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Abstract
Models can be useful at many different levels when considering complex issues such as biological
control of mosquitoes. At an early stage, exploratory models are valuable in exploring the
characteristics of an ideal biological control agent and for guidance in data collection. When more
data are available, models can be used to explore alternative control strategies and the likelihood
of success. There are few modeling studies that explicitly consider biological control in
mosquitoes; however, there have been many theoretical studies of biological control in other
insect systems and of mosquitoes and mosquito-borne diseases in general. Examples are used here
to illustrate important aspects of designing, using and interpreting models. The stability properties
of a model are valuable in assessing the potential of a biological control agent, but may not be
relevant to a mosquito population with frequent environmental perturbations. The time scale and
goal of proposed control strategies are important considerations when analyzing a model. The
underlying biology of the mosquito host and the biological control agent must be carefully
considered when deciding what to include in a model. Factors such as density dependent
population growth in the host, the searching efficiency and aggregation of a natural enemy, and
the resource base of both have been shown to influence the stability and dynamics of the
interaction. Including existing mosquito control practices into a model is useful if biological
control is proposed for locations with current insecticidal control. The development of Integrated
Pest Management (IPM) strategies can be enhanced using modeling techniques, as a wide variety
of options can be simulated and examined. Models can also be valuable in comparing alternate
routes of disease transmission and to investigate the level of control needed to reduce
transmission.
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INTRODUCTION
Modeling could be a valuable tool in developing biological control methods and strategies
for mosquitoes, but there has been relatively little work done directly on this subject.
However, there are many modeling studies on other organisms relevant to biological control
of mosquitoes. Many models of mosquitoes and mosquito-borne disease have been
developed which do not directly consider biocontrol strategies but which can be used to
identify features that would be important in developing biocontrol agents and strategies.
This chapter will illustrate ideas that may be of value in developing biological control theory
for mosquitoes, including the general theory of biological control, models of biocontrol in
other insects, and models of mosquitoes and vector-borne diseases. Rather than an
exhaustive review of all modeling of biocontrol or vectors, this chapter will use selected
examples to highlight useful techniques and models applicable to biocontrol of mosquitoes.
It will generally restrict attention to process-based models rather than statistical models; the
latter are, of course, very valuable but beyond the scope of this review.
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An important consideration when identifying features of biocontrol systems is the goal of
the control strategy. Although eradication is occasionally the actual goal, in general we are
trying to reduce (and maintain) an insect population below a critical threshold: an economic
level for pests of crops or livestock, a threshold for disease transmission for vectors, a
comfort level for nuisance species. Therefore, it is important to note that long-term
coexistence of the host (e.g., a mosquito species) and a biocontrol agent is highly desirable,
to extend the time between releases or applications while maintaining the pest population at
a low level. This is a different concept from the development of biological pesticides, such
as Bacillus thuringiensis israelensis (Bti). For these agents, the mode of action is more like a
pesticide and the agent (the bacterium) is not expected to replicate or be maintained in the
field; recurrent applications are required. Some issues pertaining to biological pesticides will
be discussed here, but the primary focus will be on true biological control agents, with the
goal of long-term persistence of the agent in the environment following release.

MODELING BASICS
A brief review of some modeling terms and structures will aid in understanding how models
can be used to study biocontrol of mosquitoes. There are several useful texts for those
interested in learning more about modeling (e.g., Anderson and May 1991, Scott and Smith
1994, Gurney and Nisbet 1998). Analytical models are relatively simple and can be solved
mathematically; more complex models must be solved numerically by computer simulation
of one type or another. The state variables are the variables being tracked explicitly in the
model; frequently these are counts of individuals in different classes, such as the number of
adult female mosquitoes, number of pupae, or number of infected birds. Analytical models
are often solved for their equilibrium points; these are solutions to the equations where the
state variables are not changing with respect to a dimension of interest; usually this is time
(i.e., the number of adult females is constant). A population at equilibrium is not changing in
size over time (mathematically, the first derivatives with respect to time are zero).
Depending on the goals of the model, the equilibrium properties of population size may be
also studied with respect to another population (e.g., are the populations changing in size
with respect to each other, such as an increase in the number of mosquitoes per bird?), or, in
a model of evolutionary change, the frequency of genes over time may be considered. An
equilibrium point is stable if the system returns to this point after a disturbance (Fig. 1); this
return can be monotonic or oscillatory (May 1974). Transient behavior is the behavior
exhibited before the system comes to an equilibrium; if a system in nature is highly
disturbed (due to environmental perturbations, human actions, or other ecological
dynamics), the populations may continually exhibit transient behavior and never reach
equilibrium. This is of particular interest in a biological control situation, as humans are
likely to continue to perturb the system by applying insecticides, changing the environment,
etc. Parameters are the rates that govern movement between the classes in the model; for
example, the mortality rate of adult female mosquitoes. If a particular rate is not varied
during a particular analysis, it may be referred to as a constant; constants can also include
universal constants such as π. It is important to identify the parameters, variables and
constants in a model to determine if you agree with the values or ranges used, and if the
source of the information is reliable. Sensitivity analysis, of which there are many types,
considers the effect on the model output of variation in the estimates of the parameters. This
uncertainty can come from biological variation (i.e., the mortality rate may vary between
species, or by temperature), measurement error (the standard error associated with an
empirical study of mortality rates), or gaps in our knowledge (i.e., if there are no estimates
available for the species of interest, it may be necessary to consider a wide range of possible
values). In an epidemiological model, the basic reproduction number, or R0, is defined as the
number of secondary infections deriving from a single primary infection in a population of

Lord Page 2

J Am Mosq Control Assoc. Author manuscript; available in PMC 2009 November 02.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



susceptible hosts. This number is often used to estimate the control measures necessary to
eradicate (or prevent the introduction) of a disease.

