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Summary
The two P-type lectins, the 46 kDa cation-dependent mannose 6-phosphate (Man-6-P) receptor (CD-
MPR) and the 300 kDa cation-independent Man-6-P receptor (CI-MPR), are the founding members
of the growing family of mannose 6-phosphate receptor homology (MRH) proteins. A major cellular
function of the MPRs is to transport Man-6-P-containing acid hydrolases from the Golgi to
endosomal/lysosomal compartments. Recent advances in the structural analyses of both CD-MPR
and CI-MPR have revealed the structural basis for phosphomannosyl recognition by these receptors
and provided insights into how the receptors load and unload their cargo. A surprising finding is that
the CD-MPR is dynamic, with at least two stable quaternary states, the open (ligand bound) and
closed (ligand free) conformations, similar to those of hemoglobin. Ligand binding stabilizes the
open conformation; changes in the pH of the environment at the cell surface and in endosomal
compartments weaken the ligand-receptor interaction and/or weaken the electrostatic interactions at
the subunit interface, resulting in the closed conformation.

Introduction
In eukaryotic cells, mannose 6-phosphate receptors (MPRs) mediate the delivery of ~60
different newly synthesized soluble acid hydrolases to the lysosome by binding to mannose 6-
phosphate (Man-6-P) residues found on their N-linked oligosaccharides. Lysosomal enzymes
become differentiated from other proteins in the secretory pathway by acquiring mannose 6-
phosphate (Man-6-P) residues in a two step process: 1) The GlcNAc-phosphotransferase
transfers N-acetylglucosamine 1-phosphate to one or two mannose residues on an N-glycan to
yield a phosphodiester intermediate [1,2]. 2) α-N-acetylglucosaminidase removes the N-
acetylglucosamine residue in the trans Golgi network (TGN) to generate the
phosphomonoester, Man-6-P [3] (Figure 1). The resulting MPR/lysosomal enzyme complex
is transported from the TGN to the late endosome where the low pH of the compartment induces
the complex to dissociate. The released enzymes are packaged into lysosomes [4,5] and the
receptors either return to the Golgi to repeat the process or move to the plasma membrane
where they function to internalize exogenous ligands (Figure 1). The importance of this
phosphomannosyl recognition system in the biogenesis of lysosomes is illustrated by the
existence of over 40 different human lysosomal storage diseases that are estimated to affect 1
in 5,000 live births [6]. The discovery of the MPRs originated from studies centered on
determining the molecular basis of a lysosomal storage disorder, mucolipidosis II (MLII; also
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referred to as “I-cell disease”). The pioneering work of Hickman and Neufeld [7] led to the
finding that fibroblasts from MLII patients were capable of internalizing lysosomal enzymes
secreted by normal cells, while in contrast, normal fibroblasts were unable to endocytose
lysosomal enzymes secreted by MLII fibroblasts. Their hypothesis that lysosomal enzymes
contained a recognition tag required for receptor-mediated uptake and transport to lysosomes
was later confirmed upon the identification of the tag as Man-6-P [8–10]. I-cell disease is an
autosomal recessive disorder caused by a deficiency of GlcNAc-phosphotransferase activity
(IUBMB accession number EC 2.7.8.17), which is the enzyme that generates the Man-6-P tag
[11] (see Figure 1, Step 1).

Two distinct MPRs, the 46 kDa cation-dependent mannose 6-phosphate receptor (CD-MPR)
and the ~300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) are the sole
members of the P-type lectin family [12]. The CI-MPR is multifunctional in that it binds
proteins bearing the Man-6-P recognition marker as well as the peptide hormone IGF-II (hence
it is also called IGFIIR/CI-MPR) [13–15]. In addition to its intracellular role in lysosome
biogenesis and regulation of circulating IGF-II levels, the CI-MPR has been implicated in many
other cellular functions due to the fact that it binds to Man-6-P-containing proteins that are not
lysosomal hydrolases. These include transforming growth factor-β (TGF-β) precursor [16], the
placental angiogenic hormone proliferin [17], the cytokine leukemia inhibitory factor [18], and
the T-cell activation antigen CD26 [19], to name just a few. Functional roles of the cell surface
CI-MPR in interactions with these non-lysosomal proteins include activation of TGF-β
precursor and renin precursor [20] and clearance from the plasma in the case of leukemia
inhibitory factor [21]. In addition to IGF-II, the CI-MPR has been shown to interact with a
number of proteins that do not have phosphomannosyl residues. These include urokinase-type
plasminogenactivator receptor (uPAR) [22], plasminogen [23], retinoic acid [24], and
heparanase [25]. Residues essential for uPAR and plasminogen binding have been mapped to
domain 1 [26] (Figure 2). However, the nature of their interactions is not clear.

