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Abstract
Abstract We revisit an application developed originally using abductive Inductive Logic
Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived
from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace
analysis of their biofluids together with background knowledge representing a subset of the Kyoto
Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP)
approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical
modeling (PRISM) to the application. Both approaches support abductive learning and probability
predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to
SLPs through abduction. Instead of learning logic models from non-probabilistic examples as
done in ILP, the PILP approach applied in this paper is based on a general technique for
introducing probability labels within a standard scientific experimental setting involving control
and treated data. Our results demonstrate that the PILP approach provides a way of learning
probabilistic logic models from probabilistic examples, and the PILP models learned from
probabilistic examples lead to a significant decrease in error accompanied by improved insight
from the learned results compared with the PILP models learned from non-probabilistic examples.

1 Introduction
There is currently considerable interest within Artificial Intelligence in Probabilistic Logic
Learning (De Raedt et al., 2008) and the closely allied area of Statistical Relational Learning
(Getoor and Taskar, 2007). These research fields are concerned with the integration of
probabilistic reasoning with first order logic representations and machine learning. This
integration is needed in order to face the challenge of real-world data mining problems in
which the data consists of sets of objects with associated structural relations. We are
interested in finding useful predictive and/or descriptive patterns. In this paper, the term
probabilistic is used to refer to representations and forms of reasoning based on the
probability calculus. The term statistical is used to refer to empirical estimation techniques.
The term logic is used here to refer to representations and reasoning related to the predicate
calculus such as those studied within the field of computational logic. The term relational is
used for modeling data based on predicate logic and set theory as done in relational
database. The primary advantage of using such representations is that it allows one to
elegantly represent complex situations involving a variety of objects as well as relations
among the objects. The term learning in the context refers to deriving the different aspects of
a model in a probabilistic logic on the basis of data. Typically, one distinguishes various
learning algorithms on the basis of the given data (fully or partially observable) or on the
aspect being learned (parameter estimation or logical structure learning). The motivation for
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learning is that it is often easier to obtain data for a given application domain and learn the
model than to build the model using traditional knowledge engineering techniques.

One approach to this problem is Probabilistic Inductive Logic Programming (PILP) (De
Raedt and Kersting, 2004; De Raedt et al., 2008), which naturally extends traditional
Inductive Logic Programming (ILP) (Muggleton and De Raedt, 1994) by introducing
probabilities that can explicitly deal with uncertainty such as missing and noisy information.
There have been some promising PILP frameworks and systems developed so far to help
people build probabilistic logic models, such as Bayesian Logic Programs (BLPs) (Kersting
and De Raedt, 2000), Stochastic Logic Programs (SLPs) (Muggleton, 1996), Independent
Choice Logic (ICL) (Poole, 1997) and PRogramming In Statistical modeling (PRISM)
(Sato, 1995), Markov Logic Networks (MLNs) (Richardson and Domingos, 2006), etc (De
Raedt et al., 2008).

Although an increasing number of systems and applications have been published, there are
still many challenges in the PILP research. The question investigated in this paper is whether
PILP should always be used to learn from non-probabilistic examples. This is motivated by
the fact that the data sets used by most PILP systems and applications have non-probabilistic
class values, like those used in ILP systems. On the one hand, there is information lost by
learning using just non-probabilistic data compared with the raw (possibly continuous) data.
In many cases, however, we could extract more information, such as empirical probability or
validity, in addition to categorical values. Such information can be further used to support
learning as well as model evaluation in PILP. On the other hand, the ability of handling such
probabilistic examples should be one of the distinct positive features of PILP against ILP.
The main reason for the problem is the lack of an obvious source of probabilistic class
values and corresponding methods of exacting probabilistic examples from raw data. In this
context, we investigate the use of Abductive Stochastic Logic Programs and the PRISM
system (Sato, 1995; Sato et al., 2008) for metabolic network inhibition learning and
demonstrate that PILP models with higher predictive accuracy can be learned from
probabilistic examples than non-probabilistic examples.

This paper is organized as follows. Section 2 provides background relating to an
introduction of probabilistic examples, PILP, SLPs, abduction, PRISM and the biological
application area of metabolic network inhibition as well as the previous study of abductive
ILP. This is followed by a description of the abductive approach to SLPs used in this paper
as well as the allied system PRISM. A general approach is described in Section 4 for
extracting empirical probability labels from scientific data. This approach is employed in the
experiments of Section 5 which apply abductive SLP learning and the PRISM system to the
metabolic network inhibition problem. We show that significant accuracy increases are
achieved by learning the PILP models from probabilistic examples. Section 6 concludes
with a comparison to some related approaches and a discussion of the future work.

2 Motivation and Background
2.1 Interpretation of Probability and Probabilistic Examples

For the purposes of understanding the learned knowledge, it is vital to identify the
interpretation of probability employed within any PILP application. We are not going to
review the existing arguments of interpretations of probability in philosophy and statistics
(Alan, 2007). Instead, we distinguish two types of probabilistic knowledge following
Halpern's categorisation on first-order logics of probability (Halpern, 1989).

In order to analyse the semantics of first-order logics of probability, two approaches are
considered in (Halpern, 1989). A type 1 probability structure is defined on the domain and is
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appropriate for giving semantics to formulae involving statistical information; By contrast, a
type 2 probability structure puts probabilities on possible worlds and is appropriate for
giving semantics to formulae describing degrees of belief. According to the categorisation,
type 1 probabilities capture statistical information about the world by performing
experiments or trials, in which objective domain frequencies or empirical probability
distribution are gathered over objects, instances or sample spaces; whereas type 2
probabilities implicitly assume the existence of a number of possibilities or possible worlds
(in some of which formulae are true while in others are false), with some subjective
probability distribution over these worlds. Thus, the key difference between the two
probability structures is that probabilities are defined over the domain in type 1 structures,
while probabilities are defined over the domain in type 2 structures. Although they are two
fundamentally different types of probabilities, Halpern remarks there is a sense in which we
can translate between the two types of probability structures and furthermore combine the
two modes of probabilistic reasoning in some situations (Halpern, 1989).

