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Abstract
Fisher [1925] was the first to suggest a method of combining the p-values obtained from several
statistics and many other methods have been proposed since then. However, there is no agreement
about what is the best method. Motivated by a situation that now often arises in genetic
epidemiology, we consider the problem when it is possible to define a simple alternative
hypothesis of interest for which the expected effect size of each test statistic is known and we
determine the most powerful test for this simple alternative hypothesis. Based on the proposed
method, we show that information about the effect sizes can be used to obtain the best weights for
Liptak’s method of combining p-values. We present extensive simulation results comparing
methods of combining p-values and illustrate for a real example in genetic epidemiology how
information about effect sizes can be deduced.
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1. INTRODUCTION
Since the first approach proposed by Fisher1, several other approaches2–5 have been
suggested for combining p-values. Combining p-values is usually required in one of two
situations: (1) when either the values of the actual statistics that need to be combined or the
forms of their distributions are unknown, or (2) this information is available, but the
distributions are such that there is no known or reasonably convenient method available for
constructing a single overall test6. In addition, in practical situations, combining p-values
gives the statistician flexibility to weight the individual statistics according to how
informative they are and allows the designs of complex experiments to be determined
independently of each other.

Combining p-values has usually been used for multi-stage analyses, in which inferences are
pooled using the same statistic from different samples. However, another situation has
recently arisen in genetic epidemiology, which we here call multi-phase analysis. Multi-
phase analysis is the process of drawing similar inferences using different statistics
calculated from the same sample7–9. The null hypothesis, stated in genetic terms, is simply
that a particular genomic region is not associated with the presence of disease. If this
hypothesis is rejected, there is reason to seek a causal mechanism experimentally, for
example using cell lines or an animal model. There are two different types of multi-phase
analysis: the independent (or predictor) variables can be biologically either the same or
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different, and correspondingly the statistical tests will be quite different or of the same form.
For example, in genetic epidemiology, association between a marker locus and a disease can
be confirmed by differences between cases and controls either in marker allele frequencies
or in parameters for Hardy-Weinberg disequilibrium7, 9; in this case the same genetic
marker can be the biological predictor, but the two statistics that test for association are
different in form, each testing a different aspect of the distribution of marker genotypes (i.e.
we have different statistics for the same biological predictor marker). Alternatively, several
different genetic markers near a disease locus may be associated with the disease of interest
and we perform tests of allele frequency difference between cases and controls for the
alleles at each of the marker loci7, 10–14; in this case each marker locus is a different
biological predictor (i.e. we use the same type of statistic to test for association with each of
the marker loci). The importance of both kinds of multi-phase analysis is related to power,
because power can be improved by combining the p-values of the different tests. The
methods for multi-phase analysis in genetic epidemiology, for example, have so far not
considered the expected genetic effects, 7–9, 13, 14 even though the optimal method of
combining p-values depends on the magnitude of the genetic effects to be expected, and
theoretical investigations on detecting genetic association has shed light on the genetic effect
size expected under alternative hypotheses 15, 16. Thus multi-phase analysis should be
performed using this information which, because it can be determined a priori, allows us to
choose the most powerful method for combining the p-values that these tests produce.

fter Fisher introduced his χ2-based method, Pearson suggested an approach that has a
similar, but different, rejection function. Let Uj be the p-value resulting from the j-th of P
independent statistics. Whereas Fisher’s method rejects the null hypothesis if and only if
U1·U2· ⋯ UP ≤ c, Pearson’s method rejects it if and only if (1 – U1)·(1 – U2)⋯(1 – UP) ≥ c,
where in each case c is a predetermined constant corresponding to the desired overall
significance level. Wilkinson5 suggested a method in which the null hypothesis is rejected if
and only if U j ≤ c for r or more of the Uj, where r is a predetermined integer, 1 ≤ r ≤ P. The
approaches of Fisher and Pearson were also generalized by using the inverse of a cumulative
normal distribution, and extended by Liptak to allow each test to have different weights wj,

where , using the combined statistic . This, if Φ is the
cumulative standard normal distribution, follows the standard normal distribution under the
null hypothesis3, 17. Either the inverse of the standard error or the square root of the sample
size has been suggested for the weight wj, but we shall see that neither of these may be
appropriate. Goods18 suggested another function for weighting p-values,

