond to the wi for the MD and MDS

models in Fig. 1 and Eq. �A2�.
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In general, the ES model predictions were no better than,
and often poorer than, the predictions made with the CB,
MD, and MDS models, with only 13 of the 32 predictions
reaching significance for P�Y �T+N� �Fig. 2�A�� and only 12
of the 32 predictions reaching significance for P�Y �N� �Fig.
2�B��. Model predictions were highly variable across sub-
jects in all studies, except for P�Y �T+N� for the wideband
results of Study 2. Despite this model’s simplicity, it was
able to account for more variance in some of the subject’s
detection patterns than the more complicated temporal mod-
els �i.e., DA, BR, and PO; see below�, particularly in the
equal-energy cases of Study 3 for P�Y �N� �Fig. 2�B��.7

4. Dau model

The Dau model �Dau et al., 1996a� has been used to
predict thresholds in a number of monaural and diotic psy-
chophysical tasks, including detection of tones in random
and frozen noise as a function of the temporal position, du-
ration, and frequency of the tone, as well as forward and
backward masking tasks �Dau et al., 1996b�. The model in-
cludes bandpass filters to represent peripheral filtering, plus
rectification, a simplified model of adaptation, and a low-
pass filter to extract the envelope �Fig. 1�. This model’s DV
is computed by comparing an “internal representation” of the
response for each stimulus to a template. Details of the
implementation of the Dau model are included in Appendix
C.

Like the ES model, the Dau model relies primarily on
the temporal envelope of the stimulus waveform, but the Dau
model allows some fine structure to pass onto the decision
device �Fig. 4� because the low-pass filter used for envelope
extraction is only first-order. This model uses a distinct
template-matching strategy, where a previously computed N
template is subtracted from the waveform on each trial, and
the result is compared to a normalized version of the differ-
ence between previously computed T+N and N templates.

FIG. 4. Templates used in the Dau model decision device. The T+N and N
templates were computed as the mean of 500 internal representations of T
+N and N stimuli, respectively. The templates �plotted in arbitrary model
units� are the low-pass filtered outputs of the adaptation loops in the Dau
model �see Appendix C�. The lower panel shows the normalized difference
between the two templates in the upper panel.
Figure 4 shows representative T+N and N templates �top
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panel� and the normalized difference template �bottom panel�
for the 100-Hz bandwidth stimuli of Study 2. Each trace in
the top panel shows the output of the model’s adaptation
loops �see Appendix C� averaged over 500 stimulus wave-
forms. It is clear that the averaging process brings out some
fine-structure information related to the tone frequency in the
T+N template. This information is effectively increased by
the normalization with respect to the difference between the
two templates �Fig. 4, bottom panel�. The difference between
templates is largest at the onset of the noise waveform be-
cause of the lack of compression in the adaptation loops for
stimuli with fast changes in sound pressure level �whereas
the latter portion of the difference is compressed�. The cova-
riation in time of the fine structure present in the stimulus
waveform and in the internal template �requiring the detector
to have knowledge of the phase of the target tone� also con-
tributes to the decision variable.

In general, the predictions of the Dau model were not
significantly correlated to the subjects’ detection patterns.
Only 5 of the 32 P�Y �T+N� predictions �Fig. 2�A�� and only
2 of the 32 P�Y �N� predictions �Fig. 2�B�� were significant.
Note also that these results were obtained despite the fact
that the Dau decision variables are at least partially corre-
lated to overall energy, as discussed further below.

5. Breebaart model

The peripheral processing in the Breebaart model �Bree-
baart et al., 2001a� is similar to that of the Dau model. Dif-
ferences between the predictions of the Breebaart and Dau
models result from differences in the decision devices, in-
cluding the template mechanisms. For example, in the Bree-
baart model, the N template is subtracted from the internal
representation of each stimulus waveform as a measure of
the “distance” from the N stimulus, which differs from the
normalized difference strategy of the Dau model. Other fea-
tures in the Breebaart model include temporal weighting us-
ing a double-sided exponential window and spectral weight-
ing across multiple frequency channels. Details of the
implementation are presented in Appendix D.

Representative templates of the Breebaart model are
shown in Fig. 5 for the 100-Hz bandwidth stimuli of Study 2
for the three frequency channels used. The frequency weight-
ing �see Appendix D, Eq. �D1�� is shown in Fig. 5. In this
illustration, the time-varying weights are summed over time
and normalized to facilitate comparison to the weights for
the MD and MDS models. The weights for both narrowband
and wideband results are similar to those in Fig. 3 for the
MDS model. For our implementation of the Breebaart
model, only 7 predictions of the 32 made for P�Y �T+N�
were significant �Fig. 2�A��, and none of the 32 made for
P�Y �N� were significant �Fig. 2�B��.

6. PO model

The PO �Fig. 1� model �Carney et al., 2002� is a detec-
tion model that is based primarily on temporal cues in the
stimulus fine structure. These cues are extracted using cross-
frequency coincidence detection. This model successfully

predicts that the detection threshold should be robust even in
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a roving-level paradigm �Carney et al., 2002�; however, it
has not been previously tested with detection patterns esti-
mated from stimuli with energy equalized across stimulus
waveforms �as was the case for Study 3�. Details of the
implementation of this model are presented in Appendix E.

The PO model’s ability to predict detection patterns was
comparable to that of the DA model, with only 3 of the 32
P�Y �T+N� predictions reaching significance �Fig. 2�A�� and
3 of the 32 P�Y �N� predictions reaching significance �Fig.
2�B��. This model performed no better for experiments in
which energy was equalized �i.e., when fine structure might
be expected to play more of a role� than for experiments with
energy cues present.

B. Dichotic models

When out-of-phase tones are added to identical noise
waveforms, as is done in the N0S� condition, the resulting
tone-plus-noise stimulus waveforms have instantaneous in-
teraural time differences �ITDs� and interaural level differ-
ences �ILDs� that vary over time due to interactions between
the tones and the noise masker. Models for dichotic detection
allow tests of hypotheses about the relations between these
cues and the detection results and of hypotheses about the
binaural mechanisms used to process these cues, such as
cross correlation and equalization-cancellation. It should be
noted that the ITDs and ILDs that are present in the tone-
plus-noise stimuli are dynamic cues that vary throughout the
time course of the stimuli, rather than the static interaural
differences that are used in lateralization experiments. Some
models for dichotic detection are based on the time averages
of these interaural cues over the course of a stimulus wave-
form; others use the instantaneous, time-varying cues.

In general, dichotic models have been less successful at
predicting the N0S� detection patterns than diotic models

FIG. 5. Internal noise-alone templates �top panel� for the different frequency
channels in the narrowband condition of Study 2 and frequency weighting
�bottom two panels� imposed by the model of Breebaart et al. �2001a� on the
internal representations of the stimulus waveforms. The internal representa-
tions �plotted in arbitrary model units� are the responses of Breebaart’s
peripheral model, followed by half-wave rectification and low-pass filtering
to represent transduction by the inner hair cells, and adaptation loops �see
Appendix D�. The frequency weights were summed over time and normal-
ized to the peak value for the 100- and 2900-Hz conditions of Study 2 for
the left and right panels, respectively.
have been at predicting the N0S0 detection patterns. Isabelle
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�1995; i.e., Study 1� and Colburn et al. �1997� analyzed sev-
eral decision variables for N0S� detection patterns. Colburn
et al. �1997� considered the equalization-cancellation �EC�
model and normalized cross correlation �NCC� and unnor-
malized cross correlation �UCC� models. They found that the
EC DV was too strongly influenced by monaural stimulus
energy, which did not correlate with subject performance, as
compared to predictions based on non-linear combinations of
interaural difference cues present in the acoustic stimuli,
which showed significantly better correlation with perfor-
mance in N0S� experiments �however, an internal noise
model would be required for the interaural difference models
to make predictions on N trials�. They also found that the
UCC model was too dependent on masker waveform, rather
than on the addition of the tone to the masker waveform, for
tone-plus-noise stimuli. Decision variables for the UCC
model were almost identical regardless of signal presence
�that is, hit and false-alarm rates were more similar for the
model predictions than in the data�. Finally, Colburn et al.
�1997� found that the NCC model is equivalent to the EC
model when using multiplicative time and amplitude jitter,
such that the DV was again heavily dependent on the energy
in each waveform. Isabelle �1995� showed that the variation
in the NCC DV based on the addition of the tone was too
weak compared to the dependence of the NCC DV on
masker energy to predict his data. Isabelle �1995� �see Isa-
belle and Colburn, 2004� was able to explain at most about
50% of the variance in his N0S� data or in the Isabelle and
Colburn �1991� data using stimulus energy �as a substitute
for the EC and NCC models�, standard deviations of ITDs
and ILDs, and decision variables computed using various
combinations of ITDs and ILDs. The highest model correla-
tions to subject data in the Isabelle �1995� study were based
on Webster’s �1951� time-deviation model, which included a
subject-dependent �i.e., fitted� parameter related to the
threshold of time-deviation detection. However, the correla-
tion of this model to the data was not significantly better than
those of the simpler model based on the standard deviation
of ITD; the latter model was included in the results presented
here.