In addition to the two MPRs, several proteins have been identified as containing mannose 6-
phosphate receptor homology (MRH) domains [27], including erlectin (a luminal ER protein
implicated in the regulation of glycoprotein trafficking) [28], the β-subunit of glucosidase II
(also in ER), and GlcNAc-phosphotransferase γ-subunit (in Golgi), all of which are implicated
in N-glycan recognition [29]. However, studies on their recognition of specific glycans are
only beginning to emerge. Recently, human OS-9, which is involved in ER protein quality
control, has been shown to interact with mannose-trimmed N-glycans [30]. However, studies
will be needed to verify that the MRH domains of these proteins are structurally related to the
MPRs.

This review will focus on recent structural studies of the CD-MPR and CI-MPR, with emphasis
on how these receptors interact with phosphomannosyl residues. For other aspects of MPRs
and related proteins, the reader is referred to articles by Ghosh et al.[31], Gary-Bobo, et al.
[32], Dahms et al. [33], and Brown et al.[34].

Structures of the CD-MPR and CI-MPR
The MPRs are type 1 transmembrane glycoproteins (Figure 2). The CD-MPR forms a stable
homodimer and the CI-MPR exists most likely as a dimer [35]. The bovine CD-MPR is
composed of a 28-residue amino-terminal signal sequence, a 159-residue extracytosolic
domain, a 25-residue transmembrane region, and a 67-residue carboxyl-terminal cytosolic
domain. The six cysteine residues in the extracellular region of the CD-MPR form three
disulfide linkages that play an important role in the folding of the molecule. The bovine CI-
MPR contains a 44-residue signal sequence, a 2,269-residue extracytosolic region, a 23-residue
transmembrane region, and a 163-residue cytosolic domain. The large extracytosolic region
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consists of 15 contiguous domains, each of which, when compared to CD-MPR and to each
other, has a similar size and significant amino acid sequence identity (14–38 %) including
cysteine distribution, strongly suggesting that they have similar tertiary structures. Indeed, the
crystal structures of the extracytosolic domain of the CD-MPR and domains 1, 2, 3, 11, 12, 13,
and 14 of the CI-MPR all have the same fold (Figure 3) [36–39] (see below).

The structure of the extracytosolic domain of the CD-MPR in complex with Man-6-P and
Mn2+ was first determined over 10 years ago [40,41] and has established the overall polypeptide
fold of each domain in the P-type lectin family (Figure 3A). The molecule was found to be a
dimer, consistent with the predominant oligomeric form of the CD-MPR found in membranes.
The overall fold of the CD-MPR monomer is that of a flattened β-barrel consisting of two
antiparallel β-sheets, one with four β-strands and the other with five strands, with strand 9
interjecting between strands 7 and 8. The dimer interface is formed by two five-stranded β-
sheets. The structure of domains 1-3 (the N-terminal 432 residues) of the CI-MPR has been
determined in complex with Man-6-P [36,42], confirming that the overall fold of each domain
in the CI-MPR is the same as that of the CD-MPR (Figure 3). While the CD-MPR forms a
dimer, the N-terminal three domains of the CI-MPR exist as a monomer. The three domains
of the CI-MPR form a compact tri-lobed disk and have considerable contact with one another
(contact areas between domains range from 8 to 22 %). These extensive interactions suggest
that the observed three-domain arrangement forms a structural unit within the entire CI-MPR
molecule[36], and that the interactions of domain 3 with the loop between domains 1 and 2 are
required for maintaining the architecture of its sugar binding site.