 (1 – Uj) is the (1 – Uj)-th quantile of the chi-square

distribution with kj degrees of freedom (DF). Lancaster19 suggested 
for when the k-th test has kj DF. Koziol20 showed the asymptotic equivalence of Lancaster’s

and Liptak’s tests when . Furthermore, there have been extensions to allow for the
statistics to be correlated 13, 21–23. However, so far little work has been done to find the
most powerful (MP) way of combining p-values and this is now becoming of increasing
interest.

For a method of combining p-values to be optimal, the method needs to be uniformly MP
(UMP). However, it has been shown that a UMP test does not exist because the MP test is
different according to the situation6. In view of this, admissibility – which is satisfied by
many of the methods and is always preserved in the UMP method – can be considered as a
minimum requirement for the method to be valid. For a method of combining p-values to be
admissible, if the null hypothesis is rejected for any given set of p-values uj, then it must
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also be rejected for all sets of νj such that νj ≤ uj6. Also, even though Fisher’s method was
shown to be approximately most efficient in terms of Bahadur relative efficiency24, Naik25
and Zaykin et al.13, 14 found that Wilkinson’s5 method can be better than Fisher’s. Here we
shall show that an admissible MP test can be found for a particular situation that occurs in
practice, even though there is no UMP test.

In many practical situations, the parameter spaces for both the null (H0) and alternative (H1)
hypotheses can be considered simple, because the effect size is naturally assumed to be zero
under the null hypothesis and there is an expected effect, or at least a minimum magnitude
of effect that we would wish to detect, under the alternative hypothesis. In this situation,
when the alternative hypothesis is simple, it can be shown that there is a MP test. Here we
derive the MP test for a simple alternative hypothesis when we can specify this expected
effect size for each alternative, and also an approximation to this test if only their ratios are
available. We compare the method we derive for this situation with the previously suggested
methods and show that it has optimal power as long as the prerequisites are satisfied. In
section 2 we show theoretically that the most powerful method for combining p-values can
be approximately achieved with information about the effect sizes; and that the parameters
that are needed for existing methods of combining p-values, such as the weights in Liptak’s
method, should be chosen using the expected effect sizes. In section 3 we give detailed
simulation results comparing the various methods in different situations, and illustrate how
the information about effect sizes can be deduced for a particular type of genetic association
analysis. Finally, in Section 4, we discuss extensions, including the case of correlated tests,
and suggest a general strategy for combining p-values.

2. MOST POWERFUL REJECTION REGION
Suppose we want to combine the p-values from P tests. Let

 be the
null and alternative hypotheses for each test, respectively. The null and alternative
hypotheses for combining the p-values are

If we restrict the parameter space for the alternative hypothesis to the simple case, then the
alternative is

where it should be noted that some of the  can be in  because the alternative hypothesis

is that at least one of the  is rejected. As usual, the rejection region for any test, ϕ, for
combining p-values should be admissible, i.e. if H0 is rejected for any given set of Uj = uj,
then it will also be rejected for all sets of νj such that νj ≤ uj for each j6 However, ϕ is
different from the usual hypothesis testing paradigm for a single parameter because, if we let
the p-values from each test be U1, U2, … and UP and they are independent, the density
function of U1, U2, … and UP under H0 must be 1. Then the Neyman-Pearson lemma results
in the following, if we let ϕ = 1 when H0 is rejected and ϕ = 0 otherwise, and let fA(U1, … ,
UP), Tj and Aj(Uj) be respectively the density function of U1, U2, … and UP under H1 , the
statistics for Uj, and a region that results in the p-value Uj for Tj:

Given α, where 0 ≤ α ≤ 1, there exists k such that
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where independence of the statistics implies that  and fA,j(Uj)

is . It should be noted that fA,j(Uj) is 1 if . Admissibility
requires that fA,j(Uj) be a monotonic decreasing function of Uj for all j, by the following
lemma:

If we let  be the rejection region of ϕ at the significance level α,  is admissible if all the
fA,j(Uj) are positive monotonic decreasing functions of Uj. The proof of this lemma is trivial.
As a result, by the Neyman-Pearson lemma, as long as fA,j(Uj) is a monotonic decreasing
function of Uj we can find an optimal test.

