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Abstract
A growing body of data suggests that hyperactivation of the immune system has been implicated in
the pathophysiology of major depressive disorder (MDD). Several pro-inflammatory cytokines, such
as tumour necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1) have been found to be significantly
increased in patients with MDD. This review focuses on these two cytokines based on multiple lines
of evidence from genetic, animal behaviour, and clinical studies showing that altered levels of serum
TNF-α and IL-1 are associated with increased risk of depression, cognitive impairments, and reduced
responsiveness to treatment. In addition, recent findings have shown that centrally expressed TNF-
α and IL-1 play a dual role in the regulation of synaptic plasticity. In this paper, we review and
critically appraise the mechanisms by which cytokines regulate synaptic and neural plasticity, and
their implications for the pathophysiology and treatment of MDD. Finally, we discuss the therapeutic
potential of anti-inflammatory-based approaches for treating patients with severe mood disorders.
This is a promising field for increasing our understanding of the mechanistic interaction between the
immune system, synaptic plasticity, and antidepressants, and for the ultimate development of novel
and improved therapeutics for severe mood disorders.
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Introduction
Cytokines are small pleiotropic proteins previously discovered in the context of cellular
activation and cell-to-cell communication in the immune system. Cytokines can be viewed as
either ‘pro-inflammatory’ or ‘anti-inflammatory’, depending on the sum total of their effects
on target cells. Although the presence and activity of cytokines in the brain was discovered
more than a decade ago, their role in physiological and pathological brain functions remains
to be fully elucidated. Early studies of the role of cytokines in the brain suggested that their
expression and activity was induced in response to infection, head trauma, ischaemia, stroke,
or various neurodegenerative diseases (Lacroix & Rivest, 1998; Licinio, 1997; Pitossi et al.
1997; Rivest et al. 2000). However, the notion that inflammatory cytokines are only expressed
in the brain in response to pathological stimuli has recently been challenged by emerging data
indicating that the proinflammatory cytokines interleukin-1 (IL-1), IL-18, and tumour necrosis
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factor-alpha (TNF-α) are expressed in normal brain and also play an active role in cellular
events that induce structural changes at the synaptic level (reviewed in Pickering et al. 2005;
Tonelli & Postolache, 2005).

These recently discovered cytokine functions in the brain, and the novel molecular relationship
between immunity and neural activity, are of particular relevance to patients suffering from
psychiatric or neurological diseases. Notably, patients with depressive disorders have elevated
levels of pro-inflammatory cytokines, suggesting a potential link between depressive illness
and activation of the inflammatory response (Anisman et al. 1999; Kim et al. 2007; Maes et
al. 1999; Muller & Ackenheil, 1998; Nassberger & Traskman-Bendz, 1993; Sluzewska,
1999; Tsao et al. 2006; Tuglu et al. 2003). In addition, depressive disorders have frequently
been observed in association with peripheral inflammatory cytokine activation in several
medical conditions, including viral infections, rheumatoid arthritis, cancer, and
neurodegenerative diseases (Miller & Raison, 2006; Raison et al. 2006; Wichers & Maes,
2002).

Relatedly, increasing pre-clinical and clinical studies have shown that mood disorders such as
major depressive disorder (MDD) and bipolar disorder (BPD), which have historically been
viewed as neurochemical disorders, are associated with structural and functional impairments
of synaptic plasticity in various regions of the central nervous system (CNS) (reviewed in
Schloesser et al. 2008). Overlap between the molecular actions of synaptic plasticity and those
targeted by antidepressants provides further evidence for a mechanistic convergence between
the two phenomena. Here, synaptic plasticity refers to the cellular processes that result in lasting
changes in the efficacy of neuro-transmission. More specifically, synaptic plasticity refers to
both the changes in number of synapses and the variability of the strength of a signal transmitted
through a synapse.

Given recent data showing elevated proinflammatory cytokine levels in MDD and animal
models of stress, this review evaluates the potential role of cytokine-mediated impairments of
synaptic plasticity in mood disorders, with a special emphasis on TNF-α and IL-1. Recent
findings from a variety of genetic, animal behaviour, and clinical studies show that increased
levels of serum TNF-α and IL-1 correlate with ‘sickness behaviour’, increased risk of MDD
and/ or reduced responsiveness to standard antidepressant treatment. In addition, the finding
that centrally expressed TNF-α and IL-1 play a ‘double-edged sword’ role in regulating
synaptic plasticity raises the possibility that it is maintaining the intricate balance between
physiological and pathological levels of these cytokines that is key to the pathogenesis of mood
disorders. Finally, we discuss potential therapeutic strategies and targets for anti-cytokine
therapy in MDD.