Comparison of Man-6-P binding pockets in the CD-MPR and CI-MPR
The Man-6-P binding site in the CD-MPR is located at the C-terminal opening of the β-barrel
(Figures 3 and 4). One side of the binding pocket is walled off by two loops (loop C, residues
G98 – R108; loop D, E134 – C141) and the other side is exposed to the solvent, to provide
room for the rest of the ligand molecule. The pocket is lined with residues Y45, D103, N104,
H105, R135, E133, Y143, Q66, and R111, the latter four of which are found to be essential
for Man-6-P binding by mutagenesis studies of CD-MPR [43–45] and domains 3, 5, and 9 of
the CI-MPR [46,47] (Figure 4B). These four signature residues in both the CD-MPR (E133,
Y143, Q66, and R111) and domain 3 of CI-MPR (E416, Y421, Q348, and R391) are absolutely
conserved (Figure 4C) and interact with the Man-6-P ligand in the same manner, strongly
suggesting that the sugar-binding pockets in domains 5 and 9 are also very similar to those of
CD-MPR and domain 3 of the CI-MPR (Figure 4A). Indeed, the Man-6-P binding pocket
located in domain 3 is essentially the same as that of the CD-MPR, with one exception: the
absence of Mn2+ which accounts for the metal independence of the CI-MPR. In addition,
solution structures of domain 5, which preferentially binds phosphodiesters, with and without
a phosphodiester ligand have been determined (L Olson, abstract 216 in Glycobiology 18, 993,
2008). Preliminary results indicate that the overall fold of the isolated domain 5 is similar to
that of the other CI-MPR domains and CD-MPR, and mutagenesis studies have demonstrated
the essential role of these four signature residues in the lectin activity of domain 5 [47]. It is
interesting to note that the IGF-II binding pocket is located in the homologous position in
domain 11 as the Man-6-P binding pocket in domain 3 [37] (Figure 3D).

Inhibition studies using chemically synthesized oligomannosides or neoglycoproteins have
shown that the presence of Man-6-P at a terminal position is the major determinant of receptor
binding. Furthermore, linear glycans which contain a terminal Man-6-P linked α1,2 to the
penultimate mannose were shown to be the most potent inhibitors [48,49]. Recent studies using
a novel Phosphorylated Glycan Microarray demonstrate that the CD-MPR demonstrates a
preference for glycans containing two phosphomonoesters, whereas the CI-MPR shows little
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difference in affinity toward glycans containing one or two phosphomonoesters (X Song et al.,
unpublished).

The CD-MPR is dynamic – comparison of the ligand-bound and ligand-free
CD-MPR

The MPRs travel between various cellular compartments during the transportation of their
ligand, from TGN (where they bind the ligand) to late endosomes (where they release the
ligand). Unlike the CI-MPR, the CD-MPR does not bind ligands at the cell surface. It has been
shown that this loading/unloading is facilitated by changes in the pH of each compartment
[50]. In order to understand the mechanism of the pH dependence of the ligand binding/release,
crystal structures of the CD-MPR have been obtained at various pHs and in the presence and
absence of bound Man-6-P [51,52]. Unexpectedly, regardless of pH, the receptor molecule
adopts two conformations: an “open” conformation found in all structures with bound Man-6-
P and a “closed” conformation observed in all structures without bound ligand (Figure 5). There
are three major structural differences between these two states. First, in the open state (i.e., the
bound state), the two ligand-binding sites of the dimeric molecule are ~35Å apart, whereas in
the closed (unliganded) state, they are ~26 Å apart. Second, the architecture of the ligand
binding pocket in the closed form differs significantly from the open form (Figure 5B). When
the ligand is bound, loop D (residues E134-C141) forms one wall of the binding pocket. When
the ligand is absent, loop D folds into the binding pocket, occupying the same space where the
sugar molecule binds and thereby keeps the position of the sugar-binding residues unchanged.
Lastly, this loop D movement disrupts electrostatic interactions between the two subunits,
releasing inter-subunit salt bridges, causing the two subunits to slide and twist at their interface
which results in the “closed” form (Figures 5B and 5C). Thus, the movements involved in the
bound-to-unbound transition of the CD-MPR are reminiscent of those in the oxy-to-deoxy
transition of hemoglobin. However, whether the CD-MPR has ligand-binding cooperativity
has not been studied. The overall movement of the bound-to-unbound transition can be
described as a “scissoring and twisting” motion between the two subunits at the dimer interface.
The implication of the existence of these two states is that the CD-MPR must be able to readily
transition between these two conformations as it travels to the different cellular compartments,
with the unique environment of each compartment (e.g., Golgi, cell surface, endosome)
impacting the equilibrium between the two states.