In general, we can define the functions P(Tj ∈ Aj(Uj); θj) and fA,j(Uj) as functions of the
quantiles of the distribution of p-values. For example, if Tj is a statistic for a two-tail test that
estimates a difference in means, sej is its standard error, and the sample size is large enough,
then, for some positive real constant c and denoting the cumulative standard normal
distribution Φ,

where Sj is the standardized expected difference in means (i.e. the expected difference in
means under H1, divided by sej - or sêj if sej is unknown), and ZU is the U- th quantile of the
standard normal distribution. For a one-tail test, fA,j(Uj)=c′exp(tjZ1-UjSj), where tj is 1 for
testing positive effects and −1 for testing negative effects. Thus, the test ϕ for two-tail tests
becomes, by the Neyman-Pearson lemma,

If the Tj include both one-tail and two-tail tests, ϕ is a product of both types of fA,j(Uj).
These results can be applied in a practical situation using the following Monte-Carlo
algorithm, provided we have information about the expected effect sizes.

algorithm 1:

1. Generate z 1, … , and z p from a standardized normal distribution.

2. Confirm whether gA(z1, … , zp) is larger than gA(Z1-U1/2, … , Z1-Up/2)(gA(Z1-U1,
… , Z1-Up) if the Tj are one-side tests) and, if it is larger, add 1 to C.

After N iterations, the p-value C/N, where gA(z1, … , zP) = Πj gA,j(zj), gA,j(zj) = exp(zj·Sj) +
exp(−zj·Sj) for a two-tail test and gA,j(zj) = exp(zj·Sj) (gA,j(zj) = exp(−zj·Sj)) for a one-tail test
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of positive (negative) effect. This approach can be shown to be the same as Liptak’s method
when p-values from one-tail tests are combined if Sj is used for wj, because

where , tj is 1 for testing a positive effect and −1 for testing a negative
effect, and z′ ~ N(0,1). In addition, if only ratios of the expected differences are available,
we have the following approximation:

This can also be implemented using a Monte-Carlo algorithm, as follows.

algorithm 2:

1. Generate z 1, … , and z p from a standardized normal distribution.

2.

Confirm whether  and, if it is larger, add 1 to C.

After N iterations, the p-value C/N, Thus, the rejection region that results in the predefined
significance level is similar to that of Liptak’s method if Liptak’s method uses as weight the
standardized effect size instead of the square root of the sample size or the inverse of the
standard error.

Also, with a slight modification, the method can be applied to statistics with other
distributions, such as chi-square or F distributions. For example, if Tj follows a chi-square
distribution with kj DF, then

where Sj is the non-centrality parameter for Tj, and Ia(·) and Γ(·) are respectively a modified
Bessel function of the first kind and a gamma function.

However, the Monte-Carlo algorithm usually requires intensive computation, which can be
alleviated as follows when all the statistics are normally distributed. The combined p-value
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for the p-values (U1, …, UP) is the hyper-volume of the region where gA(z1,…zp) is larger
than gA(Z1-U1/2,…,Z1-Up/2) and, for any z2,…,zP that are between 0 and 1, if ν1 satisfies the
following inequality, then gA(z1,…zp) > gA(Z1-U1/2,…,Z1-Up/2):

where . Thus, the calculation only involves being able to
calculate the cumulative normal distribution and numerical integration over the above
region.