In the current study, several decision variables �standard
deviations of ITD, ILD, and combinations thereof� related to
those used in Isabelle �1995� were re-examined using the
data from Studies 2 and 3. In addition, the related decision
variables from Goupell and Hartmann �2007� were also ex-
amined. The Goupell and Hartmann �2007� decision vari-
ables extended the Isabelle �1995� decision variables and in-
cluded two distinct classes that make use of both ITD and
ILD: “Independent-center” models, in which integration over
time occurs separately for the decision variables based on
ITD and ILD, and “auditory-image” models, in which ITDs
and ILDs interact as a function of time, before integration
across time. The results from Study 3 �Davidson, 2007;
Davidson et al., 2009� suggest that the Isabelle �1995� deci-
sion variables could not predict the detection patterns be-
cause they do not allow envelope �ILDs� and fine structure
�ITDs� to interact temporally. Thus, it was of interest to de-
termine the effectiveness of the Goupell and Hartmann

�2007� auditory-image decision variables that allow for this
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interaction. The lateral position model �Hafter, 1971; Isa-
belle, 1995; Isabelle and Colburn, 2004� was also evaluated
because it includes an explicit interaction between envelope
and fine-structure cues in the form of a trading ratio.

A variant of the Marquardt and McAlpine �2001� model
for masked detection was also tested; this model has been
shown to successfully predict masked-detection thresholds
using only four binaural delay channels �henceforth referred
to as the four-channel �FC� model�. This model was inspired
by the findings of McAlpine et al. �2001�, who reported that
interaural phase tuning of delay-sensitive neurons in the
guinea pig inferior colliculus was centered around 45°, re-
gardless of the neurons’ best frequencies. The binaural coun-
terpart of the Breebaart model was also tested; this model
makes use of temporal fine structure in the binaural proces-
sor.

1. Independent-center and auditory-image models

As described above, Isabelle �1995� used several deci-
sion variables that were based either on fine structure �i.e.,
ITDs� or on envelope �i.e., ILDs�. These included the stan-
dard deviations of ITD and ILD and a weighted linear com-
bination of the variances of ITD and ILD. Goupell and Hart-
mann �2007� referred to these as independent-center models
because the variances of ITD and ILD were computed before
their weighted combination was computed. Goupell and
Hartmann �2007� introduced what they referred to as
auditory-image decision variables, in which ITD and ILD
were combined before computing the variance or averaging
over time. The auditory-image decision variables used here
included the standard deviation of a temporal combination of
ITD and ILD as well as the average absolute value of the
temporal combination of ITD and ILD. Finally, Isabelle’s
�1995� implementation of Hafter’s �1971� lateral position
model was evaluated in the present study; this model was
also one of the auditory-image models considered by
Goupell and Hartmann �2007�.

The Isabelle �1995� and Goupell and Hartmann �2007�
decision variables are based on interaural differences calcu-
lated directly from the stimulus waveforms.8 Because inter-
nal noise was not used, the decision variables described in
this section would have been identically zero for noise-alone
stimuli; therefore, predictions were not computed for
P�Y �N�. Details of the calculations of these decision vari-
ables are provided in Appendix F.

In order to provide a comparison and to confirm previ-
ous work, a simple energy-based model was also used to
predict the detection patterns for the dichotic condition. The
energy of the stimulus waveforms delivered to the two ears
differed very slightly due to the addition of out-of-phase
tones to the two waveforms, but on average this difference
was very small for stimuli with tones added at N0S� thresh-
old levels. Therefore, the energy �EN� based model used here
was simply based on the rms energy of the right stimulus
waveform. The EN model performed poorly, with none of
the 37 predictions reaching significance �Fig. 6�, consistent
with Isabelle �1995� and indicating that the cue used by sub-
jects to perform the detection task was not simply correlated

to energy. Standard deviations of ITDs and ILDs �sT and sI�
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performed somewhat better, with 12 and 6 of the 37 predic-
tions reaching significance, respectively �Fig. 6�. Linear
combinations of the standard deviations or of the average
absolute values of ITD and ILD performed slightly better
than the other models, suggesting that both envelope and
fine-structure cues contribute to the detection process. Of the
37 predictions, 12 that used a weighted combination of the
standard deviations of ITD and ILD as a DV �Wst� reached
significance, and 13 that used an average of the absolute
value of the weighted combination of ITD and ILD as a DV
�Wav� reached significance. Note that the models that de-
pended on weighted combinations of cues involved a fit to
the subjects’ data. Predictions for models that computed
separate decision variables before combining across ITD and
ILD processors �Wst and Wav� accounted for about the same
amount of variance in P�Y �T+N� as those that first com-
bined ITDs and ILDs as a function of time before computing
decision variables. These variables were the standard devia-
tion of the temporal combination of ITD and ILD �Xst�, the
average of the absolute value of the temporal combination of
ITD and ILD �Xav�, and the estimated lateral position �Lp�
�see Appendix F for details�. The Xst, Xav, and Lp decision
variables made 12, 12, and 4 significant predictions, respec-
tively, for the 37 comparisons performed �Fig. 6�. In sum-
mary, the independent-center �Wst and Wav� and “auditory-
image” �Xst and Xav� decision variables had about the same
predictive power.

The weights placed on ITD or ILD decision variables
were also examined for possible trends across subjects and
for relations to the threshold SNR. Figure 7 shows weights

FIG. 6. Proportion of variance explained �r2� by the N0S� model predictions
for selected Isabelle �1995� and Goupell �2005� decision variables for
z-scores of P�Y �T+N�. EN is the rms energy of the right stimulus wave-
form, sT is the standard deviation of ITDs, sI is the standard deviation of
ILDs, Wst is a linear combination of the standard deviations of ITDs and
ILDs, Wav is a linear combination of the average absolute values of ITDs
and ILDs, Xst is the standard deviation of a linear combination of ITDs and
ILDs, Xav is the average value of a linear combination of ITDs and ILDs,
and Lp is a lateral position model relating ITDs and ILDs with a trading
ratio. Results for Studies 1 and 2 are shown on the first row, and Study 3 is
shown on the second row. Each column represents a different bandwidth
condition within Study 2 or a different stimulus set in Study 3. Different
subjects are indicated with different symbols connected with lines to facili-
tate intersubject and cross-model comparisons. Note that subject identifica-
tion numbers do not correspond to the same subjects across studies. The
critical r2 value for reaching a significant prediction �p�0.05�, including a
Bonferroni correction for comparison of each data set to 11 models �across
Figs. 6 and 9�A��, is 0.29 for Study 1 and 0.30 for Studies 2 and 3, as
denoted by the horizontal dashed lines. Symbols are connected to facilitate
comparisons across models.
organized by model and subject for all three studies �see
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Appendix F for details of weight calculations�. Weights were
bounded by 0 and 1, with 1 indicating total reliance on ITD
and 0 indicating total reliance on ILD. Figure 7 shows that
the results of these models were largely due to their ability to
exclusively select the DV that was better correlated with the
individual subject’s responses from either sT or sI. Certain
subjects, however, used a true weighted combination of the
two decision variables �e.g., S4 in Study 1�, and in almost all
cases, these subjects had relatively low thresholds. Subjects
with higher thresholds were fitted more reliably with weights
of either 0 or 1, indicating that they relied solely on ITDs or
ILDs.

2. FC model

The general structure of the FC model �Marquardt and
McAlpine, 2001� is shown in Fig. 8 �upper panel�. The right
and left stimulus waveforms were processed using the Heinz
et al. �2001� auditory-nerve model. The output of each filter
was passed to a delay line with a phase shift of 45° on each
side, which corresponds to a delay of 250 �s for a 500-Hz
stimulus. The delayed stimulus from the ipsilateral side and
delayed stimulus from the contralateral side converged onto

FIG. 7. Model weights for decision variables based on both ITDs and ILDs.
A weight approaching 1 indicates reliance on ITD and a weight approaching
0 indicates reliance on ILD. Note that subject identification numbers do not
correspond to the same subjects across studies, but corresponding symbols
are used in Figs. 6 and 7. Different subjects are indicated with different
symbols connected with lines to facilitate intersubject and cross-model com-
parisons.
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FIG. 8. Block diagrams of the FC and binaural Breebaart �BR� models used
to predict N0S� detection patterns. AN denotes the auditory-nerve model of
Heinz et al. �2001�. D denotes a delay block computed based on the center
frequency of each model auditory-nerve fiber. AL denotes the adaptation

loops as described in Dau et al. �1996a�. BP denotes a binaural processor.
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binaural coincidence detectors; both the UCC and the binau-
ral cancellation �difference� were computed for each channel
in order to approximate neurons that are excited by stimuli to
both ears �EE� and neurons that are excited by stimulation of
one ear and inhibited by the other �EI�, respectively. The
resulting FCs thus corresponded to cells tuned to �45° and
�135°, spanning the entire range of possible interaural phase
differences at 500 Hz in relative increments of 90°. Note that
this model is a special case of the standard cross correlation
model; it differs from the general model because it is re-
stricted to a particular subset of channel correlations. The
outputs of the four binaural channels were suboptimally
weighted and summed using the same strategy as was used
for the MDS model �see Appendix G for details�.

