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Abstract
When there is interest to study n chemicals using x dose levels each, factorial designs that require
xn treatment groups have been put forward as one of the valuable statistical approaches for hazard
assessment of chemical mixtures. Exemplary applications and cost-efficiency comparisons of full
factorial designs and regular fractional factorial designs in toxicity studies can be found in Nesnow
et al. (1995), Narotsky et al. (1995), and Groten et al. (1996,1997). We introduce nonregular fractional
factorial designs and show their benefits using two studies reported in Groten et al. (1996). Study 1
shows nonregular designs can provide the same amount of information using 75% of the experimental
costs required in a regular design. Study 2 demonstrates nonregular designs can additionally estimate
some partially aliased effects, which cannot be done using regular designs. We also provide a
statistical method to evaluate the quality of an assumption made by experts in Study 2 of Groten et
al. (1996).
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1 Introduction
There is considerable scope for reducing resources used in research by designing more efficient
studies. Giles (2006) in a foreword in a recent issue in the journal Nature observed that some
toxicology studies seemed to lack so-phisticated thinking in their designs and wondered
whether that had led to many inconclusive studies. The importance of a well designed study
cannot be over-emphasized. Experiments are increasingly complex, in addition to rising
experimental cost and competing resources. In the extreme case, a poorly-designed study may
not be able to answer the posited scientific hypotheses. Careful design considerations even
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with only minor variation in traditional designs can lead to a more efficient study in terms of
more precise estimates or able to estimate more effects in the study at the same cost.

A problem in the risk assessment of chemical mixtures is that the chemical interactions hamper
prediction of the toxicity of the mixture. It is impossible to test each possible chemical
interaction individually because of the multitude of potential interactions. One way to
overcome this problem is to treat the mixture as a single compound and to test it as a whole.
In this type of study, the net combined effects of all components in the mixture are reflected.
Factorial designs are used to detect interactions between two or more chemicals in a chemical
mixture. Such designs were suggested by the US Environmental Protection Agency as one
valuable statistical approach for risk assessment of chemical mixtures (Svensgaard and
Hertzberg 1994). A full factorial experiment allows all factorial effects to be estimated
independently and s commonly used in practice (Nesnow et al. 1995, Narotsky et al. 1995).
However, it is often too costly to perform a full factorial experiment. For example, if we have
8 factors to investigate and each factor has two levels, we need to have 28 = 256 runs. Instead,
a fractional factorial design, which is a subset or fraction of a full factorial design, is often
preferred because much fewer runs are required. When this fraction is properly selected, the
resulting design can estimate the maximum number of factorial effects of interest with
maximum precision.

Fractional factorial designs are classified into two broad types: regular designs and
nonregular designs. Regular designs are constructed through defining relations among factors
and are described in many textbooks such as Wu and Hamada (2000), Box, Hunter and Hunter
(2005) and Montgomery (2009). These designs are widely used in toxicity studies and other
biochemical areas because they are simple to construct and to analyze. The run sizes are always
a power of 2, 3 or the number of dose levels, and thus the “gaps” between possible run sizes
are getting wider as the power increases. Nonregular designs such as Plackett-Burman
(1946) designs and other orthogonal arrays are often used in various screening experiments for
their run size economy and flexibility (Wu and Hamada 2000). They fill the gaps between
regular designs in terms of various run sizes and are flexible in accommodating various
combinations of factors with different numbers of levels. Compared to regular designs,
nonregular designs have a more complex aliasing structure and thus is more difficult to analyze
because main effects may be partially aliased with some interactions. Nevertheless, as we will
demonstrate, the complex aliasing structure is a benefit because partially aliased effects can
be estimated together. A key step is to disentangle the interactions from the estimates of the
main effects. As Hamada and Wu (1992) pointed out, ignoring non-negligble interactions can
lead to (i) important effects being missed, (ii) spurious effects being detected, and (iii) estimated
effects having reversed signs resulting in incorrectly recommended factor levels.

This paper aims at demonstrating the advantages of nonregular designs over regular designs
in two subacute toxicity studies reported in the literature. In particular, we use a 12-run Plackett-
Burman design in the first study and a 16-run quaternary-code design in the second study. Both
Plackett-Burman and quaternary-code designs are special classes of nonregular designs. These
demonstrations show that nonregular designs are able to (i) further reduce the cost of regular
designs, (ii) estimate additional interactions besides those that can be done with regular designs,
and (iii) further reduce the biases in the effect estimates.