Figure 1 illustrates some aspects of population stability and variation. It is important to note
that a stable population can still be of concern, if the population size is large enough to cause
economic, health or nuisance problems (Fig. 1c). Conversely, a biological control agent may
be able to suppress a pest below the threshold of concern, but the population may be
unstable and the population size variable. Cycles can be stable or unstable (Fig. 1a, b), based
on the response to perturbation and whether the cycle size or periodicity changes. Outbreaks,
where the target population escapes control and reaches high population sizes, can occur if
any of the interacting populations are perturbed (by human or environmental factors). Thus,
it is critical to note that stability in the mathematical sense, although important in
understanding model behavior and the factors influencing population dynamics, is not
always the primary goal for a biological control system.

MODEL VALIDATION
An important aspect of a modeling study is validation. As with the model analysis, this can
take many forms and depends on the goals of the model, the type of model, and the data
available. If the goal of the study is to make specific predictions, whether of population size,
disease transmission, or optimal control strategies, then the model must be validated by
comparison to field data before relying on the predictions. This validation must be done with
a data set that is independent of all data used in developing the model and parameter
estimates. In the initial development of a model, parameter estimates may be “tuned,” i.e.,
refined by iterative adjustments to the estimates based on comparisons between model
output and an appropriate data set. This is appropriate in model development, but the model
still must be validated against an independent data set before being used elsewhere. If,
however, the goals of the model are more general, such as to explore alternative hypotheses
for relationships between elements of the biological system, investigate broad theories of
disease transmission or control, or study the stability properties of an analytical model,
model validation may not be necessary. Some form of sensitivity analysis is also critical in
understanding how a model can be used, because if there is no understanding of how the
outcomes of a model (e.g., mosquito populations, disease prevalence, or the success of a
proposed control strategy) vary with changes in parameter values, then there can be no valid
extrapolation to new situations. It should be noted, however, that it is often difficult to relate
the population sizes in a model (generally defined as the absolute total number of
individuals in the population) to field collections such as trap catches; the relationship
between these values will depend on the efficiency of the trap and other particulars of the
system. For model validation, we are usually looking for good correlation between model
predictions and field observations (concurrent increases and decreases over time, for
example), not absolute agreement.

With any model, the most important aspect of model development is deciding which
biological details to include and which to leave out. These decisions must be made based on
the goals of the model, available data, and plans for model analysis. Generally, the more that
is included in a model, the more data required for parameter estimates and the more difficult
it is to understand and analyze the outcome. In assessing a model, the key question to ask is
whether the assumptions and structure are suitable for the goals of the model and are
reasonable given the biology of the system.

TYPES OF CONTROL AGENTS
Natural Enemies: Predators, Parasitoids and Parasites—The classification of a
natural enemy as a predator, parasitoid or parasite depends largely on the number of prey or
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hosts attacked or consumed, the reproductive strategy of the natural enemy, and other details
of the system. While some interactions can be clearly classified, others are not as apparent
and the natural enemy has characteristics of more than one type. Here, I will consider the
natural enemies together, with the exception of microparasites (bacteria, viruses and fungi),
which will be considered later. There are many similarities in the characteristics of these
natural enemies and in the properties of the models used to study them.

Some predators, such as copepods and predatory mosquitoes, have been suggested for
mosquito control. Mermethid nematodes, macroparasites, have also been explored as
mosquito control agents. True parasitoids have not, but will be discussed here since host-
parasitoid dynamics are the basis for many biological control models. There have been
several books on the subject of host-parasitoid and predatorprey interactions and models
(e.g., Hassell 1978, Hochberg and Ives 2000) and numerous reviews (e.g., Hassell and May
1973, Murdoch and Briggs 1996), and interested readers are referred to those sources for
further information.

Host-parasitoid models are the backbone of classical biological control theory, and
parasitoids have been suggested or used as biological control agents for many pests.
Parasitoids are good candidates for biological control, as they frequently have the desired
characteristics of specificity for the pest, ability to rear in culture, and a life stage that is
relatively easy to distribute. In addition, they have long been used as model systems to study
ecological factors. As a result, there is an extensive literature on host-parasitoid dynamics,
including theoretical studies on ideal characteristics for biological control, stability analysis,
and the effect of stage structure in hosts and parasitoids. Many of the same properties apply
to some insect predators. Numerous theoretical studies have considered factors affecting the
stability of these systems and the impact on biological control, such as searching efficiency
(e.g., Hassell and May 1973), density dependence (e.g., May et al. 1981), age or stage
structure (e.g., Murdoch and Briggs 1996 and references therein, Bonsall and Eber 2001)
and spatial heterogeneity or structure (e.g., Hassell and May 1988, Hassell et al. 1991). The
addition of such complexities to the system is often stabilizing, but their effects can depend
on the details of the interaction, such as whether density dependence acts before or after
parasitism (May et al. 1981).