Two versions of this model were implemented; the com-
mon structure of both versions is shown in the upper part of
Fig. 8 �FC�. The first �FCc� used a cross correlation �product�
of the inputs for the channels tuned to �45° �weighted by w2

and w3 in Fig. 8�, while the second �FCn� used a NCC �Col-
burn et al., 1997� for these channels. Neither version of the
model made consistently significant predictions of the detec-
tion patterns �Fig. 9�, with predictions reaching significance
for none of the 74 comparisons �including both FCc and
FCn� for P�Y �T+N� �Fig. 9�A��, 9 of the 37 P�Y �N� com-
parisons were significant for FCc, and 8 of the 37 P�Y �N�

FIG. 9. Proportion of variance explained �r2� by N0S� model predictions for
z-scores of �A� P�Y �T+N� and �B� P�Y �N�. Model abbreviations are FCc,
FC model using an UCC for simulated peaker channels �i.e., channels with
ITD curves that are characterized by a central peak�; FCn, FC model using
a NCC for peaker channels; and BR, the binaural Breebaart model. Different
subjects are indicated with different symbols connected across models to
facilitate intersubject comparisons. Note that subjects sharing the same num-
ber do not correspond across studies, but corresponding symbols are used in
Figs. 6 and 7. Symbols are connected to facilitate comparisons across mod-
els. The critical r2 value for reaching a significant prediction �p�0.05�,
including a Bonferroni correction for comparison of each data set to 11
models for P�Y �T+N� �across Figs. 6 and 9�A��, is 0.29 for Study 1 and
0.30 for Studies 2 and 3, and including a correction for comparison to two
models for P�Y �N� �Fig. 9�B�� the critical r2 value is 0.20 for all three
studies, as indicated by the horizontal dashed lines.
comparisons were significant for FCn �Fig. 9�B��.
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3. Binaural Breebaart model

The binaural version of the Breebaart model is an exten-
sion of the monaural model described above and is based on
an interaural subtraction �EI� algorithm. A simplified block
diagram is shown in Fig. 8 �BR�. The output of the adapta-
tion loops from the ipsilateral and contralateral sides passes
to a binaural processor that simulates an excitatory-inhibitory
interaction. As originally designed �Breebaart et al., 2001a�,
the model included a series of attenuation taps and delays
with different values and selected the single delay and at-
tenuation channel that showed the greatest change in output
between T+N and N stimuli. However, because the zero
delay and zero attenuation channel always has the greatest
change in output for N0S� stimuli, the model was reduced to
this single channel. Thus, this model has a structure that is
generally similar to the EC model, but it differs in the details
of the decision variable. Details of the implementation of this
model are provided in Appendix H.

As with the Isabelle �1995� and Goupell and Hartmann
�2007� decision variables, the binaural version of the Bree-
baart model produced decision variables that were identically
0 for N stimuli because of the subtraction mechanism �see
Eq. �H1��; thus, predictions for P�Y �N� were not made. Fig-
ure 10 shows representative temporal and spectral weights
for the binaural version of the model computed for the two
bandwidths of Study 2. Note that the onset was weighted
more heavily than the steady-state portion of the stimulus
because of the action of the adaptation loops. This model
produced significant predictions for only 6 of the 37 com-
parisons to P�Y �T+N� �Fig. 9�, performing more poorly than
Wst or Wav despite its more complex and arguably more
physiologically realistic structure. Note that although a few
individual r2 values in Fig. 9 are high for the BR model, its
predictions are not consistently significant across the stimu-
lus sets used in Study 3, as was true for the Wst and Wav

FIG. 10. Representative temporal weights �top� and spectral weights �bot-
tom� for the binaural Breebaart model for two different masker bandwidths
�100 and 2900 Hz�. Note that the onset of the stimulus is weighted more
heavily than the steady-state portion of the stimulus. The temporal weights
�plotted in arbitrary model units� are the internal representations for the
binaural model and thus include monaural peripheral processing �tuning,
rectification, low-pass filtering, and adaptation loops� followed by binaural
excitatory-inhibitory �EI� processing, a double-exponential filter, and loga-
rithmic compression �see Appendix H�.
predictions �see Fig. 6�.
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C. Comparisons of diotic models

Although none of the models were able to predict a sig-
nificant proportion of the variance in subjects’ detection pat-
terns in every case, it was of interest to determine how simi-
lar or different each model’s DV was to those of the other
models. Because the models operated at different SNRs for
each subject, the models’ decision variables varied slightly
across subjects. To simplify comparisons between diotic
models, and because the threshold SNRs were within 3 dB
under diotic condition for all subjects within each study, the
SNR of the subject closest to the median threshold for each
study �see Table II� was selected. Correlations between
model decision variables in response to the reproducible
stimuli are presented in terms of r2 in Tables II and III for
P�Y �T+N� and P�Y �N�, respectively, for the each of the
models in Fig. 1. Blank values indicate study conditions for
which a given model did not apply.

Tables II and III show that the CB model was signifi-
cantly correlated to each of the diotic models tested here.
The most highly correlated models were the CB and MDS
models, with r2 values from 0.95 to 0.98. Both of these mod-
els were also significantly correlated to the MD model,
which is not surprising given that all three models use energy
at the output of one or more critical bands as decision vari-
ables. The CB and ES models were also significantly, albeit
weakly, correlated for the stimuli of Study 2 and for the
non-chimeric stimulus sets in Study 3. The CB, MD, and
MDS models were significantly correlated to the DA and the
BR models for most noise-alone �P�Y �N�� results for experi-
ments that had differences in energy across stimulus wave-
forms �i.e., Study 2�. These correlations were expected,
given the Dau and BR models’ envelope dependences. Fi-
nally, the Dau and BR models were significantly correlated
for every case tested, as were the PO and ES models. It is
also interesting to note that nearly all of the models were
significantly correlated for the wideband stimuli of Study 2.

The contribution of stimulus energy to each of the model
decision variables was tested with a multiple regression ap-
proach: two models were used together to predict the sub-
jects’ data, and the CB model was one of the two predictor
models. An incremental F test �Edwards, 1979� was used to
determine if the addition of the second model significantly
increased the proportion of predicted variance. This proce-
dure was equivalent to testing the significance of the partial
correlation coefficient or the significance of the slope of a
predictor variable in a multiple regression analysis. Results
are briefly summarized in the text below in terms of the
increase in R2 �the proportion of variance explained, with the
upper-case R indicating a result of a multiple regression�
achieved by adding the second model to the CB model for
both P�Y �T+N� and P�Y �N�.

Of all the diotic models tested in combination with the
CB model �192 tests were run in total for P�Y �T+N� and
192 for P�Y �N�; six models were tested for Study 2 with
four subjects and two bandwidths and for Study 3 with six
subjects and four stimulus sets�, only regression analyses that
included the MD, ES, or PO models as second predictors

yielded significantly better predictions than the CB model
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TABLE II. Correlations between model decision variables in response to reproducible T+N stimuli under the
N0S0 condition are shown in terms of r2. Model abbreviations are the same as in Fig. 1. Note that the MD and
MDS models were not applied to the 50-Hz bandwidth of Study 3. Each model was run at an ES /N0 of 11.8 dB
for the 100-Hz bandwidth condition of Study 2, 10.8 dB for the 2900-Hz bandwidth condition of Study 2, and
10 dB for all stimulus sets in Study 3.