2 Methods
We first use two studies to demonstrate the differences in analyzing data from regular designs
and nonregular designs. In particular, we use Groten et al. (1991, 1996) to demonstrate how
nonregular designs can be more cost efficient than regular designs. Our second study is taken

Phoa et al. Page 2

Food Chem Toxicol. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



from Groten et al. (1996, 1997) and we show that nonregular designs can provide additional
information on the estimates of some effects that regular designs are unable to do.

Example 1 Interaction of eight minerals with the oral toxicity of cadmium in rats: application
of a 12-run Plackett-Burman design

Groten et al. (1991, 1996) performed an 8-week toxicity study in Wistar rats to investigate the
effect of several mineral supplements, all of which had been suggested to interact with the
accumulation and toxicity of cadmium chloride (CC). The 8 minerals to be tested were calcium
(Ca), phosphorus (P), manganese (Mn), magnesium (Mg), selenium (Se), copper (Cn), zinc
(Zn) and iron (Fe). In their study, the researchers kept the ratio between Ca and P constant to
avoid the interactive effects of each other’s bioavailability. Accordingly, the two minerals
Ca and P were always treated as one supplement resulting in a total of 7 mineral supplements
under investigation. The experiment used a regular fractional factorial design with 8 test
groups. The chemical Cadmium (Cd) was present in all test groups and so we may ignore its
contribution to all statistical analyses. The responses included clinical chemistry parameters
and mineral content in liver and kidneys. Groten et al. (1996) analyzed the main effects first
and then further tested the significant main effects and their aliased two-factor interactions in
a subsequent experiment. Further details of the experimental setting and conditions were given
in Groten et al. (1996).

Although combining Ca and P as a single mineral supplement enabled the researchers to study
eight minerals in eight test groups, their design has two major drawbacks. First, Ca and P were
fully aliased and their effects could not be separated. Two effects are fully aliasing if the
correlation between them is either −1 or +1. When the ratio of Ca and P was kept constant,
one could neither distinguish the effects between them nor discover how they would interact
with each other. This might not be a concern for Groten et al. (1996), but this is not desirable
in general. Second, the design with 8 test groups for testing 7 mineral supplements is saturated,
so there is no degree of freedom left for estimating the error variance or interactions. In their
design each main effect is aliased with 3 two-factor interactions. The estimate of the main
effect was biased and could be misleading if any of the interactions were significant. As a
result, the researchers had to use follow-up experiments to resolve the ambiguity of the
interpretation of significant effects, adding the overall cost. To overcome these drawbacks, one
has to use a larger design with more test groups.

One possible design would consist of 16 test groups shown in Table 1(a). For instance, the first
test group involves four mineral supplements Ca, P, Mg, Cu, in addition to the common mineral
Cd. In statistical design terminology, this is a regular 1/16th fraction of a 28 design or a 28− 4

design. In this design none of the main effects is aliased with two-factor interactions; therefore,
all of the eight main effects can be estimated even if some two-factor interactions are non-
negligible. Furthermore, there are 7 degrees of freedom left for estimating the error variance
or potential significant interactions. One disadvantage of this design is that it doubles the
number of test groups. However, to study 8 minerals together (i.e. treat Ca and P separately) ,
a regular design requires a minimum of 16 test groups.

To reduce the number of test groups, we suggest to use a nonregular design with 12 test groups
shown in Table 1(b). This design is an example of the Plackett-Burman designs available from
the large collection of orthogonal arrays given by Plackett and Burman (1946). Since there are
only 8 mineral supplements in the study, we choose the first 8 columns in the design, and treat
the remaining 3 columns as dummy variables that are negligible. Table 2 gives the units, levels
and level assignments of each factor.

An obvious advantage of the new plan is the cost efficiency. The Plackett-Burman design uses
only 12 test groups, a 25% saving over the regular design with 16 test groups given in Table
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1(a). Like the regular design, the Plackett-Burman design allows all eight main effects to be
separately estimated. It also provides 3 degrees of freedom to estimate the error variance or
potential interactions.