An example and review of how models can be used to investigate host-parasitoid systems is
provided by Murdoch and Briggs (1996). They identified 4 areas (parasitoid aggregation,
population stability, refuges, and density dependence) that affected the stability of host-
parasitoid systems, would affect the success of a biological control program, and warranted
further research. All of these factors should be investigated for any parasitoid considered for
mosquito control. Parasitoid aggregation can be a stabilizing factor, but depends on the
specific assumptions of how the aggregation occurs (host or parasitoid movement, responses
to density, etc.). Considering biological control situations at the metapopulation level was
also an area they addressed; unstable local populations may interact to produce persistence
at the metapopulation level. Refuges can also be important in the dynamics of host-
parasitoid interactions and can affect the persistence of both species. The refuge is defined
based on the host-parasitoid interaction (e.g., only hosts of a certain size are parasitized, or
only those in particular environments), and this definition determines the effect of the refuge
on the stability properties of the system. Finally, density dependence in the parasitoid attack
rate (i.e., density-dependent regulation in the parasitoid population as well as in the host
population) can act as a stabilizing factor, but may not be a strong factor at the densities
typical in a biological control operation. Murdoch and Briggs (1996) also discuss the
importance of stage-structured populations; the stage of host attacked by a parasitoid is
important in the stability, persistence, and degree of control provided. This can also have
major effects on the outcome of using more than one parasitoid species to control a host
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species and on the choice of a parasitoid to use; apparently small differences in the life
history of a parasitoid can have a strong impact on successful biological control. Many of
these factors would also apply to predator-prey systems, and, indeed, aggregation has been
shown to stabilize insect predator-prey systems as well (e.g., Hassell and May 1974).

There have been several models investigating the effectiveness of entomopathogenic
nematodes for control of crop pests. Fenton et al. (2000) extended a basic nematode-insect
model and examined the stability properties of the model with respect to parameter values
derived from the literature. This is a nice example of a modeling study, with the assumptions
clearly stated and the derivation of the parameter values provided in detail. They showed
that, for the range of parameter values derived from a nematodesciarid fly system in
mushroom houses, the nematodes cannot regulate the host population. Instead, the system
exhibits oscillations that are likely to result in the extinction of the nematode, host
population, or both, and long-term control is unlikely. However, this indicates that the
nematode may be efficacious for short-term inundative control, essentially as a biological
pesticide. With this approach, the long-term stability of the system is of less interest than the
short-term dynamics. This is likely to also be the case in many mosquito control situations,
where immediate control of the anticipated emergence of a brood is of more concern than
long-term reduction of the population. Further studies with the nematode-sciarid fly model
and other insectnematode systems (Fenton et al. 2001, 2002) explored the transient
dynamics and optimal application strategies, and combined models with empirical research
to identify timing and application rates which provide suitable control. A key feature in this
analysis was the extension of the model to include the life stages of the insect pests; this can
be critical in assessing the timing and efficacy of control when the pest age distribution is
not constant (see also Briggs and Godfray 1995, Murdoch and Briggs 1996 for age-
structured insect-pathogen models). The optimal timing of nematode applications and the
level of control achieved is dependent on the duration of the larval stage; since this is often
temperature-dependent, the ideal application schedule may depend on the time of year. It
should be noted that there are differences in the life cycle of these nematodes and some of
the nematodes suggested for mosquito control; in this case the nematode can achieve
multiple generations within one larval fly cadaver (and so thousands of infective juvenile
nematodes can ultimately be released from one cadaver), and the insect does not continue to
develop after infection. These differences will affect the spread of the nematode through the
population in space and time. However, a similar modeling approach could be used to
investigate the impact of nematodes or other parasites on mosquito populations, providing
information on whether long-term regulation is possible and the level of infection required
for short-term inundative control with nematodes.

Insect Pathogens—Insect pathogens have also been considered extensively for biological
control. This includes numerous viruses, fungi, and bacteria, and there have been
suggestions for all of these as mosquito control agents (Service 1983).

There have been numerous models of insect-pathogen dynamics, from general analytical
models to detailed models of specific systems. A key feature in these models is that the
outcome of the interaction often depends on the assumptions made about the growth rate of
the host in the absence of the pathogen. If the host population is assumed to grow
exponentially in the absence of the pathogen, the interaction tends to be unstable and results
in the extinction of the pathogen alone or of both species (e.g., Brown 1984, Hochberg 1989,
Briggs and Godfray 1995). If there is density-dependent regulation in the host population (a
much more likely scenario, particularly for mosquito populations), the interactions are more
stable and likely to lead to long-term coexistence of both species (e.g., Begon et al. 1992).
As was observed with host-parasitoid models, the stage of the host population attacked can

Lord Page 5

J Am Mosq Control Assoc. Author manuscript; available in PMC 2009 November 02.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



also affect the dynamics of the interaction (e.g., Briggs and Godfray 1995, Moerbeek and
Van Den Bosch 1997).