Pro-inflammatory cytokines in the normal brain
It has been well-established that peripherally produced cytokines can access the brain and thus
affect brain function via several routes, including (1) entry through leaky regions in the blood–
brain barrier, such as the circumventricular organs; (2) binding to cytokine-specific carrier
molecules expressed on brain endothelium, and (3) activation of vagal afferent fibres that
transmit cytokine signals to specific brain nuclei – such as the nucleus of the solitary tract –
which then serves as a relay station to other brain nuclei, including the paraventricular nucleus
in the hypothalamus (reviewed in Raison et al. 2006; Schiepers et al. 2005). Interestingly,
accumulating evidence suggests that the pro-inflammatory cytokines TNF-α, IL-1, and IL-6,
as well as interferons and their receptors, are constitutively expressed in various brain regions
(Table 1). However, it is worth mentioning that not all studies have detected the expression or
bioactivity of proinflammatory cytokines in the CNS (Cunningham et al. 1992; Fontana et
al. 1984; Gabellec et al. 1996; Gayle et al. 1998; Holmin et al. 1997; Hunt et al. 1992; Medana
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et al. 1997; Parnet et al. 1994; Tchelingerian et al. 1993; Turnbull et al. 1997; van Dam et
al. 1998). In the context of this review, it is important to note that TNF-α and IL-1 share similar
signal transduction pathways, leading to nuclear factor kappa B (NF-κB) activation. This, in
turn, is believed to represent a point of convergence for signalling pathways involved in normal
neuronal function and synaptic plasticity (Grilli & Memo, 1999), and may suggest a potential
role for constitutive central cytokine production in neuronal development and neuroplasticity.

Regulation of synaptic plasticity by pro-inflammatory cytokines
The relative abundance of pro-inflammatory cytokines in the hippocampus suggests that they
may play a role in hippocampal synaptic plasticity, which regulates learning and memory.
Indeed, multiple studies have shown that cytokines, notably IL-1 and TNF-α, modulate long-
term potentiation (LTP) and glutamatergic-dependent synaptic plasticity (Carlezon & Nestler,
2002; Du et al. 2004, 2007, 2008; Kendell et al. 2005; Malenka, 2003; Sun et al. 2005; Wolf
et al. 2004).

Regulation of synaptic plasticity by TNF-α
Increased levels of TNF-α have been observed in several neuropathological states associated
with learning and memory deficits, such as Alzheimer’s disease, leading researchers to explore
TNF-α’s putative role in regulating neuroplasticity. Indeed, pathophysiological levels of TNF-
α have been shown to inhibit LTP in the CA1 region, as well as the dentate gyrus of the rat
hippocampus (Butler et al. 2004; Cunningham et al. 1996; Tancredi et al. 1992). LTP is a long-
lasting increase in synaptic efficacy, and is thought to be an important underlying mechanism
of learning and memory formation (Bliss & Collingridge, 1993). In addition, it has been shown
that TNF receptor knockout mice demonstrate impaired long-term depression (LTD) in the
CA1 region of the hippocampus (Albensi & Mattson, 2000). The findings relating to the effects
of TNF-α on synaptic plasticity appear to have some behavioural correlates in vivo. TNF-α
knockout mice showed improved performance on spatial memory and learning tasks and,
conversely, TNF-α overexpressing mice were significantly impaired on spatial learning and
memory tasks (Aloe et al. 1999; Golan et al. 2004).

Although most studies suggest that TNF-α has deleterious effects on synaptic plasticity, recent
evidence shows that physiologically low levels of TNF-α may be important in brain
development, as well as the regulation of homeostatic synaptic plasticity, namely ‘synaptic
scaling’ (Golan et al. 2004; Stellwagen & Malenka, 2006). TNF-α released from glial cells in
response to decreased neuronal activity increases the number of synaptic α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and thus synaptic strength,
and is therefore critical for homeostatic adjustment of neuronal excitability. Interestingly,
removal of TNF-α from brain slices results in weakening synapses (Beattie et al. 2002),
suggesting that glially released TNF-α is important not only in increasing synaptic strength,
but also in maintaining or preserving it. This TNF-α-induced AMPA receptor exocytosis has
recently been shown to be mediated by activation of TNF-R1 receptors and is selective for
Ca2+-permeable AMPA receptor subunits. Independent of a critical role of TNF-α in
homeostatic scaling, it is important to note that this effect of TNF-α on Ca2+ homeostasis might
also have implications for neuronal toxicity, especially when extracellular levels of TNF-α are
high, as seen in a number of neuropathological conditions.

Although recent findings with regard to the role of TNF-α in regulating synaptic plasticity
appear initially to be conflicting, it is also possible that it is precisely the delicate balance
between pathophysiological and physiological levels of TNF-α that is important. Thus it is
conceivable that under pathophysiological conditions, when central levels of TNF-α become
elevated, LTP is likely to be inhibited, while under physiological conditions, low levels of
TNF-α serve as modulators of homeostatic synaptic plasticity (Table 2).
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Regulation of synaptic plasticity by IL-1
In addition to its well-known role in immunoregulation of inflammatory processes, recent
evidence suggests that IL-1 may modulate synaptic plasticity and behavioural systems. Indeed,
it has been noted that pathophysiological levels of IL-1 can have detrimental effects on
hippocampal-dependent memory and learning processes (Barrientos et al. 2002; Bellinger et
al. 1993; Curran & O’Connor, 2001; Gibertini et al. 1995; Goshen et al. 2008; Oitzl et al.
1993; Pugh et al. 1999), while stress-induced inhibition of hippocampus-dependent
conditioning can be reversed by IL-1ra, an IL-1 receptor antagonist (Maier & Watkins, 1995;
Pugh et al. 1999, 2000). In accordance with these behavioural effects, IL-1 was found to impair
LTP in the hippocampus (Cunningham et al. 1996; Murray & Lynch, 1998).