Model comparison

Study 2 Study 3

100 Hz 2900 Hz E1F1 E2F2 E2F1 E1F2

CB-MD 0.78a 0.70a

CB-MDS 0.95a 0.98a

CB-ES 0.33a 0.56a 0.22a 0.51a 0.07 0.12
CB-DA 0.00 0.09 0.04 0.00 0.17a 0.01
CB-BR 0.10 0.28a 0.01 0.00 0.11 0.09
CB-PO 0.01 0.20a 0.23a 0.30a 0.14 0.10
MD-MDS 0.79a 0.65a

MD-ES 0.34a 0.55a 0.22a 0.51a 0.07 0.12
MD-DA 0.00 0.07 0.04 0.00 0.17a 0.01
MD-BR 0.07 0.30a 0.01 0.00 0.11 0.09
MD-PO 0.00 0.21a 0.23a 0.30a 0.14 0.10
MDS-ES 0.21a 0.50a 0.22a 0.51a 0.07 0.12
MDS-DA 0.00 0.08 0.04 0.00 0.17a 0.01
MDS-BR 0.09 0.25a 0.01 0.00 0.11 0.09
MDS-PO 0.00 0.19a 0.23a 0.30a 0.14 0.10
ES-DA 0.00 0.05 0.11 0.00 0.16a 0.00
ES-BR 0.01 0.33a 0.03 0.00 0.03 0.03
ES-PO 0.34a 0.51a 0.49a 0.41a 0.46a 0.55a

DA-BR 0.31a 0.38a 0.86a 0.81a 0.74a 0.89a

DA-PO 0.00 0.13 0.26a 0.24a 0.36a 0.22a

BR-PO 0.05 0.20a 0.18a 0.26a 0.22a 0.09

ap�0.05.
TABLE III. Correlations between model decision variables in response to reproducible N stimuli under the
N0S0 condition are shown in terms of r2. Model abbreviations are the same as in Fig. 1. Note that the MD and
MDS models were not applied to the 50-Hz bandwidth of Study 3. SNRs are the same as for Table II.

Model comparison

Study 2 Study 3

100 Hz 2900 Hz E1F1 E2F2 E2F1 E1F2

CB-MD 0.57a 0.56a

CB-MDS 0.91a 0.97a

CB-ES 0.20a 0.44a 0.30a 0.23a 0.06 0.01
CB-DA 0.40a 0.34a 0.00 0.02 0.05 0.05
CB-BR 0.41a 0.08 0.01 0.03 0.10 0.13
CB-PO 0.11 0.37a 0.03 0.03 0.00 0.00
MD-MDS 0.60a 0.50a

MD-ES 0.22a 0.35a 0.30a 0.23a 0.06 0.01
MD-DA 0.35a 0.35a 0.00 0.02 0.05 0.05
MD-BR 0.20a 0.20a 0.01 0.03 0.10 0.13
MD-PO 0.05 0.33a 0.03 0.03 0.00 0.00
MDS-ES 0.05 0.37a 0.30a 0.23a 0.06 0.01
MDS-DA 0.33a 0.27a 0.00 0.02 0.05 0.05
MDS-BR 0.41a 0.05 0.01 0.03 0.10 0.13
MDS-PO 0.01 0.31a 0.03 0.03 0.00 0.00
ES-DA 0.20a 0.22a 0.01 0.00 0.00 0.03
ES-BR 0.03 0.32a 0.04 0.03 0.01 0.02
ES-PO 0.78a 0.58a 0.58a 0.29a 0.56a 0.39a

DA-BR 0.35a 0.47a 0.81a 0.78a 0.69a 0.88a

DA-PO 0.12 0.35a 0.23a 0.01 0.05 0.02
BR-PO 0.02 0.34a 0.34a 0.02 0.11 0.06

a
p�0.05.
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alone. That is, the variance explained by the other models
�MDS, DA, and BR� “overlaps” with the variance already
explained by the CB model. Significant increases in R2 val-
ues by the addition of the MD model as a predictor were in
the range of 0.10–0.33 for T+N stimuli and 0.10–0.36 for N
stimuli, depending on the subject. Significant increases re-
sulting from the addition of the ES model were in the range
of 0.10–0.32 for T+N stimuli and of 0.10–0.52 for N
stimuli. Significant increases resulting from adding the PO
model were in the range of 0.08–0.46 for T+N stimuli and
0.16–0.21 for N stimuli.

These quantitative comparisons of the predictions of the
diotic models illustrate the strong similarities between the
CB, MD, MDS, DA, and BR models. The results suggest
that a superior model might be constructed by combining the
across-frequency structure of the MD model and the mecha-
nisms in the ES and PO models. More detailed discussion of
the diotic models is included below in Sec. IV.

TABLE IV. Correlations between model decision var
N0S� condition are shown in terms of r2. Here, mod
study; thus each model was run at an ES /N0 of 1 dB
of Study 2, �2.2 dB for the 2900-Hz bandwidth cond
3. Model abbreviations are the same as in Fig. 8 and

Model comparison

Study 1 Stud

115 Hz 100 Hz

EN-Wav 0.30a 0.43a

EN-Xav 0.30a 0.43a

EN-FCn 0.23a 0.12
EN-BR 0.06 0.20a

Wav-Xav 1.00a 1.00a

Wav-FCn 0.07 0.01
Wav-BR 0.18a 0.42a

Xav-FCn 0.08 0.01
Xav-BR 0.16a 0.42a

FCn-BR 0.05 0.00

ap�0.05.

TABLE V. Correlations between model decision var
N0S� condition are shown in terms of r2. Here, mod
study; thus each model was run at an ES /N0 of 18 dB
of Study 2, 4.8 dB for the 2900-Hz bandwidth condi
Model abbreviations are the same as in Fig. 8 and S

Model comparison

Study 1 Stud

115 Hz 100 Hz

EN-Wav 0.48a 0.35a

EN-Xav 0.25a 0.43a

EN-FCn 0.31a 0.01
EN-BR 0.19a 0.34a

Wav-Xav 0.87a 0.75a

Wav-FCn 0.59a 0.05
Wav-BR 0.37a 0.46a

Xav-FCn 0.39a 0.04
Xav-BR 0.25a 0.49a

FCn-BR 0.47a 0.07

a
p�0.05.
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D. Comparisons of dichotic models

Comparisons between EN, Wav, Xav, FCn, and BR
models are shown in Tables IV and V for P�Y �T+N� and for
different levels. Recall that it appeared that subjects with
substantially different thresholds were likely to be using dis-
tinct detection strategies. Therefore, Table IV presents com-
parisons when the SNR was equal to the threshold of the best
subjects in each study, and Table V presents comparisons
when the SNR was equal to the threshold of the poorest
subjects in each study.

In Table IV, correlations between Wav and Xav, and
Wav and BR are examined �Wst and Xst are not included
because these models are highly correlated to Wav and Xav,
respectively.� Stimulus energy �EN� was significantly, albeit
modestly, correlated to Wav, Xav, and the BR models for
some stimulus sets. The results of Table V are similar; how-
ever, as was expected for the responses of subjects with

s in response to reproducible T+N stimuli under the
ere tested at the lowest subject threshold from each
udy 1, �6.2 dB for the 100-Hz bandwidth condition
of Study 2, and �17 dB for all stimulus sets in Study
III B 1.

Study 3

0 Hz E1F1 E2F2 E2F1 E1F2

30a 0.05 0.15 0.08 0.01
32a 0.01 0.12 0.34a 0.01
08 0.00 0.04 0.04 0.00
10 0.04 0.01 0.01 0.01
78a 0.93a 1.00a 0.83a 1.00a

03 0.01 0.14 0.03 0.15
29a 0.14 0.52a 0.56a 0.39a

02 0.03 0.13 0.01 0.15
18a 0.11 0.52a 0.35a 0.39a

01 0.05 0.07 0.11 0.00

in response to reproducible T+N stimuli under the
ere tested at the highest subject threshold from each
Study 1, 3.8 dB for the 100-Hz bandwidth condition
f Study 2, and 0 dB for all stimulus sets in Study 3.
I B 1.

Study 3

0 Hz E1F1 E2F2 E2F1 E1F2

45a 0.03 0.22a 0.12 0.10
39a 0.00 0.56a 0.21a 0.06
12 0.00 0.03 0.02 0.00
10 0.03 0.04 0.01 0.01
84a 0.95a 0.00 0.67a 0.63a

06 0.09 0.02 0.34a 0.08
37a 0.17a 0.34a 0.17a 0.14
09 0.10 0.09 0.14 0.00
24a 0.17a 0.02 0.44a 0.46a

10 0.11 0.02 0.19a 0.04
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higher thresholds, the correlations of many of the model de-
cision variables to energy were stronger at the higher SNR.
Note also that Wav and Xav were slightly less correlated at
the higher SNRs. �Also, note that the perfect correlations
between Wav and Xav in some cases �Table IV� are due to
the fact that Xav with weight a=0 or 1 reduces to Wav with
weight a=0 or 1.�

Colburn et al. �1997� and Isabelle �1995� discounted
models based on UCC, NCC, and EC mechanisms because
of their dependence on stimulus energy. The comparisons in
Tables IV and V showed only moderate correlations between
energy and either the binaural BR or FC model, both of
which include correlation and/or cancellation mechanisms.
�All stimulus sets of Study 3 had nearly equal energies; thus,
correlations of the BR and FC models to energy would be
expected to be near zero.� Because energy was not correlated
to the subjects’ detection patterns, the failure of these models
can be partially explained by their moderate correlations to
stimulus energy.

E. Interactions between envelope and fine-structure
cues

Some of the models tested in this work included inter-
actions between cues derived from envelope and fine struc-
ture before computing decision variables. It was of interest to
determine if the nature of these interactions was appropriate
as compared to the interactions observed in the empirical
data collected in Study 3 �Davidson, 2007; Davidson et al.,
2009�. This was examined by comparing the extent to which
each of the models relied on envelope or fine structure and
the extent to which each of the subjects relied on envelope or
fine structure. The stimuli and analysis techniques used in the
present study were the same as those used in Study 3.