One of the more extensive studies of insect-pathogen dynamics, using both models and
empirical studies, has been conducted on nuclear polyhedrosis virus (NPV) and gypsy moths
(Lymantria dispar). Dwyer and colleagues began with simple models of natural epizootics
(Dwyer and Elkinton 1993). Then, in a series of papers (reviewed in Dwyer et al. 2000),
they added complexities to the models to investigate how details of the interaction between
NPV and gypsy moth affected insect outbreaks. The models were used in combination with
empirical studies to examine the details of the transmission rate, host heterogeneity in
susceptibility, and overwinter survival. While these models are most applicable to forest
defoliators, this series of papers is a nice illustration of how the combination of empirical
and theoretical work strengthens both. Dwyer et al. (1998) also considered a fungal
pathogen of gypsy moth, examining how extrapolation to the large spatial scale usually
involved in gypsy moth outbreaks affects the dynamics of the system. In another paper
(Dwyer et al. 2004), they considered the effects of combining pathogens and predators. The
combination of pathogens and predators can lead to complex dynamics, and the system
alternates between predator-maintained equilibrium and cycles driven by the pathogen. This
is of interest, since rarely do natural populations exist in isolation. Any introduced biological
control agent will have to interact not only with the target host population, but with other
species as well.

Another aspect to insect-pathogen dynamics is the resource for the pest insect. Xiao and Van
Den Bosch (2003) demonstrated that the presence of an alternative, wild host plant for a
crop pest affects the stability of the plant-pest-pathogen system. The structure of this model
has some similarities to some mosquito systems, where the mosquitoes feed on domestic and
wild animals as well as humans. In the crop system, the biological control by a pathogen
tends to stabilize the system, allowing coexistence of the wild host plant and the pest, at
levels below the threshold for maintenance of the pest on the crop alone.

Interactions and Non-target Effects—Many models, and also many empirical studies,
consider one host and one enemy. However, as was illustrated by Dwyer et al. (2004),
natural systems are generally much more complex and involve multiple species. Models can
be very useful in investigating these complex systems, and can be used to identify areas of
potential interaction or non-target effects. Hochberg et al. (1990) considered interactions
between a parasitoid and a predator acting on the same host, examining the factors affecting
the stability of the system at equilibrium. They demonstrated that each natural enemy can
exclude the other, or both can coexist; this is dependent on the degree of competition
between them (e.g., who “wins” in a host attacked by both), the growth rate of the host
population, and the searching behavior of the parasitoid. Obviously, the outcome of such a
system will depend on the details of the biology of the species involved; for a biocontrol
system it will also depend on the ability of other interventions to control the pest species.
Models can be valuable tools in understanding how multiple populations may interact, and
in determining the information most critical to predicting the outcome.

When a parasitoid or predator is introduced to control a particular pest, there is always the
concern that it will also attack other non-target species. Just as with the use of pesticides,
this must be considered before any release. Lynch et al. (2002) used a host-parasitoid model
to consider the effects of an introduced parasitoid on a non-target species. In this model,
they focused on transient impacts, since immediately after the release is when the biocontrol
agent is likely to have its highest population (in response to the high population size of the
pest). They showed that this high density may result in an impact on a non-target species,
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even if the non-target species is not well accepted by the parasitoid and is not capable of
supporting a parasitoid population on its own.

Pearson and Callaway (2003) reviewed the broader indirect effects of biological control,
focusing on a natural enemies model for insects used to control invasive plants. This is
similar to a host-parasitoid or predator-prey model, although there are obvious differences
between an herbivorous insect feeding on a weed and a parasitoid feeding on an insect. They
use the example of a system involving an invasive plant, knapweed, and a control agent, gall
fly (Urophora spp.). The gall fly can also be a food source for native deer mice (Peromyscus
leucopus). Increasing deer mouse populations in turn can increase the prevalence of
hantavirus. This is a complex system, and the indirect effects depend on the strength of the
biological control (in this case, the gall fly was not successful in controlling knapweed) as
well as the interactions between members of the native community. This is used as a
cautionary example, and demonstrates an area where modeling could be valuable to assess
the potential indirect effects from an introduction to an existing system.