3. COMPARISON WITH PREVIOUS METHODS
3.1. Rejection regions

Several approaches to combine p-values from independent tests have been suggested but
their power has not been compared. Because algorithm 1 always results in the most powerful
rejection region, we compare it with the following previously suggested approaches for P =
2 only:

1. Minimum p-value method: reject H 0 if and only if min (U 1,U 2)<c

2. Cutoff-based method: reject H 0 if and only if U 1 < c 1 and U 2 < c 2
3. Pearson's method : reject H 0 if and only if (1–U 1)(1–U 2)≥c

4. Fisher's Method : reject H 0 if and only if U 1 U 2≤c

5.
Liptak's method : reject H 0 if and only if 
where Zw~N(0,1).

In each case c is determined by the desired value of α. Figure 1 shows results for two
different cases: S1 = S2 = 5 for (a) and (b), and S1 = 1, S2= 5 for (c) and (d). First, when S1
and S2 are equal, the MP region is expected to be symmetric and this is seen to be the case
for the rejection region of our proposed method. Also, the MP region is fairly similar to the
region given by Liptak’s method using S1 and S2 as weights in this case, and Liptak’s
approach is second best. Investigation shows that which method is second best depends on
the size of S1 and S2; if it is less than about 3, Fisher’s method is better than Liptak’s
method, but otherwise Liptak’s is better. Second, when S1 and S2 are unequal, the MP region
is expected to be asymmetric and our results confirm this. For Liptak’s method, we used the
weights  because the ratio between S1 and S2 is 1:5. The plot (c) and (d) in
Figure 1 shows that the cutoff-based approach with c1=1 and c2=0.05 is the closest to the
MP region, though Liptak’s rejection region is very close to the MP region. Here the results
indicate that using a more powerful statistic alone, T2 in this case, is better than combining
the two together using Liptak’s method.

3.2. Simulation when the standardized expected difference is known
We applied our approach to the mean difference test of two samples when the standardized
expected difference is known. For two different test statistics, we generated Xi1, Xi2, Yk1 and
Yk2 (i = 1, 2, … , N1 and k = 1, … , N2) as follows:
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where μX and μY are either 0.1 or 0.02, εil and εil′ (l = 1, 2) independently follow normal
distribution with mean 0 and variance 0.5. The t-statistic approximately follows a normal
distribution if the sample size is large enough. Thus, we obtain the following function for
our suggested approach:

where .

Figure 2 shows the power results of a simulation with various sample sizes for four different
cases and they are calculated from 5000 replicate samples: (a) μX = μY = 0.1 and N1 = N2,
(b) μX = μY = 0.1 and N1 = 5N2, (c) μX = μY = 0.02 and N1 = N2 and (d) μX = μY = 0.02 and
N1 = 5N2. In each case we compare our proposed method with Fisher’s and Liptak’s
methods. First, even though the three approaches have similar power when S1 = S2, the
proposed method has the best empirical power, followed by Liptak’s method and then by
Fisher’s for case (a), but followed by Fisher’s method and then by Liptak’s for case (c). As
we mentioned before, Liptak’s method is better than Fisher’s if the standardized expected
effect size is larger than about 3, and otherwise Fisher’s is better; the range of Sj considered
for the simulation is from 2.2 to 5 for case (a) and from 0.4 to 1 for case (c). Second, if S1
and S2 are different (we considered the ratio 5:1), Fisher’s is the worst method and Liptak’s
method using S1 and S2 as weights is approximately equal to our proposed method.

3.3. Simulation for a multi-stage analysis with estimated standard error
As mentioned above, methods for combining p-values can be used for both multi-stage
analysis and multi-phase analysis. We applied our approach to testing the mean difference
between two samples for multi-stage analysis, i.e. pooling the results of using the same
statistic from different samples, when the standard deviation is unknown. In general,
because multi-stage analyses (including meta-analysis) are usually for the same hypothesis,
we can assume the same expected difference under the alternative hypothesis but the sample
sizes or variances could be different. We therefore applied our approach to test a mean
difference from simulated samples with different sample sizes and with different variances,
using numerical integration for the proposed method of combing the p-values. For two
different test statistics, we generated Xi1, Xi2, Yk1 and Yk2 (i = 1, 2, … , N1 and k = 1, … ,
N2) as follows:

where εil and εil′ (l = 1, 2) are independent. Because the t-statistic approximately follows a
normal distribution if the sample size is large enough, we obtain the following functions:
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where S1 = μ′ /sê1, S2 = μ′/sê2,  and μ′ is the expected difference under the
alternative hypothesis. It should be noted that in this case wj depends only on the standard
error. We also applied Fisher’s method and Liptak’s method using as weights the inverse of
the standard error (Liptak1) and the square root of the sample size (Liptak2).