The analysis procedure used by Davidson �2007� and

TABLE VI. The contribution of cues based on enve
Results for human subjects from Study 3 are presente
entries RE

2 and RF
2 denote the proportion of variance

detection patterns measured using stimuli sharing the
respectively. If the addition of envelope as a predicto
proportion of variance explained �i.e., REF

2 was sig
addition of fine structure as a predictor to envelope
variance explained �i.e., REF

2 was significantly higher
are the proportion of variance explained by a multipl
predictors; all REF

2 values were statistically significant

N0S0 ES /N0

P

RE
2

Subjects S1 10 0.17
S2 10 0.26
S3 10 0.05
S4 11 0.69
S5 11 0.35
S6 11.5 0.66

Models DA 10 0.97
BR 10 0.88
ES 10 0.94
PO 10 0.82
Davidson et al. �2009� is briefly described here: Stimuli from
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four stimulus sets �E1F1, E2F2, E1F2, and E2F1� shared either
envelopes �E� or fine structures �F�; subscripts shared be-
tween stimulus sets indicate that the particular waveform
component was shared between sets. Model detection pat-
terns were computed, and subjects’ detection patterns were
measured for each of the four stimulus sets. A multiple linear
regression was performed that used model detection patterns
from the “chimeric” stimulus sets �E1F2 and E2F1� to predict
the baseline model detection patterns �E1F1 and E2F2�. To
simplify the analysis, the detection patterns that shared the
predictor, either envelope or fine structure, were combined
�i.e., concatenated�. If the model �or subject� relied exclu-
sively on envelope, the detection patterns for the baseline
stimulus sets and those for the stimulus sets sharing the same
envelopes should have been identical. If the model �or sub-
ject� relied exclusively on fine structure, the detection pat-
terns from the baseline stimulus sets and the stimulus sets
sharing the same fine structures should have been identical.
The multiple regression procedure quantified the similarity
of each detection pattern to the baseline detection patterns.
Three R2 values were produced for each model and subject.
RE

2 was the proportion of variance accounted for when detec-
tion patterns with common envelopes were used as predic-
tors; RF

2 was the proportion of variance accounted for when
detection patterns with common fine structures were used as
predictors. REF

2 was the proportion of variance accounted for
when both detection patterns with common envelopes and
detection patterns with common fine structures were used as
predictors. The RE

2 is underlined in Tables VI and VII if the
addition of envelope as a predictor along with fine structure
significantly increased the proportion of variance explained
�i.e., if REF

2 was significantly greater than RF
2�, and RF

2 is
underlined if REF

2 was significantly greater than RE
2 �i.e., if

addition of the fine structure as a predictor significantly in-

and fine structure to N0S0 model decision variables.
ng with results from each computational model. The
e baseline detection patterns explained by chimeric
envelopes or fine structures as the baseline stimuli,

ne structure as a predictor significantly increased the
ntly higher than RF

2�, then RE
2 is underlined. If the

predictor significantly increased the proportion of
RE

2�, then RF
2 is underlined. Note that the REF

2 values
ression including both envelope and fine structure as
0.05�. Model abbreviations are the same as in Fig. 1.

+N� P�Y �N�

F
2 REF

2 RE
2 RF

2 REF
2

8 0.41 0.17 0.59 0.69
9 0.37 0.18 0.48 0.54
8 0.32 0.00 0.71 0.72
1 0.73 0.45 0.30 0.68
7 0.38 0.20 0.39 0.49
5 0.66 0.35 0.36 0.58

6 0.98 0.91 0.30 0.94
2 0.93 0.71 0.20 0.90
3 0.95 0.88 0.02 0.92
1 0.85 0.40 0.43 0.71
lope
d alo
in th
same

r to fi
nifica

as a
than

e reg
�p�

�Y �T

R

0.1
0.2
0.2
0.1
0.0
0.2

0.1
0.1
0.0
0.2
creased the proportion of variance, as compared to that ex-
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plained by the envelope alone�. For a more detailed descrip-
tion of the methods used here and in Study 3, see Davidson
�2007� and Davidson et al. �2009�.

Results are presented for simulations using a SNR of 10
dB ES /N0 for the N0S0 condition �Table VI�. Model abbre-
viations are as in Fig. 3. All of the N0S0 models relied more
heavily on envelope than fine structure �RE

2 �RF
2� with the

exception of the PO model, which made approximately equal
use of envelope and fine-structure cues on noise-alone trials.
In general, the patterns of model interactions between enve-
lope and fine structure �i.e., R2 values� were in stark contrast
to the results of the human subjects presented in the same
table, which indicated that subjects relied roughly equally on
envelope and fine-structure cues. The only notable exception
was for the PO model, which predicted a more equal utiliza-
tion of envelope and fine-structure cues than the other mod-
els �but recall that the PO model captured at most about 40%
of the variance in subjects’ detection patterns �Fig. 2��.

Results are also presented for the N0S� condition �Table
VII�. Each model was evaluated twice: once with the SNRs
set to the highest threshold observed for the human subjects
in Study 3 and once at the lowest SNRs for the subjects.
Every model except sI was dominated by the fine structure of
the waveform, as would be expected for conventional ITD-

TABLE VII. Same as Table VI except data are prese
tested using stimuli with the lowest ��17 dB� and w
All REF

2 values were statistically significant �p�0.05�
very small but significant R2 values that were rounded
in cases when a single predictor explained nearly all
such that even a very small value of RE

2 ��0.005� re
the incremental F-test. Model abbreviations are the s

N0S� ES /N0 RE
2

Subjects S1 0 0.12
S2 �10 0.13
S3 �17 0.00
S4 �1 0.41
S5 �16.5 0.06
S6 �10 0.39

Models sT �17 0.04
sI �17 0.67

Wav �17 0.06
Xav �17 0.00
Lp �17 0.01

FCc �17 0.24
FCn �17 0.25
BR �17 0.02

sT 0 0.00
sI 0 0.99

Wav 0 0.00
Xav 0 0.22
Lp 0 0.05

FCc 0 0.30
FCn 0 0.17
BR 0 0.00
based models of binaural detection at low frequencies. The
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interaction pattern for most models differs from the results of
the subjects, which indicated a more equal reliance on enve-
lope and fine structure. The Lp, FCc, FCn, and BR models
produced R2 values that were most similar to the human
subjects for T+N stimuli. For some of the linear regression
analyses, R2 values are �much� higher than would be ex-
pected based on the subjects’ data �e.g., all but the PO model
for N0S0 conditions, and the Wav and Xav models at low
SNRs for N0S� conditions�. This result suggests that the de-
pendence of the model detection patterns on the envelope
and fine-structure cues was more straightforward, and thus
more predictable, than for the human subjects. The subject
data from Study 3 indicate that a linear combination of av-
erage cues derived from the envelope and fine structure
should not account for all of the predictable variance in the
E1F1 and E2F2 detection patterns and suggest instead models
may need some form of running temporal combination of
envelope and fine-structure cues. Thus, the reliance on enve-
lope and fine structure is likely a necessary, but insufficient,
condition for predicting subjects’ detection patterns. Internal
noise added at the decision stage would reduce the correla-
tions between model results and the envelope or fine-
structure cues, but addition of internal noise would not pro-

for the N0S� condition. Computational models were
e highest �0 dB� threshold observed for the subjects.
e that significant values of 0.00 in this table represent
ero; these small but significant values were observed
e variance in the data �e.g., RF

2 values of 0.99–1.0�,
in a significant increment in REF

2 , as determined by
as in Fig. 8 and Sec. III B 1.

T+N� P�Y �N�

F
2 REF

2 RE
2 RF

2 REF
2

43 0.44 0.22 0.41 0.57
56 0.57 0.14 0.55 0.59
38 0.39 0.14 0.14 0.35
30 0.68 0.40 0.26 0.63
45 0.51 0.25 0.15 0.47
27 0.50 0.32 0.15 0.52

95 0.95
19 0.68
99 0.99
99 0.99
30 0.32
23 0.52 0.02 0.27 0.28
25 0.46 0.62 0.01 0.66
55 0.56

00 1.00
16 0.99
00 1.00
90 0.91
34 0.32
26 0.38 0.27 0.85 0.98
25 0.28 0.90 0.85 0.97
85 0.75
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ith th
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duce the patterns of correlations seen in the data.