Example 2 Interactive effects of nine chemicals in a 4-week toxicity study: application of a
16-run quarternary-code design

Groten et al. (1996, 1997) performed a 4-week oral/inhalatory study in which the toxicity of
combinations of nine compounds was examined in male Wistar rats. The nine chemicals tested
were dichloromethane (MC), formaldehyde (For), aspirin (Asp), di-(ethylhexyl) phthalate
(DEHP), cadmium chloride (CC), stannous chloride (Sn), butylated hydroxyanisole (BHA),
lop-eramide (Lop) and spermine (Sper) at a concentration equal to the “minimum-observed-
adverse-effect level” (MOAEL). Their experiment had 16 test groups (Table 3(a)), which is
1/32nd fraction of a 29 design. Besides assuming that three-factor or higher-order interactions
were negligible, Groten et al. (1996, 1997) further assumed that there were no interactions
between formaldehyde and other compounds in the study and so they deliberately chose a
design such that the main effect of formaldehyde was fully aliased with four two-factor
interactions. The aliasing pattern, experimental setting and conditions were reported in Groten
et al. (1997).

The responses in their study included body weights, organ weights, hematology, clinical
chemistry and biochemistry values. They first analyzed the main effects, and then analyzed
the significant main effects together with their two-factor interactions in a subsequent analysis.
These analyses resulted in equations that describe all hematological and clinical responses in
terms of the variables tested. For example, using the aspartate aminotransferase (ASAT) activity
(in Table 3(a)) as a response, the fitted regression equation is:

where CC × Lop is the interaction between CC and Lop and CC × Sn is the interaction between
CC and Sn. Note that we have substituted the two-factor interaction CC × Lop in the original
equation in Groten et al. (1996) by a term denoted by (For + CC × Lop) in the above equation,
because the coefficient +2.19 is a mixed estimate from two fully aliased effects For and CC ×
Lop. Because For and CC × Lop are fully aliased, it is impossible to distinguish between them
in the analyisis. Groten et al. (1996, 1997) ignored the main effect of For in this aliased pattern
mainly because they assumed For was not active based on their expert opinion. However, as
we will show below, by using a nonregular design, we can estimate For and CC × Lop together
and question the validity of the expert opinion on statistical grounds.

For this study, we propose a nonregular design with 16 test groups displayed in Table 3(b).
This design is one of the quaternary-code designs constructed by Xu and Wong (2007, design
9-5.ac in Table 2). The mixtures in all test groups of the nonregular design are the same as
those in the regular design, except for test groups #2, #7, #10 and #15. In test groups #2 and
#15, we have added For into the original mixture, while in test groups #7 and #10, we have
deleted For from the original mixture. Table 4 gives the units, levels and level assignments of
each factor.

For illustrative purposes, we focus on the ASAT activity as the only response in this study. Data
from Groten et al. (1996) for the study are shown in Table 3(a). To compare our proposed
design with the design used in Groten et al. (1996), we have to generate reasonable responses
from runs in our design but were not used in Groten’s design. Fortunately by construction, we
can predict how the set of responses will be for our design. Specifically, the only changes we
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expect are shown in the column of ASAT in Table 3(b), where there are now “±a” in test groups
#2, #7, #10 and #15. Here the value of “a” represents the hypothetical effect of For on the
response ASAT when we add For into the original mixture.

Clearly the value of a is unknown without running a real study using our design. We can
however provide realistic guesses of likely values for a. In this case, we consider likely values
of a to be −4, −2, 0, 2 and 4. The rationale for picking these values of a is consistent with the
magnitude of the observed effects from the real experiment. The values of a may be interpreted
as follows: for example, if a = −2, this reflects a significant negative effect, meaning that when
we add For into the mixture, the ASAT is expected to decrease significantly, other things being
equal. Likewise, a value of a = 2 implies that we can expect a significant increase in the mean
ASAT level when For is included in the mixture. As an illustration, suppose a = −2. Our
responses in test groups #2, #7, #10 and #15 will change from 71, 96, 71, 72 to 69, 98, 73, 70
respectively, and other responses remain unchanged. Note that the added effect “±a” only
changes the estimate of the main effect of For and its aliased interactions including CC ×
Lop, but it will not affect the estimates of other main effects and interactions. For example,
one can verify that the estimate of Sn is always −2.44 for any choice of a.