Mechanisms of ligand binding and release by the CD-MPR
From the above structural studies, plausible mechanisms for the dissociation of lysosomal
enzymes in the acidic endosome (pH, < 6.0) and at the cell surface (pH, 7.4) have been proposed
[52]. The structure of the bound form of CD-MPR has three inter-subunit ion pairs that “tie”
loop D of one subunit to the other subunit (K18 and E19 of one subunit to E134 and K138 of
the other subunit, respectively) (Figure 5D). In the acidic environment of the endosome, the
disruption of inter-subunit electrostatic interactions may trigger the ligand release by
protonation of the carboxyl groups of the glutamates and aspartate (Figures 5D and 5E). In
addition, E133, one of the essential residues for binding of Man-6-P, might also be protonated
in the endosome and weaken its binding to Man-6-P, promoting release of the bound ligand
(Figure 5D). On the other hand, at the cell surface, deprotonation of H105 and the phosphate
moiety of Man-6-P (both of which interact with each other in the bound conformation) are
most likely responsible for the release of the ligand (Figures 4 and 5C). To probe directly the
role of the electrostatic interactions between the two subunits, specifically the salt-bridge
between E19 and K137, a double mutant (E19Q/K137M) has been analyzed by surface plasmon
resonance. The mutant CD-MPR lacking the inter-subunit salt bridge binds lysosomal enzymes
with ~100-fold lower affinity, clearly demonstrating the critical role of the ionic interactions
between the two subunits in stabilizing the bound conformer of the CD-MPR.
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Conclusions
Although we have accumulated considerable knowledge on the MPRs regarding the structural
basis for their phosphomannosyl recognition and the mechanisms of the cargo loading and
unloading for the CD-MPR, there still remain many outstanding questions. It is interesting to
note that all ligand binding sites of CI-MPR are located at odd-numbered domains, i.e., domains
3, 5, and 9 for Man-6-P binding and domain 11 for IGF-II, as well as domain 1 which is found
to interact with plasminogen and uPAR. What are the roles of the remaining domains? Do
even-numbered domains function only as spacers and/or support for the functional domains?
What are the mechanisms of ligand binding and release for the CI-MPR, which must be very
different from those of CD-MPR? Answers to these questions must await further biochemical
and structural studies of the CI-MPR including fragments containing overlapping ranges of
domains. It is also intriguing that the CI-MPR complements the two enzymes that make the
phosphomannosyl tag by being able to bind to the products of both the first and the second
enzymes of the two-step process. Is this purely for redundancy? Furthermore, the mechanisms
that govern the MPRs’ trafficking to different subcellular compartments are not clearly known.
MPRs are present in TGN, endosomes, and plasma membrane, but absent in lysosomes. They
cycle constitutively between these compartments and this trafficking is directed by sorting
signals that reside in the cytosolic tails of the receptors. Currently, only the structures of
peptides (12 or 13 residues) that contain the di-leucine motif in the cytosolic tails of CD-MPR
and CI-MPR, in complex with the VHS domain of human GGA (Golgi-localized, -γ-ear-
containing, ADP-ribosylating-factor-binding) proteins are known [53,54]. Thus, in order to
gain a clearer picture of the factors that regulate the interaction of the MPRs’ cytoplasmic
region with numerous cytosolic adaptor proteins, further structural analyses are needed.
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Glossary
MPR  