Table 1 shows the empirical type I error from 10,000 replicate samples as a function of N2

when we assume  and N1 is 1000. μ and μ′ are assumed to be 0 and 0.05
respectively. The results show that all methods preserve type I error well at the significance
level 0.05. Table 2 and Table 3 show the empirical power based on 5,000 replicate samples
when equal variances but different sample sizes are assumed, and when equal sample sizes
but different variances are assumed. In both cases, μ and μ′ are equal to 0.05. For Table 2,
we assume that  and N2 = 600, 700, 800, …, 1900 and 2000 while N1 is fixed at
1000, and for Table 3, N1=N2=1000 and  is 1. In Table 2,
algorithm 1 shows the best result, followed by algorithm 2. Fisher’s method is better than
the Liptak methods when N2 is similar to N1 but otherwise the Liptak methods are better.
Liptak 1 and Litpak 2 have similar empirical power because the weights for both are similar.
In Table 3, we find similar results except that Liptak 1 is much better than Liptak 2 because
the weights for Liptak 2 are not close to the standardized expected differences. Thus, we
conclude that algorithm 1 is always the most powerful when we have information about the
expected differences, but no information about the variances, and the same power can be
approximately achieved with only their ratios using algorithm 2.

3.4. Simulation for multi-phase analysis with estimated standard error
We also applied our approach to the mean difference test of two samples for multi-phase
analysis when the standard deviation is unknown. Here we assume that the expected
differences are known either from previous studies or on the basis of theoretical results that
allow us to know their ratios, as can occur in genetic epidemiology 15,16 . Again for two
different test statistics, we generated Xi1, Xi2, Yk1 and Yk2 (i = 1, 2, … , N1 and k = 1, … ,
N2) as follows:

where εil and εil′ (l = 1, 2) independently follow normal distributions with mean 0 and
variance 1. For large sample sizes, we obtain the following function for our proposed
approach:
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where S1 = μX′/sê1, S2 = μY′/sê2, wj = Sj, and μX′ and μY′ are the expected differences under
the alternative hypothesis. For Liptak’s method, we again used as weights these wj (Liptak1)
and the inverse of the standard error (Liptak2). For both algorithms, the combined p-values
were calculated using numerical integration.

Table 4 shows the results of a simulation with 10,000 replicate samples when N1=N2=1,000
and . For empirical type I error, μX and μY are assumed to be 0 for simulating Xil
and Yk, and the empirical type I errors calculated at the nominal 0.05 significance level. For
S1 and S2, μX′ is assumed to be 0.05 and we consider 0.01, 0.02, … and 0.15 for μY′. The
results show that both algorithm 1 and algorithm 2 preserve the type I error well, as in multi-
stage analysis. Table 5 shows the results of a simulation with 5,000 replicate samples at the
0.05 significance level when N1=N2=1,000 and . For empirical power, μX and μY
were assumed equal to μX′ and μY′, respectively, μX was assumed to be 0.05 and we
considered 0.01, 0.02, …, 0.15 for μY. The results show that algorithm 1 generally has the
best power, followed by algorithm 2. Also, the proposed algorithms are always better than
the Liptak methods and Fisher’s method, though the difference is not large. Finally, Liptak’s
method is better than Fisher’s method if the Sj are used as weights and μX and μY are not
similar, which confirms first that Fisher’s method is usually good when the standardized
expected differences are similar and small, and second that Liptak’s method should use the
standardized expected differences as weights, as in algorithm 2.