Although most findings to date indicate that IL-1 has deleterious effects on synaptic function
and memory, recent evidence suggests that, like TNF-α, it may also be required for the
physiological regulation of hippocampal plasticity. Early studies showed that LTP in the
hippocampus was accompanied by a long-lasting increase in IL-1 gene expression, and that
exposure to IL-1ra impairs the maintenance of LTP (Schneider et al. 1998). Furthermore, it
has been shown that, in rats, administration of IL-1ra impairs memory in the water-maze and
passive-avoidance paradigms, both of which are associated with hippocampal functioning. In
contrast, relatively low doses of IL-1β improve avoidance memory (Brennan et al. 2003; Song
et al. 2003; Yirmiya et al. 2002). Similarly, mice with a targeted deletion of IL-1R1 (IL-1rKO)
display severely impaired hippocampal-dependent memory, diminished short-term plasticity,
and exhibit no LTP, both in vivo and in vitro (Avital et al. 2003). Recently, an elegant series
of studies by Goshen and colleagues found conclusive evidence that the involvement of IL-1
in hippocampal-dependent memory processes follows an inverted U-shaped pattern, which
could explain the observed discrepancy of IL-1 effects on synaptic plasticity (Goshen et al.
2007, 2008). They demonstrated that physiological levels of IL-1 are needed for memory
formation, and a slight increase in brain IL-1 levels can even improve memory; however, any
deviation from the physiological range, either by excess elevation in IL-1 levels (induced by
exogenously administered IL-1 or by enhanced endogenous release of IL-1) or by blockade of
IL-1 signalling, results in impaired memory (Table 2).

Synaptic plasticity in the pathophysiology and treatment of MDD
Increasing pre-clinical and clinical evidence demonstrates that synaptic plasticity, a
fundamental mechanism of neuronal adaptation, is altered in mood disorders, including
depression, and in animal models of stress. The impairment of synaptic plasticity includes both
structural and functional plasticity.

Neuronal loss and atrophy in mood disorders
Neuroimaging and post-mortem studies suggest that severe mood disorders such as MDD and
BPD are associated with structural and functional impairments related to neuroplasticity in
various regions of the CNS. Brain imaging and post-mortem studies show prominent neuronal
and glial abnormalities in hippocampal and frontal cortex areas in patients with MDD or BPD,
especially those who have experienced multiple episodes (Bielau et al. 2005; MacQueen et
al. 2003; Ongur et al. 1998; Rajkowska, 2000, 2002; Rajkowska et al. 2001; Rajkowska &
Miguel-Hidalgo, 2007; Sheline, 2000). In addition, decreased gene expression for astrocytic
specific proteins, glutamate transporter, glutamine synthesis, and key oligodendrocyte- and
myelin-related genes have also been observed in the frontal cortex tissue of patients with MDD
or BPD (Choudary et al. 2005; Tkachev et al. 2003; Uranova et al. 2004). Similarly, multiple
studies in rodents and non-human primates demonstrate that exposure to stress can alter
processes or number of neurons (reviewed in Duman, 2004; Warner-Schmidt & Duman,
2006). Various behavioural stress paradigms or long-term exposure to high levels of
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glucocorticoids induce neuronal atrophy in hippocampus, decrease glial proliferation and alter
glial cell glutamate metabolism (Banasr & Duman, 2008; Cook & Wellman, 2004) (reviewed
in Banasr & Duman, 2007; Manji & Duman, 2001). Stress can cause a decrease of up to 25%
in the number of glial fibrillary acidic protein (GFAP)-positive cells in hippocampus and this
number is highly correlated with reduced hippocampal volume (Czeh et al. 2006).

Impairments of functional synaptic plasticity in mood disorders
While the precise contribution of such perturbations to the network changes in brain function
is difficult to infer, it is conceivable that morphological and/or changes in neuronal and glial
function related to stress may contribute to the pathophysiology of mood disorders.
Hippocampal synaptic plasticity, as modelled by LTP, is widely believed to represent an
important component mechanism of hippocampus-dependent memory formation (Malenka,
2003). It is therefore striking that chronic or severe stress has been shown to disrupt
hippocampus-dependent memory in experimental animals (reviewed in Sapolsky, 2003).
Furthermore, specific impairments of hippocampus-dependent explicit memory are also seen
after treating human subjects with glucocorticoids (de Quervain et al. 2000; Newcomer et al.
1999) and after stress (reviewed in Shors, 2006). Several independent studies have
demonstrated that sufficiently severe stress can impair LTP and facilitate LTD in the rodent
hippocampus (reviewed in Connor & Leonard, 1998; Kim & Diamond, 2002). Stress can affect
synaptic plasticity via a variety of mechanisms, including glutamatergic and serotonergic-
dependent mechanisms, and glucocorticoid receptor-dependent initiation of transcription and
translation (Shakesby et al. 2002; Xu et al. 1998). Consistent with the involvement of these
mechanisms in stress modification of plasticity, antagonists of N-methyl-D-aspartate (NMDA)
receptors, glucocorticoid receptors, or serotonin uptake enhancers prevent LTP blocking by
stress.