The main reason that regular designs are incapable of estimating some interactions is that these
interactions are fully aliased with the main effects or other interactions. This is a property of
the regular design where fully aliasing is the only possible kind of aliasing. In nonregular
designs, partial aliasing is possible, that is, the correlation between two effects is strictly
between −1 and 0 or between 0 and +1. For example, the correlation between For and CC ×
Lop is 0.5 and they are partially aliased in the nonregular design. Since For is only partially
aliased with other interactions including CC × Lop, it is not necessary to assume that For is
not active as Groten et al. (1996, 1997) did. In addition, partial aliasing reduces the bias of the
estimation of main effects from non-negligible two-factor interactions.

3 Results
Groten et al. (1996) did a 4-week toxicity study with nine chemicals and showed that combined
exposure to nine compounds at the “minimum-observed-adverse-effect level”(MOAEL) of the
individual compounds resulted in a wide range of adverse effects. Their factorial analysis
suggested that the main effects of Sn, CC, Lop, Asp and the interactions between CC and
Lop and between CC and Sn were significant to the response aminotransferase (ASAT) activity.
If the significant level were increased to 15%, the main effect of buty-lated hydroxyanisole
(BHA) would also be significant to the response. They purposely designed their experiment
such that formaldehyde (For) was fully aliased with four two-factor interactions, including the
significant interaction between CC and Lop. Then they suggested choosing the interaction,
rather than the main effect, as one of the significant effects based on their expert knowledge,
even though the analysis failed to distinguish between them.

The nonregular design has a distinct advantage over the regular design because it allows the
estimation of all of the main effects, even when they are partially aliased with some two-factor
interactions. In our case, we were able to identify the significance of For and its partially aliased
two-factor interactions together. For example, six compounds were found to affect the ASAT
activity when we generated the response with a = −2: there was a decrease in ASAT activity
due to Sn or BHA or For, and an increase in ASAT activity caused by CC, Asp or Lop. Two
interactions (CC × Lop and CC × Sn) included in the original analysis of the regular design
were also found to be significant in our analysis.
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Following Groten et al. (1996), we have a final equation to describe the value of the response
in any particular mixture in terms of the compounds tested. The final equation for the ASAT
activity with a = −2 is:

where Asp, CC, Sn, Lop, BHA and For are the level assignments of the corresponding
compounds in the mixture, having a value of either +1 (presence) or −1 (absence). For every
random selection of mixtures from the nine compounds tested, it is possible to predict the
overall effect for the ASAT activity with the final equation.

This equation can be interpreted as follows. When 5000mg acetyl salicylic acid per 1kg diet is
added and the exposure levels of other chemicals are fixed, the ASAT activity increases by 6.88
(= 3.44×2) units/liter. The interpretations for For and BHA are similar. However, the
interpretations for Sn, Lop and CC are more complicated because of the existence of two-factor
interactions. When 3000mg stannous chloride per 1kg diet without cadmium chloride is added
and the exposure levels of other chemicals are fixed, the ASAT activity increases by 0.24(=
(−2.44+(−2.56)(−1))×2) units/liter. If cadmium chloride exists in the diet, then the addition of
stannous chloride leads to a decrease in the ASAT activity by 10.00 units/liter because (−2.44
+ (−2.56)(+1)) × 2 = −10.00. Similarly, the interpretation for Lop depends the presence of
CC while the interpretation for CC depends the presence or absence of both Sn and Lop.

4 Discussion
Our first study illustrates the run size economy of nonregular designs without sacrificing the
estimation abilities of the designs. The number of test groups or trials in an experiment using
regular designs is always a power of the number of dose levels. To study 8 mineral supplements,
each with two dose levels, a regular design requires at least 16 test groups while a nonregular
design uses only 12 test groups. Nonregular designs are also flexible in accommodating various
combinations of factors with different numbers of dose levels.

Our second study illustrates how a nonregular design provides additional information of the
interactions through their partially aliasing with the main effects. Groten et al. (1996) noticed
that the combined effects of two compounds were not a simple summation of responses of the
individual compounds. In a regular design, independent estimates of a fully aliased pair of
factorial effects are impossible without additional assumptions on the significance of the
aliased factorial effects. However, by proper choice of a nonregular design, we were able to
decouple the partial aliasing between main effects and two-factor interactions and so able to
estimate both effects simultaneously. This is possible as long as there are enough degrees of
freedom left in the model.