3.5 A genetic multi-phase example
The simulation results in sections 3.3 and 3.4 demonstrate the increase in power possible,
but do not illustrate exactly how the effect sizes could be obtained in practice, nor do they
examine the sensitivity of the method to assumptions made about those effect sizes. We
illustrate this here for one particular genetic example of multi-phase analysis.

In genetic epidemiology, the Cochran-Armitage (CA) trend is usually used for association
analysis in a case-control design assuming the two alleles of a diallelic marker act in an
additive manner on disease susceptibility26. The test for Hardy Weinberg proportions
(HWP) in cases has been combined with the CA test in an attempt to improve the statistical
power for association analysis by using either Fisher’s method7 or a cutoff-based method9,
which was called self-replication. However, combining these two tests sometimes leads to a
reduction in power11. We now show that if we use the expected effect size information the
power is improved with either algorithm 2 or Liptak’s method, and explain why, without
using this information, combining these two tests sometimes fails to increase power.

For a disease locus D with disease allele D1 and normal allele D2, let PDk|case and PDk|cont
be the frequencies of allele Dk in the case group and control group, respectively, and let
PDkDk'|case and PDkDk'|cont be the analogous frequencies of the genotype DkDk'. As a
measure of Hardy Weinberg disequilibrium (HWD) in cases, let dA|case ≡ PA1A1|case –
(PA1|case)2. If we let ϕ and ϕl be the disease prevalence and the penetrance of disease
genotype l at the disease location, the expected sizes of these quantities are16, 27:
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If the disease genotype effect is small, we can assume that ϕD2D2/ϕ ≈ 1 and then, for a rare
disease with known mode of inheritance we have

and , where λ1 is the heterozygous disease genotype relative risk and
λ2 is the homozygous disease genotype relative risk (i.e. relative to the homozygous
genotype containing no disease predisposing allele). Thus, for a recessive disease we have

Also, we have (PD1|case – PD1|cont):dD|case ≈ 1: λ2PD1 ≈ 1:PD1 and dD|case = 0 respectively,
for dominant and multiplicative modes of inheritance. Because additive and multiplicative
disease inheritance have similar λ1, we can conclude that the HWP test in cases is non-
informative for additive and multiplicative diseases, but can improve the CA test for
dominant and recessive diseases, with the above expected ratios of effect sizes.

Figure 3 and Figure 4 show the empirical power from 10,000 replicate samples at the
significance level 0.05 when the disease modes of inheritance are dominant and recessive,
respectively. We assume the disease allele frequency is 0.2, and the numbers of cases and
controls are equal. For the weights, w1 and w2, in algorithm 2 and Liptak’s method, we used

divided by their estimated standard errors; and algorithm 1 is not considered because only
ratios of the effect sizes are available. For the cutoff-based method, the value of c1 that
results in the maximal empirical power (among the values 0.05, 0.1, … , 0.95) was used. A
one-tail test was applied for the HWP test because it is known, if the disease-predisposing
allele is the less common allele, that dD|case > 0 for a recessive disease and dD|case < 0 for a
dominant disease28. The results show that algorithm 2 and Liptak’s method are similar,
because algorithm 2 is equal to Liptak’s method in the case of a one-tail test. However, the
results also confirm that the other methods that have been used to combine the CA and HWP
tests are not as powerful as the proposed methods. Also, it should be noted that algorithm 2
and Liptak’s method using the proposed weights work well even though the proposed
weights are not the true effect sizes, and the CA and HWP tests are not strictly independent
under the alternative hypothesis. In particular, the empirical power at λ2 = 1 is equivalent to
the empirical type I error at significance level 0.05, and it is seen that both algorithm 2 and
Liptak’s method using the proposed weights preserve this type I error.
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4. DISCUSSION
Over the last few decades, the UMP region for combining p-values has been sought and it
has been proved that there is no UMP test. Because of this, the various combination methods
were compared empirically instead of by further theoretical investigation. However, all these
investigations failed to find any practically MP region. Here we have shown that a MP test
can be found if we specify the expected effect sizes, or it can be approximated if we only
know their ratios. Also, our results show that this proposed method always has the best
power, though the power may not be substantially larger than that of other methods. We
have illustrated the method with a genetic example that demonstrated moderately increased
power, even when the ratio of effect sizes was misspecified.