Interestingly, multiple clinical and experimental studies indicate that stress and depression are
also associated with increased circulating concentrations of TNF-α and IL-1 (reviewed in
Connor & Leonard, 1998), which can impair synaptic plasticity and cognitive processes and
contribute to progression of depressive disorders. Indeed, patients with MDD exhibit prominent
deficits in explicit memory (Zakzanis et al. 1998), a cognitive capacity that depends on the
hippocampus and medial temporal lobe (Cavanagh et al. 2002; Clark et al. 2002; Eastwood &
Harrison, 2001; Squire et al. 2004). Notably, several signalling pathways involved in neuronal
plasticity have been demonstrated to be impaired in patients with mood disorders or in animal
models of stress. Decreased expression of molecular markers of synaptic plasticity, including
GAP-43, synapsins and synaptophysins have been demonstrated in the post-mortem brains of
patients with BPD (Benowitz & Perrone-Bizzozero, 1991; Vawter et al. 2002). Pre-clinical
studies have also indicated that the expression of critical molecules involved in the regulation
of synaptic plasticity, such as adenosine monophosphate (cAMP) response element-binding
protein (CREB), brain-derived neurotrophic factor (BDNF), and Bcl-2 is reduced in response
to stress (reviewed in Schloesser et al. 2008; Zarate et al. 2006).

The effect of antidepressants on synaptic plasticity
If the effects of stress or mood disorders on the mechanisms of synaptic plasticity contribute
to the pathophysiology of MDD, then antidepressant treatments might be expected to affect
the same mechanisms. Indeed, several studies have demonstrated that antidepressants affect
LTP in specific brain regions, such as the dentate gyrus and CA1 area of hippocampus. In the
dentate gyrus, both chronic electroconvulsive therapy (ECT) and chemical antidepressant
treatment increase LTP (Levkovitz et al. 2001; Stewart & Reid, 2000). Recent studies also
suggest that chronic administration of a selective serotonin reuptake inhibitor (SSRI) or an
atypical antidepressant (tianeptine) increases LTP and blocks the stress-induced impairment
of LTP and enhancement of LTD in the CA1 region (Holderbach et al. 2007; Vouimba et al.
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2006). Chronic SSRI administration similarly affects hippocampal–prefrontal cortex circuits,
reversing stress-induced impairment of LTP and enhancement of LTD (Rocher et al. 2004).

In addition, several studies demonstrate that key signalling components, including
glutamatergic receptors, BDNF, and Bcl-2, all of which are important regulators of synaptic
plasticity, also serve as major targets for antidepressants and are required for the cellular and
behavioural actions of antidepressant treatments. NMDA antagonists, such as MK-801 and
AP-7, have antidepressant effects in animal models of depression and in animals exposed to
stress (reviewed in Manji et al. 2003). There is also evidence that memantine, a high-affinity
NMDA receptor antagonist, has a rapid antidepressant effect in patients with severe depression
(Zarate et al. 2006). Pre-clinical studies have also shown that modulation of AMPA receptors
by AMPA receptor potentiators (ampakines) enhances mitogen-activated protein kinase
(MAPK) activation and BDNF expression, and exerts an antidepresant effect in animal models
of depression and in animals exposed to chronic mild stress (reviewed in Manji et al. 2003).
Finally, in very preliminary clinical studies, ampakines appear to have beneficial effects on
learning and memory (Goff et al. 2001). Furthermore, riluzole and lamotrigine, both of which
are glutamatergic modulators with anticonvulsant properties, increase the surface expression
of the AMPA subunits GluR1 and GluR2 (Du et al. 2007). Recent studies have shown that
riluzole stimulates the synthesis of growth factors including BDNF (Mizuta et al. 2001).
Consistent with the evidence that modulating the glutamergic system may be key to the
mechanism of antidepressants, one open-label study found that riluzole had significant
antidepressant effects in patients with severe depression (Zarate et al. 2004a). In addition,
several pre-clinical and clinical studies have implicated neurotrophic factors as targets of
standard antidepressant treatment (reviewed in Tanis et al. 2007). Notably, pramipexole, which
up-regulates Bcl-2 levels in several brain areas, had antidepressant effects in one double-blind,
placebo-controlled trial of patients with bipolar II depression (Zarate et al. 2004b). Together,
these studies indicate that chronic antidepressant treatments can regulate intracellular
signalling pathways involved in regulating neuroplasticity and reverse impairments of synaptic
plasticity and cellular resilience. These changes may be particularly important in understanding
the therapeutic effectiveness of these drugs.

Involvement of cytokines in the pathogenesis of depressive disorders
In view of recent data supporting the role of proinflammatory cytokines in the regulation of
synaptic plasticity, and emerging data suggesting that synaptic plasticity is impaired in mood
disorders, it is conceivable that activation of the immune system network may be related to at
least some aspects of the complex pathophysiology of depressive disorders. However, it is
beyond the scope of this paper to review in detail the burgeoning literature demonstrating that
depressive disorders are pro-inflammatory states. Here we briefly summarize some of the most
salient findings; the interested reader is referred to several outstanding papers on the topic
(Dantzer et al. 2008; Maes, 1994; McNally et al. 2008; Miller & Raison, 2006; Raison et al.
2006).