mannose 6-phosphate receptor

CD-MPR  
cation-dependent MPR

CI-MPR  
cation-independent MPR

Man-6-P  
mannose 6-phosphate

TGN  
trans Golgi network

MRH  
MPR homology

uPAR  
urokinase-type plasminogen activator receptor
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Figure 1.
Lysosomal enzyme trafficking. Movements of lysosomal enzymes and MPRs between the
various intracellular compartments and the cell surface are shown. Phosphorylation of mannose
residues on N-linked oligosaccharides occurs in two steps (see text). The five potential sites of
phosphorylation are indicated in pink letters. Lysosomal enzymes that acquire the Man-6-P
tag in early Golgi compartments bind specifically to MPRs in the Golgi. The resulting receptor-
lysosomal enzyme complex is transported from the trans Golgi network (TGN) to an early
endosomal compartment (step 3) and to an acidified late endosomal compartment where the
low pH of the compartment causes dissociation of the complex. Lysosomal enzymes that are
not phosphorylated (•), contain a phosphomonoester (•-P), or contain a diester with N-acetyl
glucosamine are shown (•-P- ). The dimeric CD-MPR is depicted as two pink balls and the
CI-MPR is shown as 15 repeating balls. The three Man-6-P binding domains of the CI-MPR
are depicted as pink balls.
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Figure 2.
Schematic representation of the CD-MPR (left) and CI-MPR (right). The MPRs are
transmembrane glycoproteins. Various post-translational modifications are indicated,
including palmitoylation and phosphorylation. The CD-MPR is shown as a dimer with each
subunit having one Man-6-P binding site. The 15 repeating domains of the CI-MPR are
numbered sequentially from the N-terminus to C-terminus. Domains 3, 5, and 9 bind Man-6-
P with domain 5 preferentially binding to phosphodiesters. Domain 1 is known to bind to
urokinase plasminogen activator receptor (uPAR) and plasminogen (Plg). Domain 11 binds
IGF-II and Domain 13 has a fibronectin II insert.
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Figure 3.
A collage of structures of the CD-MPR and CI-MPR. A) Dimer of the CD-MPR. β-Strands are
numbered from N- to C- terminus and loops between strands are labeled in alphabetic order.
B) Structure of domains 1–3 of CI-MPR, with bound Man-6-P in domain 3. C) Structure of
domains 11–14 of the CI-MPR. N- and C-termini are indicated. FNII denotes the fibronectin
II insert in domain 13. D) Superposition of the structures of the CD-MPR (monomer, purple)
and domains of 3 (green) and 11 (gold) of the CI-MPR, demonstrating that they all have a
similar polypeptide fold. For clarity, the structures of domains 1, 2, 12, 13, and 14, whose
structures have been determined to have the same fold, are not included in the overlay. The
ligand binding site is indicated with an arrow.
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Figure 4.
Conservation of the Man-6-P binding site and essential residues for carbohydrate binding. A)
Superposition of the Man-6-P binding sites of the CD-MPR (purple) and domain 3 of the CI-
MPR (green). The architecture of both binding pockets is essentially the same with the
exception of loop D (dark blue, CD-MPR; grey, domain 3), which is shorter in domain 3. B)
A schematic drawing showing interactions between Man-6-P and residues in the CD-MPR and
their homologous residues in domains 3, 5, and 9 of the CI-MPR. Dotted lines indicate potential
hydrogen bonds. Mutational studies have shown that the four residues shown in purple are
essential for Man-6-P binding and that mutation of the residues shown in blue partially
decreased Man-6-P binding affinity. The two residues in grey have not been tested. C) Sequence
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alignment of domains 3, 5, 9 and 11 of the CI-MPR and the extracytosolic domain of the CD-
MPR. The conserved cysteines are highlighted in yellow and the four residues that are essential
for Man-6-P binding are highlighted in red. Residues that are within hydrogen bonding distance
of Man-6-P in the crystal structures of CD-MPR and domains 1–3 of the CI-MPR, but found
to be not essential for Man-6-P binding are boxed in red. Secondary structural elements are
indicated with arrows and the single α-helix found in the CD-MPR is indicated with a green
cylinder. Residues involved in IGF-II binding in domain 11 of the CI-MPR are boxed in blue.
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Figure 5.
Comparison of the ligand-bound and ligand-free structures of CD-MPR. A) Superposition of
the monomer structures of the bound (red) and unbound (blue) structures. Note the difference
in the conformations of loop D. B) The dimer structures, with the same color scheme as in (A).
The molecule is scissoring along its molecular two-fold axis (z-axis) and twisting along the x-
axis. The ligand, Man-6-P, is shown with ball-and-sticks. C) Superposition of the ligand
binding sites of the bound (red) and unbound (blue) structures. Loop D in the bound structure
forms the side of the binding pocket, while in the unbound structure loop D folds down and
occupies the Man-6-P binding site. Mn+2 ion in the bound state is denoted as a red ball. The
movements of E133 and R135 are indicated (curved arrows). Inter-subunit interfaces are
shown, including the N-terminus and loop D of the bound (panel D) and unbound (panel E)
structures. Electrostatic interactions found between the two subunits in the bound structure are
disrupted in the unbound structure, resulting in a weaker dimer interface.
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