We demonstrate this advantage via Study 2. The analysis of Groten et al. (1996) showed the
significance of the CC × Lop interaction under the assumption that For were negligible due to
their expert knowledge. Figure 1 provides a test on the significance of the estimates of the main
effect of For and the CC × Lop interaction. We use the original equation from Groten et al.
(1996) and vary different values of a. In Figure 1, For and CC × Lop represent the estimates
of the individual effects using the nonregular design, while (For + CC × Lop) represents the
estimates of the fully aliased effects of For and CC × Lop using the regular design.

One of the most surprising results is that when a = 0, For has a negative effect, CC × Lop has
a positive effect, and both For and CC × Lop are significant at 5% level while (For + CC ×
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Lop) is not. Recall that the value of “a” is the additional hypothetical effect of For on the
response ASAT when we add For into the original mixture. Groten et al. (1996) assumed that
the main effect of For was negligible in their analysis. If their assumption was correct, we
would expect that For is not significant when a = 0. The contradiction provides statistical
evidence to question their expert opinion on the insignificance of For. Our finding further
suggests that the interaction CC × Lop could be underestimated by Groten et al. (1996) because
For had a negative effect.

When we deliberately add a negative effect (like a = −2 or a = −4) to For, both For and CC ×
Lop are significant at 1% significance level while (For + CC × Lop) is not significant at 10%
significance level. This shows how the nonregular design correctly identifies the significance
of both For and CC ×Lop individually but the regular design fails to do so. On the other hand,
when we add a positive effect a = 2 to For, CC × Lop is significant at 5% level but For and
For + CC × Lop are not. This is not surprising because the additional positive effect cancels
the original negative effect of For.

Furthermore, the nonregular design can reduce the bias in the estimates of the main effects
when not all two-factor interactions are negligible. If it is not known in advance which
interactions can be considered as negligible, a conservative approach is to minimize the
maximum possible bias arising from the existence of two-factor interactions in the true model.
Because main effects are partially aliased with two-factor interactions in nonregular designs
but not in regular designs, it follows that the maximum value of the bias could be relatively
small in nonregular designs. This implies that the estimates of the main effects suffer a smaller
bias in nonregular designs than in regular designs.

To fix ideas, consider the bias of the estimate of a main effect from both the regular design and
the nonregular design. In the regular design, the expected value of the estimate of the main
effect of For is

This expression includes the main effect of For and four two-factor interactions with
coefficients all equal to 1. The aliasing structure of the nonregular design is more complicated
than that of the regular design. Table 5 gives the expected value of the estimate of each main
effect when two-factor interactions are present. All the expressions include some two-factor
interactions with coefficients all equal to ±1/2. Therefore, if there is no prior information on
which interactions can be considered as negligible, a conservative approach in minimizing the
coefficients is to minimize their maximum value, which is 1 in the case of the regular design
and 1/2 in the case of the nonregular design. This shows that there is a larger bias in the regular
design than in the non-regular design. Further details on bias reduction are given in Wu and
Hamada (2000) and Deng and Tang (2002).

The second study shows a potential drawback of a nonregular design is that its aliasing pattern
can be more complicated than that from a regular design. However, we feel that the advantages
of nonregular designs outweigh their disadvantages.

As a final note, all the designs discussed here are two-level designs. While two-level designs
are cost-effective in screening variables, they cannot identify nonlinear relationship between
the response and factors. A linear relationship is good approximation when the high and low
dose levels are close enough. The approximation becomes worse when the distance between
two levels increases. One way to cope with this concern is to add a few (3–5) runs at the center.
Adding center points to a two-level design can not only provide a check on a curvature effect
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but also provide an unbiased estimate of the error variance. If a curvature effect is present, the
researchers should conduct further experiments to investigate the nonlinear relationship.

Aberration
ASAT, aspartate aminotransferase
Asp, aspirin
BHA, butylated hydroxyanisole
Cd, cadmium
CC, cadmium chloride
Ca, calcium
Cu, copper
MC, dichloromethane
DEHP, di-(ethylhexyl; phthalate
For, formaldehyde
Fe, iron
Lop, loperamide
Mn, manganese
Mg, magnesium
MOAEL, minimum-observed-adverse-effect level
P, phosphorus
Se, selenium
Sper, spermine
Sn, stannous chloride
Zn, zinc
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Appendix: Statistical Analysis Strategy
We provide more details on how we perform analysis in study 2. We adopt one of the analysis
strategies suggested by Hamada and Wu (2000, p. 356). The procedure is as follows.