Cytokine-induced ‘sickness behaviour’ in animal models
Emerging evidence implicates hyperactivation of the immune system resulting in increased
TH1 cytokines in the aetiology of depressive disorders (Maes et al. 1995a, b; Sedgwick &
Czerkinsky, 1992). For instance, several animal studies have shown that administration of
cytokines, such as IL-1 or activation of macrophages and other inflammatory immune cells by
systemic lipopolysaccharide (LPS) treatment, provokes behavioural symptoms collectively
referred to as ‘sickness behaviour’ (Dantzer, 2001; Goshen et al. 2008; Kent et al. 1992; Larson
& Dunn, 2001; Maier & Watkins, 1998). Motivation and some cognitive functions may also
be affected (Dantzer, 2001; Larson & Dunn, 2001). Mice lacking the enzyme required to
synthesize IL-1 have reduced ‘sickness behaviour’ and lower expression of neurotoxic and
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inflammatory mediator genes in the brain after peripheral endotoxin injection (Mastronardi et
al. 2007). In addition, deletion of either TNF-α receptor 1 (TNFR1) or TNFR2 genes resulted
in antidepressant-like effects (Simen et al. 2006).

Interestingly, chronic stress induced depressive-like symptoms concomitantly with an increase
in IL-1 expression in hippocampus, but mice with a deletion of the IL-1 receptor or with
restricted overexpression of IL-1 antagonist did not display stress-induced behavioural or
neuroendocrine changes (Goshen et al. 2008). Further support for the role of immune system
activation in the pathogenesis of depressive disorders comes from studies noting that the
antidepressants desipramine and fluoxetine reduce the inflammatory reaction in ovalbumin-
sensitized rats in the LPS murine model of autoimmunity (Roumestan et al. 2007).

Psychiatric adverse effects associated with cytokine immunotherapy
Interestingly, the findings from animal studies showing that cytokines play a potential role in
the development of depression-like behaviours appear to correlate with clinical studies. There
is increasing evidence that immunotherapy with IL-2 or IFN-α is often associated with marked
cognitive disturbances and neurovegetative symptoms such as fatigue, sleep disturbances,
irritability, appetite suppression, and depressed mood that correlate with elevated serum levels
of IFN-α, IL-6, IL-8, and IL-10 (Bonaccorso et al. 2001, 2002; Capuron et al. 2001a, b;
Dieperink et al. 2000, 2003). In addition, in healthy human volunteers, depression, anxiety,
and memory impairment are associated with immune activation by the bacterial endotoxin
LPS, and are correlated with serum IL-1 and TNF-α levels induced by that treatment (Yirmiya
et al. 2000).

The incidence of depressive disorders associated with cytokine therapy is highly variable,
ranging from 0% to 45% in different studies. The reasons for these variations are probably
related to the disease being treated, the cytokine being used and its dose, as well as assessment
measures and psychiatric history (de Beaurepaire, 2002). However, in most cases, the
depressive symptoms can be treated effectively with antidepressants.

Clinical evidence for immune activation in MDD
Psychological stress is a common risk factor for the development of MDD, and most initial
episodes of MDD are preceded by an identifiable stressor (Kendler et al. 2000). Consistent
with the notion that stress might provide a link between MDD and inflammation, emerging
pre-clinical and clinical evidence indicate that acute and chronic stress elevates levels of
proinflammatory cytokines, such as IL-1 and TNF-α and activates their signalling pathways
in the periphery and CNS (Deinzer et al. 2004; Goebel et al. 2000; Madrigal et al. 2002;
O’Connor et al. 2003). Further support for the cytokine hypothesis comes from clinical studies
in patients with MDD and BPD who present with a significant rise in serum levels of
proinflammatory cytokines, such as TNF-α, IL-1 IL-6, IL-12, soluble IL-6R, IL-2, soluble
IL-2R, IL-1ra, and IFN-α (Hestad et al. 2003; Kim et al. 2007; Kubera et al. 2000; Maes,
1994; O’Brien et al. 2006; Raison et al. 2006; Sluzewska, 1999). Recently, another study
demonstrated that, compared to healthy controls, the expression of inflammatory genes –
including TNF-α, IL-1, and IL-6 – was increased in the monocytes of a large proportion of
individuals with BPD as well as the offspring of BPD patients (Padmos et al. 2008). In addition
gene expression microarray studies have shown that several receptors for immune genes, such
as interferon α/β receptor, IL-8 receptor, and interferon c-inducible protein 16 (IFI-16) were
found to be differentially regulated in the frontal cortex of patients with BPD (Bezchlibnyk et
al. 2001; Iwamoto et al. 2004). Interestingly, IFI-16 exerts its immunomodulatory effects
through regulation of p53 activity, a key tumour suppressor protein necessary in the signalling
cascade activated by TNF-α (Asefa et al. 2004; Hofseth et al. 2004). It is notable that another
severe psychiatric disorder, schizophrenia, has also been associated with increased
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inflammatory response and elevated levels of pro-inflammatory cytokines (reviewed in Muller
& Schwarz, 2006).

Recently it has been shown that patients with MDD appear to have an imbalance between pro-
and anti-inflammatory cytokines, which can be attenuated following treatment with the
antidepressants fluoxetine, sertraline, or paroxetine (Kim et al. 2007; Kubera et al. 2000;
Sutcigil et al. 2007; Taler et al. 2007). Other recent studies found that MDD patients with
abnormal allelic variants of the genes for IL-1 and TNF-α and higher levels of TNF-α showed
a reduced responsiveness to antidepressant treatment (Eller et al. 2008; Fertuzinhos et al.
2004; Jun et al. 2003; Rosa et al. 2004).