Davidson et al.: Models for diotic and dichotic detection 1919



IV. CONCLUSIONS AND FUTURE WORK

The results of the present study show that several exist-
ing diotic models that have successfully predicted subjects’
thresholds for tone-in-noise detection tasks cannot explain
diotic detection patterns for reproducible noise maskers. In
particular, none of the temporal models examined in this
work were able to predict significant proportions of variance
in all subjects’ data; this was true even when energy cues
were made unreliable, forcing subjects to rely on cues other
than overall energy. A model based on a linear combination
of energies at the output of several filters surrounding the
target frequency �MD; Ahumada and Lovell, 1971; Ahumada
et al., 1975; Gilkey and Robinson, 1986� best predicted the
N0S0 data for stimuli with level variations between noises
�Study 2�. A model based on envelope fluctuation �ES; Rich-
ards, 1992; Zhang, 2004� predicted N0S0 detection patterns
estimated using equal-energy stimuli �Study 3� more accu-
rately than either the Dau et al. �1996a� or Breebaart et al.
�2001a� models.

Implementations of several models of binaural detection
were also tested. The models that made the most significant
predictions used linear combinations of the average absolute
values or of the standard deviations of ITDs and ILDs �Wst,
Wav, Xst, and Xav; Isabelle, 1995; Isabelle and Colburn,
2004; Goupell and Hartmann, 2007�. The binaural version of
the model of Breebaart et al. �2001a� made fewer significant
predictions than Xav and Wav, but seemed to more appropri-
ately weight the use of stimulus envelope and fine structure
in the computation of the model decision variable. As for the
diotic condition, none of the models tested were comprehen-
sive enough to make significant predictions for every subject
in every stimulus condition.

Although the template-based models examined here
�Dau et al., 1996a, 1996b; Breebaart et al., 2001a, 2001b,
2001c� did not predict a large portion of the variability in the
subjects’ data, they are capable of predicting thresholds for a
multitude of psychophysical tasks and will be examined
more thoroughly in future work. Trial-by-trial responses
were not simulated here, and a running template was not
computed. Computation of a running template would be an
interesting modeling exercise, which would more fully ex-
amine the potential of these specific models and would also
provide an initial investigation of the general class of detec-
tion mechanisms that have the ability to change dynamically
over time. Some of the subjects �including some of the au-
thors� have reported being influenced by particular noise
waveforms, or even feeling temporarily confused for brief
periods �i.e., tens of trials� during an experiment. Individual
responses and waveform identification numbers were re-
corded on each trial for the experiments presented here, pro-
viding data suitable for an interesting analysis of template-
based models. Suppose that a template was constructed as
the mean of several preceding trials of randomly generated
noise. Suppose also that this memory was a buffer of a lim-
ited number of waveforms in a first-in, first-out configura-
tion. Model predictions for the data in Studies 1–3 could be
re-examined as a function of the buffer length �or the number

of internal representations of the stimuli used to compute an
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average template�. This analysis is possible because re-
sponses to each waveform can be used to sort waveforms
into perceived tone-plus-noise and noise-alone groups, re-
gardless of the stimuli used for each trial.

The models and analyses presented in this paper assume
that normally-distributed internal noise is added at the deci-
sion stage. Implementing the models without complicated or
model-specific internal noise had advantages for this particu-
lar study �as described in Sec. II�. This decision was not
without consequences. Many of the dichotic models cannot
make predictions for N trials without implementing a more
complicated internal noise model or the introduction of some
form of processing asymmetry. Thus, implementing these
models without internal noise is incomplete but informative.
The internal noise for the diotic models seems likely to make
only marginal changes in their predictions for individual
samples, at least as revealed by the correlation analyses used
here.

A possible drawback of this modeling approach �and for
that matter, a drawback of any of the models used in this
study� is that the potential use of short-term cues is not cap-
tured by the template mechanisms employed in the above
models. Subjects have reported that relatively brief segments
of stimuli were often the basis for decisions during dichotic
detection tasks. This fact compounds the modeling problem
because the temporal locations of these stimulus segments
are unknown and may differ among waveforms. Cues that
occur in brief segments of the stimuli are not well suited for
detection with the temporal weighting scheme of the Bree-
baart model, which averages across waveforms. Further, a
strategy based on short-term cues would likely require a re-
thinking �i.e., shortening� of the time constant used for
smoothing the output of the binaural processor in the Bree-
baart model. Recent evidence suggests that the relatively
long estimates of binaural temporal windows, 60–200 ms
�e.g., Grantham and Wightman, 1979; Kollmeier and Gilkey,
1990; Culling and Summerfield, 1998�, may, in fact, be too
long, and estimates on the order of 50 ms or shorter might be
more suitable for modeling the current data �Bernstein et al.,
2001; Kolarik and Culling, 2005�. Researchers’ testing tem-
poral aspects of binaural processing have reported time con-
stants as short as 10 ms �e.g., Akeroyd and Bernstein, 2001�.
Note that the variances of the interaural differences depend
on the distributions of short-time estimates of interaural dif-
ferences, even though it is only the spread of values that is
used for a decision.

Another possibility is that subjects may employ more
than one type of �potentially short-term� template. This strat-
egy could be investigated by grouping waveforms by their
respective hit and false-alarm rates, and then investigating
the templates that result from training the model with wave-
forms corresponding to high, moderate, and low hit rates.

Another class of models worth further investigation in-
cludes those based on the spectrum of the envelope of am-
plitude fluctuations, such as modulation filter bank models
�e.g., Berg, 2004; Dau et al., 1997a, 1997b�. These models

have been successful at predicting average thresholds for

Davidson et al.: Models for diotic and dichotic detection



low-frequency diotic tone-in-noise detection tasks, but were
outside the scope of this paper. Future studies will test these
models with the reproducible noise data.

Several of the models examined in this study incorpo-
rated information from multiple frequency channels �e.g., the
MD model and MDS, the MD model with suboptimal
weights� using linear weighting schemes that were either
sub-optimal or fit to the subjects’ data. Preliminary simula-
tions using optimal weighting strategies, such as linear dis-
criminant analyses, produced improved model-data correla-
tions with respect to sub-optimal weighting schemes. These
results suggest that subjects may be exploiting correlations
between frequency channels to perform the detection task.
Future modeling efforts will investigate the use of optimal
linear across-frequency weighting for the multi-channel
models treated in this study.

Another suggestion for future modeling efforts is in-
spired by Hancock and Delgutte �2004�. Results from the
current study suggest that a single binaural delay/attenuation
model cannot explain detection of tones masked by repro-
ducible noise stimuli. The Hancock and Delgutte �2004�
model was originally designed to predict ITD discrimination
data and is based on recordings from the inferior colliculus
of cat. The model employs a neuronal pooling strategy that
combines responses across a population of model neurons
tuned in best frequency and ITD according to distributions
measured in cat. It is possible that responses of a population
of channels tuned to a number of different ITD values are
necessary to account for the current data.
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APPENDIX A: IMPLEMENTATION OF THE MD
MODELS

The MD and MDS models were implemented using a
linear combination of the rms output of three or seven
fourth-order gammatone filters, depending on the masker
bandwidth �Fig. 1�. Davidson et al. �2006� showed that filters
exceeding the bandwidth of the stimulus noise do not signifi-
cantly increase the predictive power of the model. Therefore,
the center frequencies were selected to span 275–725 Hz �in
75-Hz increments� for the 2900-Hz noise bandwidth condi-
tion of Study 2 and 425–575 Hz for the 100-Hz noise band-
width condition of Study 2. The bandwidth of all of the
filters was set to 75 Hz to match Davidson et al. �2006�. The
MD model was not used to predict the data from Study 3, as
the masker bandwidth in that study was only 50 Hz.

The weights �wi� for the linear combination were estab-

lished with two separate methods. For the first method �the
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standard MD model�, the weights were fitted to the indi-
vidual subjects’ detection patterns using the reproducible
stimuli from each study �Fig. 3�. The MATLAB function fmin-
search was used to minimize the quantity of 1 minus the
correlation coefficient between the linear combination of the
rms filter outputs and the z-scores of P�Y �T+N� or P�Y �N�
for each subject in each condition in Studies 1 and 2.

A second variant of the MD model was also tested. This
model �the MDS model� used a decision-theoretic subopti-
mal weighting scheme to compute model weights �rather
than fitting the weights to each subject’s data�. Individual
weights were computed for the MDS model using 1000 rep-
etitions of randomly created �i.e., not reproducible� noise.
Tones were added and weights were computed as

w�i� =
F�i,m��T+N� − F�i,m��N�

var�F�i,m��T+N�� + var�F�i,m��N��

2

, �A1�

where F is the root-mean-squared filter output for frequency
channel i and random-noise repetition m for T+N or N
stimuli, and the means and variances were computed across
repetition m within frequency channel i. �Note that this
method would be optimal if the covariance of each channel
was accounted for in Eq. �A1�.� Both models’ decision vari-
ables were given by

M�j� = �
i

F�i, j�w�i� , �A2�

where j is the reproducible noise waveform index, using the
weights computed with either method above.