Although the proposed algorithms described here are for independent tests with underlying
normal distributions, they can also be extended to other cases, such as the Tj follow different
distributions or, for example, a multivariate normal distribution with correlations. If the
statistic Tj for each p-value follows a different distribution, a factor gAj(·) appropriate for
each Tj should be used in the Monte-Carlo algorithm, instead of only factors of the form
exp(zj·Sj) + exp(−zj·Sj). In addition, when the statistics Tj for each p-value follow a
multivariate normal distribution (MVN), the gA(·) for the MVN density should be used in
step (2) after sampling from the standard MVN distribution with appropriate correlations
between the Tj under the null hypothesis. Thus, with some slight modification the same
approach can be extended to complex cases.

Though the proposed method improves power, the need to have information about the
expected effect sizes could limit its application. However, hypothesis testing for combining
p-values should not be understood in the same way as for testing parameters because there is
no uniformly most powerful method and the statistical power can be substantially different
according to the situation. Instead, it would be better to use information about effect sizes,
something that is often available, especially – as we have shown – in genetic epidemiology.
The proposed method suggests the following general strategy for its application in practice:

1. If the effect sizes are known, the proposed method using the expected differences
(algorithm 1) will give the best power.

2. If only the ratios between the effect sizes are available, the proposed method using
their ratios (algorithm 2) should be considered. To avoid excess computation,
Liptak’s method using as weights ratios of the standardized effect sizes can be used
when the expected differences are different.

3. If precise information is not available but the effect sizes are expected to be small
(large), Fisher method (Liptak’s method using equal weights) should be used.

Alternatively, if we consider other methods, such as a cutoff-based method (which is
sometimes called self-replication or screening 8, 9), instead of Liptak’s method or the
proposed method, c1 and c2 should be determined by the ratios of the standardized effect
sizes. Sometimes nothing is available about effect sizes, but the effect sizes can nevertheless
be expected to be equal. For example, in a meta-analysis, we usually want to combine
results from several studies for the same hypothesis. Then we suggest using inferences based
on ratios between the standard errors because S1:S2=1/σ̂1:1/σ̂2. Finally, it should be
remembered that Liptak’s method with appropriate weights is the same as our proposed
method if the p-values are from one-tail tests.
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Figure 1. Rejection regions for five methods of combining two P-values at the 0.05 significance
level
Two different cases are considered: the standardized effect sizes under H1 are equal (a) and
unequal (c). Because the proposed method is the most powerful, we can compare the
methods that have been suggested by comparing the closeness of their rejection regions to
that of our proposed method.
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Figure 2. Empirical power as a function of the sum of the sample sizes for two p-values
The empirical power at the 0.01 significance level is calculated, in each case for total sample
sizes 1000, 2000, 3000, 4000, and 5000, obtained from a simulation of 5000 replicate
samples, as a function of the sum of the sample sizes; for algorithm 1, 100,000 Monte Carlo
replicates were used. Two different cases are considered: the standardized effect sizes under
H1 are equal, (a) and (c), and unequal (b) and (d).
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Figure 3. Empirical power for a dominant disease
The CA and HWP test p-values are combined using algorithm 2, Fisher’s method, Liptak’s
method, and the best cutoff-based method, compared to the CA test alone. The empirical
power at the significance level 0.05 is calculated from 10,000 replicate samples; for
algorithm 2, 50,000 Monte Carlo replicates were used.
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Figure 4. Empirical power for a recessive disease
The CA and HWP test p-values are combined using algorithm 2, Fisher’s method, Liptak’s
method, and the best cutoff-based method, compared to the CA test alone. The empirical
power at the significance level 0.05 is calculated from 10,000 replicate samples; for
algorithm 2, 50,000 Monte Carlo replicates were used.
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