A glial–cytokine relationship in MDD
Several pre-clinical and clinical studies also indicate a potential key role for excitotoxicity and
microglial activation in the aetiology of MDD. Activation of the immune system has been
observed in patients with MDD, resulting in increased levels of circulating pro-inflammatory-
cytokines. Specifically, pro-inflammatory cytokines can contribute to glutamate neurotoxicity
in multiple ways: (1) directly, via activation of the kynurenine pathway in microglia and
increased production of quinolinic acid and glutamate release; (2) indirectly, via decreasing
glial glutamate transporter activity leading to reduced glutamate removal from the extracellular
space; and (3) by inducing long-term activation of microglia to release TNF-α and IL-1 in a
positive feedback manner (reviewed in McNally et al. 2008). For instance, riluzole, a
glutamatergic modulator with neuroprotective, plasticity-enhancing, and antidepressant
properties, enhances glutamate clearance by astrocytes and prevents decrease in glial
metabolism (Banasr & Duman, 2008). Furthermore, antidepressants have been shown to inhibit
INF-α-induced microglia production of IL-6 and nitric oxide (Hashioka et al. 2007), suggesting
that inhibiting brain inflammation may represent a novel mechanism of action of
antidepressants. Inflammation-mediated imbalance of glutamatergic neurotransmission
appears to be similarly implicated in schizophrenia (Muller & Schwarz, 2006), suggesting that
immune-mediated glutamatergic disturbance might be a component of the pathophysiology of
psychiatric illnesses associated with severe cognitive impairments.

Cytokines as potential therapeutic targets in mood disorders
Therapy with standard antidepressants

More direct support for the role of pro-inflammatory cytokines in regulating synaptic plasticity
in the pathogenesis of MDD comes from studies wherein antidepressant drugs from two
different pharmacological classes induced changes in TNF-α expression and function in the
brain. Both acute and chronic treatment with the tricyclic antidepressant (TCA) desipramine
depletes neuron-localized TNF-α mRNA and protein in brain regions implicated in mood
expression (Ignatowski et al. 1997; Nickola et al. 2001). Recently, it was reported that the
SSRIs sertraline and paroxetine inhibited TNF-α secretion, leading to the attenuation of pro-
inflammatory activity (Taler et al. 2007, 2008). In addition, it has been shown that
administration of the TCAs desipramine and amitriptyline, as well as the SSRI zimelidine
decreased TNF-α levels to facilitate norepinephrine release (Reynolds et al. 2005).
Furthermore, facilitation of noradrenergic neurotransmission induced by decreased levels of
TNF-α in the brain is key to the efficacy of desipramine. This effect appears to be shared by
other types of antidepressant drugs; chronic adminstration of the TCA amitriptyline or the SSRI
zimelidine transformed TNF-α regulation of norepinephrine release to facilitation, an effect
that occurs in association with α2-adrenergic receptor activation (Nickola et al. 2001; Reynolds
et al. 2004). Collectively, these data demonstrate that dissimilar antidepressants regulate TNF-
α levels in the brain, thus ultimately modifying noradrenergic and possibly serotonergic and
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dopaminergic neurotransmission, and provide further evidence for the role of TNF-α-induced
modulation of synaptic plasticity in the mechanism of antidepressant action.

Anti-cytokine therapy
Both pre-clinical and clinical studies have demonstrated that antidepressants can inhibit the
production and/or release of pro-inflammatory cytokines and stimulate the production of anti-
inflammatory cytokines, suggesting that reductions in inflammation might contribute to
treatment response (Hestad et al. 2003; Kenis & Maes, 2002; Lanquillon et al. 2000; Tuglu et
al. 2003). These observations also raise the possibility that inhibiting pro-inflammatory
cytokine signalling is a potential strategy for treating depressive disorders, especially in
patients with evidence of increased inflammatory activity before therapy, who might be less
likely to respond to conventional agents.

Indeed, cytokine antagonists appear to have anti-depressant-like effects, even in the absence
of an immune challenge. For example, intracerebroventricular administration of IL-1ra in
rodents prevents memory deficits following the psychological stress of social isolation (Pugh
et al. 1999), and intracerebroventricularly administered antibodies to TNF-α have
antidepressant effects in the forced swim test (Reynolds et al. 2004). In humans, administration
of TNF-α blockers such as etanercept (Enbrel®; Amgen, USA) and infliximab (Remicade®;
Johnson and Johnson, USA) has been found to attenuate the depressive symptoms that
accompany immune system activation in psoriasis (Dantzer, 1999; Krishnan et al. 2007; Tyring
et al. 2006; Yirmiya, 2000). In addition, inhibition of the production of pro-inflammatory
cytokines, such TNF-α and IL-1 by celexocib induced a rapid antidepressant response and
prevented cognitive decline in patients with MDD and BPD (Muller et al. 2006; Nery et al.
2008). Although the putative antidepressant effects of anti-cytokine therapy have not yet been
fully illustrated, it is not unreasonable to assume that antagonism of cytokine function may
represent a novel target in the treatment of depressive disorders. Alternatively, because it has
been shown that imbalance between pro-and anti-inflammatory cytokines might be involved
in the pathogenesis of depressive disorders it is possible that anti-inflammatory cytokines with
a rather broad spectrum of action (e.g. IL-4 and IL-10) may also be useful anti-cytokine
therapies.