APPENDIX B: IMPLEMENTATION OF THE ES MODEL

The implementation of the ES model �Fig. 1� was the
same as that in Davidson et al. �2006�. The ES model DV
was computed as

E�j� =

�
t

�x�t − �t, j� − x�t, j��

�
t

x�t, j�
, �B1�

where x�t , j� is the Hilbert envelope of the output of a fourth-
order gammatone filter centered at 500 Hz, with a 75-Hz
ERB for stimulus waveform j, and �t is the time resolution
of the sampled waveform. To ensure that all fine structure
was removed from the stimulus waveform, x�t , j� was filtered
with a tenth-order maximally flat infinite impulse response
�IIR� filter with a cut-off frequency of 250 Hz before being
processed with Eq. �B1�. The statistic was normalized as
suggested by Zhang �2004� to remove the effects of energy
and duration. Upon addition of the tone to the noise wave-
form, the stimulus envelope flattens. As such, the DV de-
creases with increasing tone level.

APPENDIX C: IMPLEMENTATION OF THE DAU
MODEL

The Dau model �DA, Fig. 1� consists of a third-order

gammatone filter centered at the tone frequency �500 Hz�
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with a bandwidth of 1 ERB, approximately 75 Hz at a center
frequency of 500 Hz �Glasberg and Moore, 1990�. The out-
put is half-wave rectified and passed to a series of adaptation
loops �Dau et al., 1996a�, designed to simulate adaptation in
auditory-nerve responses by processing fast stimulus fluctua-
tions almost linearly and compressing slowly fluctuating
stimuli. The output of the adaptation loops is low-pass fil-
tered with a time constant of 20 ms �8 Hz� to remove fine
structure and leave envelope information. The output at this
stage is referred to as the internal representation of the
model.

The internal representation is passed to an optimal de-
tector. The optimal detector uses a template derived from the
normalized difference between the mean of 500 T+N inter-
nal representations and the mean of 500 N internal represen-
tations �Fig. 4�. A large number of noises were used to simu-
late extensive subject training. The templates were computed
using randomly generated noise with a signal added at 10 dB
above each subject’s threshold. On each trial, the optimal
detector first subtracts the noise-alone template from the in-
ternal representation computed from the reproducible stimu-
lus on that trial. The mean scalar product of the normalized
difference template and the difference between the noise-
alone template and the internal representation of the repro-
ducible stimulus is then computed as a function of time. The
model was originally designed to pick the interval �from a
two-interval task� with the larger scalar product as the one
containing the tone. For the purposes of this study, which
focuses on single-interval tasks, the scalar product itself was
used as the decision variable. This process is summarized
with the following equation:

D�j� =
1

Td
�

0

Td

�� j�j,t� − 	N�t��
�	T + N�t� − 	N�t��

rms�	T + N�t� − 	N�t��
dt ,

�C1�

where D is the Dau decision variable, � j is the internal rep-
resentation of the current stimulus waveform j, 	T + N is the
mean of 500 internal representations of T+N stimulus wave-
forms �the T+N template�, 	N is the mean of 500 internal
representations of N stimuli �the N template�, Td is the dura-
tion of the stimulus waveform, and rms is the root-mean-
squared function.

The code used to implement this model is available at
www.bme.rochester.edu/carney �last viewed August 19,
2009�.

APPENDIX D: IMPLEMENTATION OF THE MONAURAL
BREEBAART MODEL

The diotic version of the Breebaart model �Breebaart et
al., 2001a� is shown in Fig. 1 �BR�. This model is similar to
the Dau model; however, the Breebaart model was imple-
mented as a bank of processors with increasing center fre-
quencies. Two filters per ERB were implemented over the
same bandwidths as the MD and MDS models. The low-pass
filter from the Dau model was replaced with a double-sided
exponential window with time constants of 10 ms each. The
structure of the decision device is described in detail in Bree-

baart et al. �2001a� and is composed of a suboptimally
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weighted combination of internal representations at different
frequency channels, which are then summed as a function of
time and frequency. Like the Dau model, the Breebart model
also uses both T+N and N templates �Fig. 5�. The templates
were established as the means of 50 internal representations9

of randomly generated T+N and N waveforms at each sub-
ject’s threshold. The detector first computes the DV B ac-
cording to the following equation:

B�j� = �
F
�




��i,t�
�2�i,t�

U�j,i,t�didt . �D1�

The quantity U�j , i , t� is the difference between the internal
representation of the reproducible waveform j and the N
template for each frequency �F� channel i. U�j , i , t� is
weighted across frequency and time by the difference be-
tween the T+N and N templates ��� normalized by the vari-
ance of the N templates ��2�.

The code used to implement this model is available at
www.bme.rochester.edu/carney �last viewed August 19,
2008�.

APPENDIX E: IMPLEMENTATION OF THE PO MODEL

The PO model was computed as described in Davidson
et al. �2006� and was based on the model described by Car-
ney et al. �2002� �PO, Fig. 1�. Two model auditory-nerve
fibers of Heinz et al. �2001� with spontaneous rates of 50
spikes/s converged upon a coincidence detector of the type
described in Colburn �1977�. The fibers’ center frequencies
were selected such that their phase responses differed by
180° at the tone frequency �which occurred for the two cen-
ter frequencies of 459 and 542 Hz�. The count at the output
of the coincidence detector was used for the model DV as
described by

G�j� = nfib
2 TCW�

0

Td

�459�j,t��542�j,t�dt , �E1�

where nfib is the number of auditory-nerve fiber inputs at
each center frequency, TCW is the time window for coinci-
dence detection, t is time, Td is the duration of the stimulus,
and � is the output of the auditory-nerve model of Heinz et
al. �2001� at each of the two center frequencies.

The mechanism used by the PO model is as follows: as
the level of the tone is increased, and the responses of the
fibers become more phase locked to the tone. The count at
the output of the coincidence detector decreases as tone level
increases because the two model fibers progress to firing per-
fectly out of phase. The model detects the tone on the basis
of a reduction in the coincidence detector’s average rate with
respect to its response to the noise alone. The simulations
presented here were performed at SNRs matched to the sub-
jects’ thresholds; the model DV was the coincidence detec-
tor’s average rate. Ten model fibers were used with a coin-
cidence window of 20 �s. As in Davidson et al. �2006�, the
onsets and offsets of the auditory-nerve fiber responses were
truncated because they exceeded realistic levels and did not
produce decision variables correlated to the psychophysical

data. Due to the use of relatively short-duration stimuli in the
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present study, only the first and last 25 ms of the responses
were truncated. The model DV �G� was computed for each
reproducible stimulus j.

APPENDIX F: IMPLEMENTATION OF THE
INDEPENDENT-CENTERS AND AUDITORY-IMAGE
MODELS

Isabelle’s �1995� decision variables based on ITDs and
ILDs for waveform j are given by

T�j,t� =

L�j,t� − 
R�j,t�

�c
�F1�

and

I�j,t� = 20 log
AL�j,t�
AR�j,t�

, �F2�

where 
�j , t� is the instantaneous phase computed from the
complex analytic signal for the right �R� or left �L� stimulus
waveforms, �c is the center frequency of the noise band,
A�j , t� is the envelope of the complex analytic signal for
either the right or left stimulus waveform, and j is the index
of each reproducible stimulus waveform. Note that T is only
approximately equal to the ITD because the frequency of the
masker stimulus varies as a function of time. The complex
analytic signals were computed using the Hilbert transform.
A selection of several decision variables related to those in
Isabelle �1995� �see Isabelle and Colburn, 2004� and Goupell
and Hartmann �2007� is shown below. These included the
standard deviations10 of ITD and ILD computed for each
reproducible stimulus as defined by

sT�j� = � 1

Td
�

0

Td

�T�j,t� − T�j��2dt	1/2

�F3�

and

sI�j� = � 1

Td
�

0

Td

�I�j,t� − I�j��2dt	1/2

, �F4�

where Td is the duration of the stimulus, and T and I are as
defined above in Eqs. �F1� and �F2�. A weighted combination
of the standard deviations of ITD and ILD �Eq. �F5�� and a
combination of the average absolute values of ITD and ILD
�Eq. �F6�� were also explored, as defined by

WST�j,a� = asT�j� + �1 − a�sI�j� , �F5�

and

WAV�j,a� =
1

Td
�

0

Td

a�T�j,t��dt +
1

Td
�

0

Td

�1 − a��I�j,t��dt ,

�F6�

respectively, where a is a weight determined by minimizing
the sum of squared errors between W and z
P�Y �T+N�� for
each condition and subject in each study. Note that the deci-
sion variables described by Eqs. �F5� and �F6� would fit into
the class of independent-center models of Goupell and Hart-
mann �2007� because the standard deviations �or average ab-
solute values� of ITD and ILD were computed before the

weighted combination of ITD and ILD was computed. The
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four metrics described in Eqs. �F3�–�F6� were compared to
the standard deviation of a temporal combination of ITD and
ILD �Eq. �F7�� as well as the average value of the absolute
value of the temporal combination of ITD and ILD �Eq.
�F8�� defined by

XST�j,b� = � 1

Td
�

0

Td

�
bT�j,t� + �1 − b�I�j,t��

− 
bT�j,t� + �1 − b�I�j,t���2dt	1/2

�F7�

and

XAV�j,b� =
1

Td
�

0

Td

�bT�j,t� + �1 − b�I�j,t��dt , �F8�

respectively, where b is a weight computed in the same man-
ner as in Eqs. �F5� and �F6�, and T and I are as defined in
Eqs. �F1� and �F2�. The decision variables in Eqs. �F7� and
�F8� would fit into the class of auditory-image models in
Goupell and Hartmann �2007� because ITD and ILD were
combined before computing the standard deviation or aver-
aging over time.