Step 1 For each factor X, consider X and all its two-factor interactions XY with other factors.
Use a stepwise regression procedure to identify significant effects from the candidate variables
and denote the selected model by MX. Repeat this for each of the factors and then choose the
best model.

Step 2 Use a stepwise regression procedure to identify significant effects among the effects
identified in the previous step as well as all the main effects.

Step 3 Consider (i) the effects identified in step 2 and (ii) the two-factor interactions that have
at least one component factor appearing among the main effects in (i). Use a stepwise regression
procedure to identify significant effects among effects in (i) and (ii).

We iterate between steps 2 and 3 until the selected model does not change. We may have an
over-parameterized model, i.e., more variables than the number of runs, in steps 2 and 3. In
such a case we replace stepwise regression with forward selection.

In step 1 we compare nine different models, each consisting of a main effect and some two-
factor interactions selected via stepwise regression. Guided by the prior information that For
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does not interact with other compounds, we choose a model consisting of the main effect of
CC and three two-factor interactions CC × Lop, CC × Sn and CC × Asp. In step 2 we consider
all main effects and the three interactions suggested in step 1. When stepwise regression is
applied, there are eight significant effects at the 5% significance level. They are Asp, CC, Sn,
Lop, BHA, For, CC × Lop and CC × Sn. Note that CC × Asp is no longer significant. In step 3
we consider the eight significant effects identified in step 2 together with two-factor
interactions that have at least one component factor appearing among the six main effects in
step 2. Forward selection does not find any additional significant effects and thus there is no
need to iterate between steps 2 and 3. The final model consisting of the eight effects has a
multiple R-squared of 0.97, indicating a good fit.

The analysis strategy works well under the following two conditions: (1) only a few effects
are statistically significant and (2) when a two-factor interaction is significant, at least one of
the corresponding factor main effects is also significant. In practice it is possible to obtain
uninterpretable models that consist of an interaction term without any of its parent main effects.
It is also possible that the analysis procedure finds several incompatible models that are equally
plausible. When these happen, it is a strong indication that the information provided in the data
and design is limited and no analysis method can rescue. One solution is to conduct follow-up
experiments using additional runs. See Wu and Hadamard (2000, Section 4.4) and Box, Hunter
and Hunter (2005, Section 7.2) for choosing follow-up runs.
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Figure 1.
A comparison of the magnitudes and the significance of the estimated coefficients of, (For +
CC × Lop) in the final equation of ASAT using the regular design with the corresponding
magnitudes and coefficients for For and CC × Lop in the final equation of ASAT using the
nonregular design when the value of “a” varies from +4, +2, 0, −2 to −4. The height of a bar
represents the magnitude of the estimate and the number of asterisks represents the significance
level (0:01 <* P < 0.05, 0.001 <** P < 0:01 and ***P < 0:001).
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Table 1

Test groups in Study 1: Interaction of mineral supplements with the toxicity of CC (a) Test groups of a regular
design and (b) Test groups of a nonregular design.

Table (a): 1/16th fraction of a 28 design (Regular Design)
1. + Cd + Ca, P, Mg, Cu 2. + Cd + Ca, P, Fe, Zn
3. + Cd + Ca, P, Se, Mn 4. + Cd + Ca, Mg, Fe, Se
5. + Cd + Ca, Mg, Zn, Mn 6. + Cd + Ca, Fe, Cu, Mn
7. + Cd + Ca, Cu, Zn, Se 8. + Cd + all minerals at a high level
9. + Cd + Mn, Se, Zn, Fe 10. + Cd + Mn, Mg, Se, Cu
11. + Cd + Mg, Cu, Zn, Fe 12. + Cd + P, Mn, Cu, Zn
13. + Cd + P, Se, Cu, Fe 14. + Cd + P, Mg, Se, Zn
15. + Cd + P, Mn, Mg, Cu 16. + Cd + all minerals at a low level