MODELS OF VECTORS AND VECTOR-BORNE DISEASES
There have been numerous models of mosquitoes and mosquito-borne disease, beginning
with the classic Ross-Macdonald malaria models (Ross 1911, Macdonald 1952, 1957) and
extending to present day models of malaria, (e.g., Roberts et al. 2000, McKenzie and Samba
2004), arboviruses (e.g., Kay et al. 1987, Focks et al. 1995, Wonham 2004, Lord and Day
2001a, 2001b; Strickman and Kittayapong 2003), and other vectors and vector-borne
diseases (e.g., Chagas disease, Cohen and Gürtler 2001; onchocerciasis, Habbema et al.
1992; black-legged ticks and Lyme disease, Mount et al. 1997, Schmidt and Ostfeld 2001,
Brownstein et al. 2003; tick-borne encephalitis, Randolph et al. 1999, 2002). In addition,
there are numerous models of vector populations or aspects of vector biology, not directly
considering disease (e.g., Weidhaas 1974, Focks et al. 1988a, 1988b; Focks and McLaughlin
1988, Fry et al. 1989, Eisenberg et al. 1995a, 1995b; Mount et al. 1991, Randolph et al.
1992, Randolph and Rogers 1997, Randolph 1999). Few if any of these models have directly
considered biological control, although several include generic “control,” assessing the
impacts of increased mortality of the vector, usually assumed to be by pesticide spraying or
other treatment. Space precludes an extensive review of these models, and I will simply use
a few models to illustrate how biological control could be incorporated into model
frameworks and investigated.

POPULATION MODELING
The population size of the vector is often a dominating feature in models of vector-borne
disease (e.g., Anderson and May 1991, Lord et al. 1996a, 1996b; Lord and Day 2001a,
2001b). Clearly, reduction in the population size by biocontrol agents will have an impact
not only on the nuisance aspects of mosquito populations, but also on the transmission
potential for disease. The mortality rate of female vectors also is frequently identified as an
important feature in vector-borne disease models (e.g., Kay et al. 1987, Anderson and May
1991, Koella 1991, Lord and Day 2001a) and this would be one target for biological control.
The success of a biological control agent in reducing the population size will depend on
many aspects of a particular system, and it is often difficult to translate the population sizes
used in a model to actual trap catches in field studies (and vice versa).

Several models of mosquito populations have been developed and used to investigate
population dynamics and their sensitivity to parameter estimates. A few examples will
illustrate this process. Fry et al. (1989) developed a model to examine control options for
Culex quinquefasciatus in Orange County, CA. Because the goal of this model was to
examine control strategies in a local environment, breeding sites were modeled explicitly
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along with the probability that the mosquito control operators “knew” about the site. Control
is then superimposed as an increased mortality of larval stages, depending on the type of
breeding site. Specifics of visits by control personnel are also included. The model was
compared to trap collections over 5 years. While no explicit sensitivity analysis or model
testing of control strategies was performed, this explicit inclusion of current mosquito
control practices is valuable and deserves further investigation in models of biological
control of mosquitoes.

Another example of a mosquito population dynamics model is the Culex tarsalis model by
Eisenberg et al. (1995a, 1995b). In this model, sensitivity analysis of parameter estimation
was conducted using Monte Carlo simulations, where simulations using randomly generated
parameter sets (from specified distributions) were compared to a set of criteria based on
field data. Simulations that passed (i.e., were sufficiently similar to the field data) were then
used for further analysis; this allowed refinement of the parameter estimates for the 2
specific sites considered. It is worth noting that, while not explicitly included in the
dynamics of the model, predation was considered as a density-dependent mortality factor
acting on larvae. However, the sensitivity analysis indicated a more important role of
temperature-dependent (density-independent) larval mortality; over the range studied,
predation was not a key factor. Control strategies were not explicitly included, but were
implicitly included in mortality rates since the data sets used for comparison were collected
in locations with active mosquito control. Further control strategies and biological control
agents could be incorporated into the model framework and a systematic sensitivity analysis
used to examine their effectiveness.

A model of Psorophora columbiae dynamics by Focks et al. (1988a, 1988b) began with the
hydrology of the rice field ecosystem. In a series of papers, Focks and colleagues (Focks et
al. 1988a, 1988b; Focks and McLaughlin 1988, Focks 1991) developed the model, studied
the dynamics of the population, considered standard control strategies such as larviciding
and adulticiding, and finally considered a novel control strategy of treating the dominant
blood meal host (cattle) with ivermectin. While not explicitly considering biological control,
this series of papers demonstrates how a model can be developed and used for targeted
questions. Of particular interest is the analysis of potential ivermectin treatment of hosts;
this simulation study indicated that relatively small reductions in survival and fecundity
from ivermectin treatment could have significant effects on the need for additional
insecticidal control. Models are an ideal way to consider how different methods of control
can be combined into an IPM strategy and to identify important informational needs. While
the detailed information required for a local model may not be available, the general
strategies developed using a more general model can then be fine-tuned based on sensitivity
analysis and local information.

A final example of modeling mosquito population dynamics is also by Focks and colleagues
(Focks et al. 1993a, 1993b), examining the biology of Aedes aegypti. This is an
exceptionally detailed model, with numerous types of containers for larval development.
Hydrology (water levels and drying), temperature-dependent larval development, food
availability and survival are explicitly tracked in each container type. Detailed weather data
are used to drive the hydrological and biological functions. This level of detail has both
costs and benefits; it enables consideration of detailed aspects of the mosquito biology, but
also makes true sensitivity analysis of the model difficult or impossible. Thus, to develop a
model with this level of detail, it is necessary to have extensive data available for parameter
estimates and validation. In the case of Ae. aegypti, a well-studied mosquito, such detail was
available. Predation is included, as a mortality factor in egg survival, but no other control
was included in the initial models (but see the later expansion of the model into dengue
transmission, discussed below). However, it would be relatively simple (given the
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availability of appropriate data) to add various types of biological control to the model. The
difficulty would be, as mentioned above, in the analysis; particularly if, with the addition of
biological control agents, the model is too complex for many types of sensitivity analysis. If,
however, the model were sufficiently validated in the location of interest, many parts of the
system could be kept constant and the model analyzed just with respect to the addition of the
biocontrol agent. This would allow estimation of the likelihood of successful establishment
and mosquito population regulation by the agent, and some analysis of the factors
contributing to the success or failure. Careful simulation strategies and analysis would be
required to then extrapolate these results to other locations.