Concluding remarks
The present review seeks to bridge the gap between recent findings that implicate both
impairments in synaptic plasticity and increased levels of proinflammatory cytokines in
patients with mood disorders. As this paper has explored, we propose that cytokine-induced
impairments in synaptic plasticity may underlie at least some aspects of the complex
pathophysiology of MDD based on the evidence that: (1) elevation of brain cytokine levels is
necessary and sufficient to induce depressive symptoms and neuro-endocrine changes in
animal models of depression; (2) increased levels of brain cytokines have been shown to impair
synaptic plasticity both at morphological and functional levels; and (3) cytokine-induced
modulation of neurotransmission and synaptic plasticity plays an important role in the
mechanism of antidepressant action and the efficacy of antidepressant treatment.

It is important to note that although the increased levels of cytokines seen in patients with MDD
are detrimental to neuroplasticity, physiological levels of pro-inflammatory cytokines are
essential for normal brain development and homeostatic regulation of synaptic scaling (Avital
et al. 2003; Beattie et al. 2002; Goshen et al. 2007, 2008; Stellwagen & Malenka, 2006). These
two conflicting pieces of evidence suggest that it is the disturbance of this intricate equilibrium
between physiological and pathophysiolgical levels of cytokines in the brain that affects
synaptic plasticity and plays a critical role in the pathophysiology of MDD (Fig. 1).
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In the context of this review, it is important to note that despite the accumulating evidence in
support of the cytokine hypothesis of MDD, several studies have found only a weak association,
or no association, between inflammation and the development of depression when factors such
as body mass index, gender, and personality were taken into account (Brambilla & Maggioni,
1998; Carpenter et al. 2004; Miller et al. 2003; Rothermundt et al. 2001). In addition, some
otherwise positive studies failed to find a correlation between inflammation and the severity
of depressive symptoms (Hestad et al. 2003), or found disparate and occasionally opposing
correlations for different pro-inflammatory mediators (Miller et al. 2002, 2005; Pollmacher et
al. 2002).

Another issue that remains to be elucidated is whether pro-inflammatory cytokines, released
peripherally upon immune system activation, play a causal role in the onset of MDD, or whether
they represent an immunological side-effect of this disease. Indeed, due to the associative
nature of the studies investigating the relationship between immune activation, cytokines, and
MDD it is unclear whether the activation of the immune system observed in depressed patients
precedes or follows the onset of depressive disorders (reviewed in Dantzer et al. 2008; Raison
et al. 2006). However, the findings that cytokine therapy is often accompanied by adverse
psychiatric events, which disappear when cytokine treatment ends or antidepressant treatment
begins, suggest a potentially causal role for pro-inflammatory cytokines in the aetiology and
pathophysiology of mood disorders; the observation that anti-cytokine treatment produces an
antidepressant response in patients with MDD and BPD lends further credence to this notion.

Future research will need to determine the clinical effects of cytokine antagonists on the
pathophysiological and psychological features of mood disorders. In order to elucidate the
functional role of cytokine-induced alterations of synaptic plasticity in the pathophysiology of
MDD, it will also be important to identify the effects of cytokine antagonists and cytokine
synthesis inhibitors on neuroplasticity, both at the morphological and functional level. This is
a promising field for increasing our understanding of the mechanistic interaction between the
immune system, synaptic plasticity, and antidepressants, and for the ultimate development of
novel and improved therapeutics for severe mood disorders.
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Fig. 1.
Dual role of pro-inflammatory cytokines in regulating synaptic plasticity. The diagram on the
left depicts the critical role of constitutively expressed TNF-α in regulation of homeostatic
synaptic plasticity in the normal brain. Decreased neuronal activity and consequently reduced
glutamate release from axons is sensed by glia, which triggers release of TNF-α. TNF-α
activates neuronal TNF-α receptors type I (TNFR1) leading to activation of the
phosphoinositide-3 kinase (PI3K) pathway and up-regulation of specific adhesion molecule-
β3 integrin, which in turn triggers α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptor insertion to the membrane and increases synaptic strength. The diagram on
the right depicts the various signalling cascades initiated by high pathophysiological levels of
pro-inflammatory cytokines in the brain by activated microglia, which might underlie at least
some aspects of the pathophysiology of depression. (1) TNF-α and IL-1 trigger production of
quinolinic acid and release of glutamate by microglia; (2) TNF-α and IL-1 inhibit glutamate
removal by astrocytes, leading to excess extracellular glutamate and neurotoxicity; (3) TNF-
α acts via TNFR1 to up-regulate membrane expression of Ca-permeable AMPA receptor
subunits, thus leading to increased Ca2+ influx and neuronal death; (4) TNFR1 activation
coupled to activation of p38 and NF-κB pathways inhibits the early and late phases of LTP.
These effects of pathophysiological levels of pro-inflammatory cytokines on synaptic plasticity
at both morphological and functional levels might underlie the cognitive disturbances and
impairments of memory seen in patients with depression.
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Table 1

Expression profile and signalling pathways of selected pro-inflammatory cytokines in the normal brain

Cytokine Primary localization of cytokine
Primary localization of
cytokine receptor Associated signalling cascades