Isabelle’s �1995� implementation of Hafter’s �1971� lat-
eral position model was also considered. This model is based
on a combination of ITD and ILD using a trading ratio of
20 �s /dB defined by

Lp�j,a� =
1

Td
�

0

Td

�T�j,t� + aI�j,t��dt , �F9�

where Td is the duration of the stimulus, a is the trading
ratio, and T and I are as defined in Eqs. �F1� and �F2�. The
lateral position model is similar to Eqs. �F7� and �F8�, except
that a constant trading ratio was used for all computations.
These models �Eqs. �F3�–�F9�� were of particular interest
because they allow for the distinct interaction of statistics
based on envelope and fine structure as a function of time.
Such interactions are implied by the results of Study 3
�Davidson, 2007; Davidson et al., 2009�.

APPENDIX G: IMPLEMENTATION OF THE FC MODEL

The DV of the FC model �Fig. 8� �Marquardt and
McAlpine, 2001� was computed based on a linear combina-
tion of differences and cross correlations between channels
with different delays:

FC�j� = 
w1��R�j,t� − �L�j,t − 
���

+ �w2�R�j,t��L�j,t − 
�� + �w3�R�j,t − 
��L�j,t��

+ 
w4��L�j,t� − �R�j,t − 
��� , �G1�

where FC�j� is the model DV for the reproducible stimulus j,
��j , t−
� is the output of the auditory-nerve model of Heinz
et al. �2001� delayed by 
 s �250 �s, corresponding to a
phase delay of 45° at the 500-Hz signal frequency�, and w is
the suboptimal weight computed for each delay channel, as
shown in Fig. 8. Weights were computed using a strategy
similar to that used for the MDS model �see Appendix A�.

Weights derived for each of the four channels rarely took on
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a value of zero, as channels were tuned in increments of 90°
of interaural phase. Two different types of weights were
tested: FCc used an UCC �product� of the inputs for the
channels tuned to �45° �weighted by w2 and w3 in Fig. 8�,
while the FCn used a NCC �Colburn et al., 1997�. For a more
complete description of the FC model weights, see Davidson
�2007� and Davidson et al. �2009�.

APPENDIX H: IMPLEMENTATION OF THE BINAURAL
BREEBAART MODEL

The binaural processor in the Breebaart model �Fig. 8�
�Breebaart et al., 2001a� is described by

E�j,i,t� = ���L�j,i,t� − �R�j,i,t���2 �H1�

for N0S� stimuli, where ��j , i , t� describes the output of the
adaptation loops for reproducible stimulus j, frequency chan-
nel i, at time t, for the left or right ear. �Only the 0.0 delay
and 0.0 attenuation channel were included in these predic-
tions, as explained in the main text.� The processor output
E�j , i , t� is then filtered with a double-exponential window
with a time constant of 30 ms per exponential. The filtered
signal, E��j , i , t�, is then scaled, compressed with a loga-
rithm, and then scaled again as follows:

E��j,i,t� = a log�bE��j,i,t� + 1� , �H2�

with a=0.1 and b=0.000 02. The two scale factors were cali-
brated by setting the model threshold to predict N0S� and
N�S� detection tasks, as described in Breebaart et al.
�2001a�. The detector stage for the binaural model is similar
to that for the monaural models �Eq. �D1��. However, for the
binaural case, the temporally weighted internal representa-
tion of each waveform is integrated over both time and fre-
quency to compute the decision variable. The templates used
to compute the weights are computed using the compressed
and filtered outputs of the binaural processor. This method
differs from computing a difference between T+N and N
templates and comparing to the double-exponential filtered
output of the adaptation loops as in the monaural model;
recall that the N template is identically zero for the binaural
model.

1The z-score was set to 0.005 for P�Y �T+N� or P�Y �N� values that were
equal to 0 and to 0.995 for P�Y �T+N� or P�Y �N� values that were equal
to 1 in order to avoid infinite z-score values.

2Note that, although the parameters of most of the models examined here
were set to fixed values suggested by the previous literature and were not
fitted to each subject’s data �exceptions are specifically identified in the
text�, all of the fits had two free parameters, the slope and intercept of the
line relating the values of the model’s DV to the z-scores of the subject.
Note that the square of Pearson’s product-moment correlation is a measure
of the variance predicted by this linear statistical model. As such, the
reports of proportion of predicted variance assume a linear model with
slope and intercept fit to the data.

3When model d�s were large �because the SNR was set to the threshold of
a poor subject or simply because the models did not include internal
noise�, r2 values for predictions of the detection patterns that included both
hits and false alarms, referred to as P�Y �W� �Davidson et al., 2006�, were
artificially high because of the separation between the distributions of
P�Y �T+N� and P�Y �N�. Thus, modeling analyses presented here were
confined to predictions of P�Y �T+N� and P�Y �N�. The net effect of ana-
lyzing hit and false-alarm rates separately was to lower the proportions of
variance explained with respect to the variance that might be explained in

P�Y �W�.
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4The values reported in this paragraph are based on the correlation between
the first-half and last-half of the data in terms of P�Y �N� and P�Y �T+N�,
not z-scores. However, simulations indicate that similar values would be
obtained if z-scores had been used.

5Inspection of Fig. 2 shows some significant predictions for the energy
model �CB� under these equal-energy conditions. These predictions ap-
pear significant because no internal noise was used in the simulations. One
might suspect that the peripheral filter included in this model recovered
energy differences across stimuli. The largest difference between levels at
the output of the gammatone filter for the stimuli in Study 3 was about 1
dB. For the CB model to explain these results, given the variability of the
hit and false-alarm rates in the detection patterns and also the variability of
the energy-based decision statistic, the subjects would have had to reliably
measure the output of a CB filter with a resolution of about 0.04 dB �to
correctly order 25 T+N or N stimulus waveforms in terms of level� in the
presence of internal noise with an effective variance of approximately 1
dB across noises �estimated assuming the internal-to-external noise ratio is
approximately 1 for the data from Study 2 in the conditions where the data
are correlated to the CB model; see Evilsizer et al., 2002�.

6It was also of interest to determine whether the MD model predictions
were significantly better than the MDS model predictions. For all subjects
but S3 �see Fig. 2�B�, P�Y �N��, the MD model made better predictions
than the MDS model. Tests of significant differences between non-
independent correlations were computed for each subject with each stimu-
lus bandwidth to test the hypothesis that the MD model was significantly
better at predicting detection patterns than the MDS model. Results indi-
cated that the MD model predicted significantly �p�0.05� more variance
in P�Y �T+N� for S2, S3, and S4 in the 100-Hz bandwidth condition and
for S1 and S4 in the 2900-Hz bandwidth condition, and more variance in
P�Y �N� for S1 and S2 in the 100-Hz bandwidth condition and for S2 in
the 2900-Hz bandwidth condition. Thus, the MD weighting strategy did,
for some subjects, make significantly better predictions than the MDS
weighting strategy.

7Note that the ES model predictions shown here explain less variance than
those in Davidson et al. �2006� because predictions were made separately
for P�Y �T+N� and P�Y �N� in the present study, whereas Davidson et al.
�2006� made predictions for the combined detection pattern, P�Y �W�.

8These decision variables were also computed using fourth-order gamma-
tone filters centered at 500 Hz. However, in all but the 2900-Hz case,
predictions were poorer when peripheral filtering was used, and therefore,
those results were not included in this document. These decision variables
were also tested using the auditory-nerve models of Heinz et al. �2001�
and Zilany et al. �2006�. Poor results �i.e., worse than those achieved with
no peripheral processing� were also encountered using the auditory-nerve
models as a peripheral processing stage, but this was likely due to the fact
that these decision variables rely on the complex-analytic signal, which is
not well defined for the output of the auditory-nerve models �the outputs
of which have nonzero dc components�. Therefore, the predictions that
used the peripheral model of Heinz et al. �2001� are not shown.

9This number was reduced from 500 for practical considerations. The sen-
sitivity of model decision variables to the number of internal representa-
tions was not great; results were stable for 20 or more repetitions.

10Standard deviations were used in this study as they resulted in slightly, but
not significantly, better predictions than did variances. Isabelle �1995� also
mentioned that results based on standard deviation and variance were not
significantly different.
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