In most of these models, control was imposed by reducing survivorship of different life
stages, with no direct attention to the method. If appropriate estimates of immediate lethality
of a biological control agent can be developed, these models can be used to estimate the
short-term effects of the release of such an agent. However, if a biocontrol agent is intended
to reproduce in the field and provide long-term control, its population dynamics must also be
included in models. This allows the models to be used to understand the factors affecting the
likelihood of establishment of the agent and the long-term level of control.

PATHOGEN TRANSMISSION AND CONTROL
Frequently, the goal underlying mosquito or vector control is to reduce the transmission of a
disease, and the level of control required depends on the biology of the pathogen as well as
the mosquito or vector population. The degree of entomological detail in models of disease
transmission varies greatly, from simple models with little entomology (e.g., the Ross-
Macdonald malaria models and others; see Anderson and May 1991 for further details) to
detailed simulations (e.g., dengue models based on the Ae. aegypti models described above,
Focks et al. 1995, 2000; Strickman and Kittayapong 2003). These models are often used to
assess criteria for disease invasion or persistence (e.g., each primary case produces at least
one secondary case; R0 >1) either analytically or by simulations. In analytical models, this
often takes the form of a threshold population size of vectors, along with other possible
criteria on vector mortality rates and vector competence derived from the mathematical
expression for R0 (Anderson and May 1991). In simulation models, a population threshold
may be identified (e.g., Lord and Day 2001a), but the level of control required may not be as
obvious, depending on the complexity of the model. Explicit control is rarely included in
such models, beyond discussion of simple reduction of vector numbers. While this can be
directly applied to questions about immediate control (pesticide application or inundative
control), understanding the consequences of persistent biological control requires the
addition of the control agent to an explicit model of the vector, not simply assuming a
reduction in survival or fecundity. This is of particular importance if the long-term impacts
of a biological control agent, intended to reproduce in the environment, are of concern.

Models can be used to go beyond simple population dynamics and address how other
aspects of mosquito biology affect disease transmission. The long history of malaria models
serves to illustrate this point. In the original Ross-Macdonald malaria model, the importance
of the biting rate, separate from the total number of mosquitoes, was recognized; it is
squared in the expression for R0 and so has a strong influence on the behavior of the system
(Ross 1911, Macdonald 1952, 1957; Anderson and May 1991). This has been used to
consider control strategies beyond population reduction, directed at reducing the human
biting rate, such as the use of bednets (e.g., Koella 1991 and references therein) and
zooprophylaxis (diverting mosquito bites to alternate hosts) (e.g., Killeen et al. 2001; see
also Sota and Mogi 1989, Lord et al. 1996a). Vector behavior following DDT spray was
modeled by Roberts et al. (2000); this model demonstrated that the repellent aspects of DDT
will influence the location of vector biting activity and will affect the apparent efficacy of
the spray as measured by indoor host-seeking. Such changes in behavior in response to
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control efforts can have a major effect on the success of control, and should be considered
for any proposed biological control strategies. Other aspects of malaria models are reviewed
in Koella (1991), McKenzie and Samba (2004) and McKenzie (2000).

The model by Wonham et al. (2004) is an example of using an analytical model with
equilibrium analysis to estimate the threshold mosquito population required for disease
invasion. They considered the invasion of West Nile (WN) virus into New York City in
1999, and concluded that reducing the mosquito population to below 4.6 mosquitoes per bird
would have limited the WN virus invasion. This estimate, however, is sensitive to the
estimates of the parameter values and to whether the mosquito population is assumed to be
constant or fluctuating seasonally between a high or low level. While not explicitly
considering biological control, this type of model can be used to estimate the level of control
required to achieve a specific aim, and thus whether particular biological control agents can
achieve the necessary control. However, control in this model can only be considered by
increasing the mortality rate of adult mosquitoes; extensions would be required to consider
biological control agents acting on other parts of the mosquito life cycle.

Focks et al. (2000) considered the impact of source reduction on dengue transmission using
their Ae. aegypti population model. This demonstrates how models can be used to estimate
the effort needed to achieve a reduction in disease transmission. Their estimates of the
source reduction required to reduce transmission were higher than the effort generally
reported during control campaigns, and highlight the difficulty of reducing (and maintaining
at these levels) vector populations sufficiently to break transmission cycles.