TNF-α Neurons in hypothalamus, caudal
raphe nuclei (Breder et al. 1993;
Churchill et al. 2008); astrocytes
(Chung & Benveniste, 1990;
Lieberman et al. 1989)

TNFR1 and TNFR2 in neurons and
glia in the cortex, hippocampus,
thalamus (Boka et al. 1994;
Tchelingerian et al. 1993)

TNFR1 (via FADD) caspase 8 and caspase 3
pathwayTNFR1 and TNFR2 (via TRAF2) – JNK,
p38MAPK and NF-κB pathways (Aggarwal, 2003)

IL-1 family (IL-1α, IL-1β,
IL-18)

Glial cells in cerebal cortex and
hypothalamus (Breder et al. 1993;
Vitkovic et al. 2000); Neurons in
hypothalamus (Friedman, 2001;
Rettori et al. 1994; Yasuhara et al.
1997)

IL-1RI and IL-1RII in neurons in
hippocampus, hypothalamus and
dentate gyrus (Cunningham et al.
1992; Parnet et al. 1994)

IL-1RI (via IRAK) – NF-κB pathwaysIL-1Rs – JNK,
p42/44 MAPK, p38MAPK pathways (Vitkovic et
al. 2000)

IL-6 Neurons in hippocampus and cortex
(Gadient & Otten, 1994; Schobitz et
al. 1993) astrocytes (Van Wagoner et
al. 1999)

Neurons in hippocampus and
cortex (Gadient & Otten, 1994;
Schobitz et al. 1993)

Jak/STAT and Ras/MEK/MAPK pathways (Heinrich
et al. 1998; Pizzi et al. 2004)

INFs (INF-α/β, INF-γ) Neurons, astrocytes and microglia
(Benveniste, 1998)

Neurons in hippocampus and
cortex (Gadient & Otten, 1994;
Schobitz et al. 1993)

Jak/STAT and PI3K pathways (Bartee et al. 2008; Li
et al. 2007)

FADD, Fas-associated death domain; IL-6, interleukin 6; IL-1RI, IL-1 receptor type I; IL-1RII, IL-1 receptor type II; INF, interferon; IRAK, interleukin
1 receptor-associated kinase; Jak/STAT, Janus kinases/signal transducers and activators of transcription; JNK, c-Jun N-terminal kinases/stress-activated
protein kinase; MAPK, mitogen-activated protein kinase; MEK, MAPK/extracellular signal-related kinase (ERK) kinase; NF-κB, nuclear factor kappa
B; PI3K, phosphoinositide-3 kinase; TNFR1, TNF-α type I receptor; TNFR2, TNF-α type 2 receptor; TRAF2, TNFR-associated factor 2.

Int J Neuropsychopharmacol. Author manuscript; available in PMC 2009 November 2.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Khairova et al. Page 23

Table 2

Regulation of synaptic plasticity and behavioural correlates by pro-inflammatory cytokines

Cytokine Effect on synaptic plasticity Behavioural correlates

Physiological levels of
TNF-α

Up-regulation of AMPA receptor trafficking;
increased synaptic strength (Beattie et al. 2002;
Stellwagen et al. 2005)

?

High pathological
levels of TNF-α

Inhibition of LTP (Butler et al. 2004; Coogan et al.
1999; Cunningham et al. 1996; Tancredi et al. 1992)

‘Depressive-like ’ behaviour, impaired learning and memory in animal
models (Aloe et al. 1999; Dantzer, 2001; Golan et al. 2004)
Depressive symptoms, anxiety and memory impairments in mood disorders
(Dantzer et al. 2008; Raison et al. 2006)

Physiological levels of
IL-1

Maintenance of short-term plasticity and LTP (Avital
et al. 2003; Goshen et al. 2007, 2008; Yirmiya et al.
2002)

Improved hippocampal-dependent memory (Avital et al. 2003; Brennan et
al. 2003; Song et al. 2003)

High pathological
levels of IL-1 or IL-18

Impaired LTP (Coogan et al. 1999; Curran &
O’Connor, 2001; Goshen et al. 2007)

‘Depressive-like ’ behaviour and impaired hippocampal-dependent memory
in animal models (Dantzer, 2001; Dantzer et al. 2008; Gibertini et al. 1995)

Increased levels of
IL-6

Decreased glutamate release (D’Arcangelo et al.
2000); decreased expression of LTP (Tancredi et al.
2000)

‘Depressive-like ’ behaviour, impaired learning and memory in animal
models (Balschun et al. 2004; Bluthe et al. 1999; Heyser et al. 1997)

Marked cognitive disturbances and depression symptoms in MDD (Capuron
et al. 2001a; Raison et al. 2006)

Increased levels of
INF-α and INF-γ

Decreased dendritic AMPA receptor clustering
(Vikman et al. 2001); inhibition of glutamate-
mediated excitatory post-synaptic potentials and LTP
(Mendoza-Fernandez et al. 2000)

Anxiety and learning deficits in animal models (Fahey et al. 2008; Myint et
al. 2007)

Depressive symptoms and cognitive deficits in MDD (Gabbay et al. 2008;
Raison et al. 2006)

AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; IL-1, interleukin 1; IL-6, interleukin 6; INF-α, interferon-alpha; INF-γ, interferon-
gamma; LTP, long-term potentiation; MDD, major depressive disorder.
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