Table (b): 12-run Plackett-Burman design (Nonregular Design)
1. + Cd + Mn, Zn, Fe 2. + Cd + P, Cu, Zn, Fe
3. + Cd + Ca, Se, Cu, Zn 4. + Cd + Mg, Se, Cu, Fe
5. + Cd + Mn, Mg, Se, Zn 6. + Cd + P, Mn, Mg, Cu
7. + Cd + Ca, P, Mn, Se, Fe 8. + Cd + Ca, P, Mg, Zn
9. + Cd + Ca, Mn, Cu 10.+ Cd + P, Se
11.+ Cd + Ca, Mg, Fe 12.+ Cd + all minerals at a high level
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Table 3

Test groups in Study 2: Interactive effects between nine chemicals in 4-week toxicity study with the response A
SAT: (a) Test groups of a regular design and (b) Test groups of a nonregular design.

Table (a): 1/32nd fraction of a 29 design (Regular Design)
Mixture Components ASAT Mixture Components ASAT
1. +For 70 2. +Sn, MC, Lop, Asp 71
3. +CC, MC, Sper, Asp 86 4. +Sn, CC, Sper, Lop, For 75
5. +BHA, MC, Sper, Lop 65 6. +Sn, BHA, Sper, Asp, For 70
7. +CC, BHA, Lop, Asp, For 96 8. +Sn, CC, BHA, MC 65
9. +DEHP, Sper, Lop, Asp 77 10. +Sn, DEHP, MC, Sper, For 71
11. +CC, DEHP, MC, Lop, For 88 12. +Sn, CC, DEHP, Asp 80
13. +BHA, DEHP, MC, Asp, For 68 14. +Sn, BHA, DEHP, Lop 69
15. +CC, BHA, DEHP, Sper 72 16. +All nine compounds at MOAEL 82

Table (b): 1/32nd fraction of a 29 design (Nonregular Design)
Mixture Components ASAT Mixture Components ASAT
1. +For 70 2. +Sn, MC, Lop, Asp, For 71 + a
3. +CC, MC, Sper, Asp 86 4. +Sn, CC, Sper, Lop, For 75
5. +BHA, MC, Sper, Lop 65 6. +Sn, BHA, Sper, Asp, For 70
7. +CC, BHA, Lop, Asp 96 − a 8. +Sn, CC, BHA, MC 65
9. +DEHP, Sper, Lop, Asp 77 10. +Sn, DEHP, MC, Sper 71 − a
11. +CC, DEHP, MC, Lop, For 88 12. +Sn, CC, DEHP, Asp 80
13. +BHA, DEHP, MC, Asp, For 68 14. +Sn, BHA, DEHP, Lop 69
15. +CC, BHA, DEHP, Sper, For 72 + a 16. +All nine compounds at MOAEL 82
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Table 5

Aliasing structure between each main effect and two-factor interactions in the quaternary-code design used in
Study 2.

E(β̂For ) = βFor + 1
2 (βMC × Asp + βMC × Lop − βMC × Sper + βMC × DEHP

− βAsp × CC + βAsp × Sn + βAsp × BHA + βCC × Lop
+ βCC × Sper + βCC × DEHP + βSn × Lop + βSn × Sper

− βSn × DEHP − βLop × BHA + βSper × BHA + βBHA × DEHA)

E(β̂MC ) = βMC + 1
2 (βFor × Asp + βFor × Lop − βFor × Sper + βFor × DEHP)

E(β̂Asp) = βAsp + 1
2 (βFor × MC − βFor × CC + βFor × Sn + βFor × BHA)

E(β̂CC) = βCC + 1
2 ( − βFor × Asp + βFor × Lop + βFor × Sper + βFor × DEHP)

E(β̂Sn) = βSn + 1
2 (βFor × Asp + βFor × Lop + βFor × Sper − βFor × DEHP)

E(β̂Lop ) = βLop + 1
2 (βFor × MC + βFor × CC + βFor × Sn − βFor × BHA)

E(β̂Sper) = βSper + 1
2 ( − βFor × MC + βFor × CC + βFor × Sn + βFor × BHA)

E(β̂BHA) = βBHA + 1
2 (βFor × Asp − βFor × Lop + βFor × Sper + βFor × DEHP)

E(β̂DEHP) = βDEHP + 1
2 (βFor × MC + βFor × CC − βFor × Sn + βFor × BHA)
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