Many vector-borne diseases have multiple reservoir or amplification hosts, and infection in
humans and domestic animals may not directly affect the transmission cycle. In these cases,
understanding (and modifying) the risk of disease depends on understanding the natural
transmission cycle, and models have been used extensively for this purpose (e.g., Lord and
Day 2001a, 2001b; Randolph and Rogers 2000, Schmidt and Ostfeld 2001, Wonham 2004).
Ostfeld and colleagues have used models to investigate an interesting concept, the dilution
effect, primarily in investigations of Lyme disease and the black-legged tick (Giardina et al.
2000, Schmidt and Ostfeld 2001, Schauber and Ostfeld 2002). These models consider the
role of biodiversity in the amplification and transmission of the pathogen in the natural
system. The distribution of bites from the vector over the different species in the model
system affects the transmission potential, as not all host species for the vector are equally
good hosts for the bacteria. In this system, areas with lower diversity (due to environmental
fragmentation or other habitat modifications) tend to have fewer host species, but the most
competent host (the white-footed mouse) generally remains in the community. Thus, as
biodiversity decreases, transmission potential increases as the mice receive more of the
vector bites. A similar process may occur with other zoonotic diseases, but the specifics will
vary depending on relative host competence and on how changes in biodiversity affect host
competence. Similar issues have been studied in models with fewer (but more than one) host
species considered (e.g., Rogers 1988, Lord et al. 1996a). These models have shown that the
effects of reducing the abundance of a reservoir species depend on the assumptions of the
relationship between host and vector abundance. These issues should be considered further,
and models can be useful tools if host manipulation is suggested as a control measure.

Integrated pest management is a cornerstone of many control programs, and biological
control is likely to be implemented as part of a broader control program, not alone. Models
have been used to investigate IPM of tick populations (e.g., Amblyomma americanum,
Mount et al. 1999), including pesticide treatment, treatment of hosts with acaricides,
vegetation reduction and host population reduction. This model demonstrated that
combinations of techniques are often useful, and that cost-benefit analysis can be done in the
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model framework to assess how to mix methods for an effective IPM. For another tick
species Boophilus microplus Beugnet et al. (1998) focused on factors affecting the
encounter rate between tick larvae and cattle (B. microplus is a one-host tick, so this
encounter rate determines the tick burden) and considered acaricide application strategies
and how a vaccine could decrease tick reproduction below the point where the population is
sustained. Sterile male releases have also been considered for control of vectors. Weidhaas
(1974) demonstrated the use of a simple population model to analyze the level of control
needed and the impact of sterile male releases. In a model of Anopheles albimanus, Haile
and Weidhaas (1977) examined the efficacy of combining insecticides with sterile male
releases. These models illustrate how a quantitative framework can be used to explore
combining control options, whether biological or chemical.

Models were used extensively in a large control project for onchocerciasis, the
Onchocerciasis Control Programme (OCP) in West Africa (Birley et al. 1983, Birley and
Davies 1984, Plaisir et al. 1990, 1991; Habbema et al. 1992). A simulation model was
developed (Plaisier et al. 1990) and used to explore the reduction in disease produced for
different combinations of larviciding (against the Simulium vectors) and chemotherapy of
humans. The models were also used to consider recolonization of areas by flies when control
was interrupted (Birley et al. 1983), and the consequences to the human population of
changes in control strategies. As more data were made available, the model and parameter
estimates were refined and control options re-evaluated (Habbema et al. 1992, Birely and
Davies 1984). Although primarily considering larvicidal treatment with pesticides, this
project demonstrates how a well-designed model can be used and expanded as part of a
larger program to control disease. Other onchocerciasis models have been developed to
explore the specifics of the disease in other locations (reviewed by Basáñez and Ricárdez-
Esquinca 2001). These models have been used to consider control strategies focused on the
human host (ivermectin treatment or removal of nodules), the effect of differing vector
competence of Simulium species, and the distribution of worms in flies and humans. Again,
these models illustrate how a quantitative framework can be valuable in exploring
alternative control strategies and investigating the effects of differences in vectors and
environments.

A final example of the use of models to investigate control strategies for vector-borne
disease is for Chagas disease, or American trypanosomiasis. The vectors for these parasites
are triatomine bugs, which live in the domestic environment and feed on other animals as
well as humans. Cohen and Gürtler (2001) developed a model of the transmission season,
including humans, dogs, and chickens as hosts, and explicitly tracking the bug population.
Human behavior (time spent indoors at different times of year) was also an integral part of
the model. They demonstrated that the presence of infected dogs was a major influence on
transmission to humans; at low dog numbers dogs provided a source of infection and
increased transmission, but when dogs were more common they diverted sufficient bug bites
away from humans to reduce transmission. The presence of chickens also influenced
transmission, but in complex ways. A more complex model (Castañera et al. 2003)
considered detailed interactions between bugs and hosts. These models demonstrated that
environmental manipulation (changes in host density, house type), along with insecticide use
(reducing the number of bugs present in a house) could affect the intensity of transmission.

OTHER USES OF MODELS
Models are not restricted to investigating population dynamics or transmission cycles, but
can be used to investigate many other aspects of vector biology or disease incidence. One
example is given by Shaman and colleagues (Shaman et al. 2002a, 2002b, 2003, 2004a,
2004b). In a series of papers, they used a dynamic hydrology model to simulate water table
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depth and looked for statistical relationships between water table patterns and mosquito
abundance (Shaman et al. 2002b) or St. Louis encephalitis (SLE) virus transmission
(Shaman et al. 2002a, 2003, 2004a, 2004b). This analysis supports an association between
SLE virus transmission and hydrological patterns of a spring drought and later wetting.
While not directly considering control issues, this type of model is valuable in developing
theories and testing possible patterns of virus transmission. Control strategies could then be
superimposed, to determine if they would be sufficient to break the observed associations.

Models can be used to investigate the consequences of new theories, modes of transmission,
or hypotheses when they are proposed, even when data are limited. An example is the recent
interest in nonsystemic transmission—transmission of a pathogen between two vectors
feeding simultaneously on a host without the host becoming viremic. First described in ticks
(Jones et al. 1987) and now demonstrated for several tick-borne pathogens (e.g., Gordon et
al. 1993, Labuda et al. 1993, Gern and Rais 1996), it was later observed in black flies with
vesicular stomatitis virus (Mead et al. 2000). Models have been used to investigate how this
may affect transmission cycles (Randolph et al. 1996, 1999; Lord and Tabachnick 2002,
Norman et al. 2004), providing a framework for further research and suggestions regarding
the most critical information needed. Recently, nonsystemic transmission has been found in
mosquitoes with West Nile virus (Higgs et al. 2005). Models are being developed to
investigate the relative roles of different transmission routes in the epidemiology of WN and
other arbovirus systems (Lord, unpublished data).

There are a number of other areas where models can inform control decisions. Models have
been used to investigate resistance management of drugs and insecticides (e.g., Gardner et
al. 1998, Lenormand et al. 1999), and could be used more extensively to consider rotational
strategies and the spread of resistance alleles. As new biological agents are identified, the
release strategies can be modeled and alternatives investigated (e.g., Shea and Possingham
2000), even with relatively little information about the agent. Finally, there is great interest
in the development of transgenic mosquitoes and in the use of Wolbachia symbionts to
affect populations. There are many models of the spread and maintenance of genes and
transformations in populations, and I will simply mention a few to illustrate the utility of
models in this area. Cellular automata techniques have been used to model transposon-based
genetic drive mechanisms (Kiszewski and Spielman 1998). Models have been used to assess
how Wolbachia symbionts could be used to affect populations, through cytoplasmic
incompatibility (Dobson et al. 2002a, 2002b), or by engineering to increase mortality
(Rasgon et al. 2003), and how ecological factors in the natural population will affect the
success of releases of transgenic mosquitoes (Rasgon and Scott 2004). Models will be a
critical tool in addressing questions about driving transgenes through populations, the
factors that affect the spread of the transgene, and the resulting effect on population size,
structure and transmission of pathogens. It must be stressed, however, that models can only
assess the factors included in them; actual releases of transgenic insects are likely to produce
some unanticipated interactions and results.

FUTURE DIRECTIONS
This chapter has illustrated where models have been and could be used to address biological
control of mosquito populations. As new ideas and agents for biological control are found
and developed, models will be of increasing value. Models at different scales and
incorporating different biological factors can 1) identify areas requiring further research; 2)
indicate the strategies most likely to be successful in establishing an agent and achieving
control; 3) suggest methods for monitoring releases and effectiveness of control; and 4)
highlight potential problems before releases occur, saving time and money. These models
may not be easy to develop, as the systems are complex and much of the needed data are not
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available. We are confident, however, that researchers in the mosquito control community
and in modeling can work together to develop the necessary information.
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Fig. 1.
Stability and control in populations. a) Examples of stable equilibria: If an equilibrium point
is stable and constant (dashed line), the population size is constant and will return to the
same size following a disturbance (imposed at the time marked by the arrow; e.g., control
reducing the population). There can also be cyclical equilibria (solid black line), where the
population size cycles between different values. Again, the population returns to this same
cycle following a disturbance (in this case, an increase in the population; this could be
caused by environmental conditions, a supplemental release of a biocontrol agent, etc.). For
illustration, an unstable population (grey line) is shown; in this case the population
fluctuates with no equilibrium. b) Examples of unstable equilibria: If a population is at an
unstable equilibrium, the size of the population will not return to the original value
following a disturbance (arrow). It may settle to a new equilibrium point, or become
unstable. Two possibilities are illustrated here: an unstable, constant equilibrium settling to a
new, constant equilibrium (which may be stable or unstable) following a disturbance, and an
equilibrium cycle becoming chaotic following a disturbance. c) Some possible outcomes of
control measures: A stable equilibrium is not always the ideal goal for control. Here, a
population at equilibrium is disturbed by a control strategy and settles to a new equilibrium;
however, the new population size is still above the threshold for concern (set by economics,
disease transmission, or nuisance issues). Conversely, an unstable population with
unpredictable dynamics could be depressed below the threshold. Other scenarios are
possible, including a controlled population that undergoes outbreaks that exceed the
threshold.
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