In addition, it is common that the probability distributions are defined over possible worlds
(first-order models) which give for each closed logical formula the probability that it is true,
but it is not necessary to define a distribution over the truth values of formulae in type 1
probability logic (Cussens, 2001). While possible worlds semantics are widely used in
Bayesian approaches (Pearl, 1988) and PILP (Sato, 1995; Poole, 1997; Kersting and De
Raedt, 2000), type 1 semantics have been applied in Probably Approximately Correct (PAC)
Learning (Haussler, 1990) and Stochastic Logic Programs (SLPs) (Muggleton, 1996;
Cussens, 2001).

Based on the above categorisation of probabilities, we define a probabilistic example in our
study to be an example together with either a type 1 empirical frequency (probability
defined on the domain) or a type 2 empirical probability (probability defined on the possible
worlds). In mathematics, empirical probability of an event is the fraction of times we expect
it to occur in an experiment (Stefan and Steven, 2004). In a general case, the empirical
probability (of a sample) estimates the theoretical probability (of a population) by the law of
large numbers: as the number of trials of an experiment increases, the empirical probability
approaches the theoretical probability. It is fair to say that the normal empirical probabilities
accord with type 1 probability semantics as they are domain-based. We introduce type 2
empirical probability in order to deal with the cases when we are unable to count empirical
frequencies, but we could instead estimate the degree of belief or validity that some event
happened in terms of possible worlds semantics. We demonstrate a method in the paper that
can extract type 2 empirical probabilities from a small data set containing control and treated
cases where the empirical frequencies are not countable due to the size of sample space.

Definition 1 (Probabilistic Example)—A probabilistic example is a tuple (e, Pe(e)), in
which e is a ground logic atom and Pe(e)1 is either a (type 1) empirical frequency that is
defined by counting the frequency e occurred in a sample space, or a (type 2) empirical
probability which is defined by capturing the degree we believe e is true in some possible
worlds.

Probabilistic examples are more accurate representation of what we know about the world
than non-probabilistic examples. For example, a probabilistic example
(concentration(citrate, down), 0.80) in metabolic network research means that
either we believe the statement ‘the concentration level of metabolite citrate goes down’
is true with 80% validity or in terms of degree of belief (empirical probability), or we have

1We distinguish the empirical probability/frequency (denoted by Pe) from the normal probabilities (denoted by Pr) in the context.
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observed ‘the concentration level of citrate has a down regulation’ in an experiment with
a frequency of 80% (empirical frequency). This contrasts with a (positive) binary example
concentration(citrate, down) used in ILP. In addition, another advantage of
providing probabilistic examples results in implicit introduction of the corresponding
complements for binary examples. For example, in the above example, a complementary
probabilistic example (concentration(citrate, up), 0.20) can be assumed
accordingly. Thus probabilistic examples enrich the observations we could extract from the
raw data and provide extra support for learning. It is necessary to clarify that empirical
probability is not prior probability, which is always used in Bayesian learning (Friedman,
1998) and is often the purely subjective assessment made by domain experts. Empirical
probability could be thought as posterior probability conditional on the experimental data.

Although the empirical frequency and the empirical probability in the definition have
different semantics, we fuse them in the context of abductive SLPs, that is, empirical
probabilities extracted from a sample space are converted into empirical frequencies for
abductive SLP learning. The motivation for this is, as detailed in section 3, that domain-
based probability distribution and possible-world-based probability distribution are treated
identically in terms of SLD-derivation in abductive SLPs.

2.2 Probabilistic ILP with Probabilistic Examples
Probabilistic ILP aims to provide a formal learning framework for probabilistic logic
learning. It extends ILP to deal with uncertainty. To address our motivation, we use the
following learning setting of PILP with probabilistic examples.

Definition 2 (Probabilistic ILP with Probabilistic Examples)—Given a probabilistic
logic programming representation language ℒ, a set E = {(ei, Pe(ei))} of probabilistic
examples over ℒ, and a background theory B, PILP finds a set of probabilistic hypotheses
{(LP, λ)} over ℒ by applying some scoring function score(E, LP, λ, B) such that (LP, λ)
stands for a logic program LP annotated with probabilistic parameters λ. The scoring
function is some objective score that returns a posterior distribution over the models {(LP,
λ)} and consists of the likelihood Pr(E|LP, λ, B) and/or a function that penalises the
complexity of LP.

Following the traditional Bayesian learning (Friedman, 1998) paradigm, the scoring function
defined above could be as simple as the likelihood, Pr(E|LP, λ, B), (e.g. for maximum
likelihood estimation); or the posterior probability of the model, Pr(LP, λ|E, B), (e.g. for
maximum a posteriori); or the scores that take into account prior probabilities and penalised
functions, such as minimum description length (MDL) score (Rissanen, 1982) and Bayesian
Information Criterion (BIC) score (Friedman, 1998). If we suppose that the examples are

independent and identically distributed (i.i.d.)2, then 
where m is the cardinality of E.

This formulation is more general than the one described in (De Raedt and Kersting, 2004)
which is to find a single best hypothesis. Firstly, we include probabilistic examples and
define the hypothesis scoring function to have not only the examples {ei} but also their
associated empirical probability values {Pe(ei)} as the arguments. Secondly, our goal is to
select a set of candidate hypotheses using the Bayesian approach that finds a posterior
distribution over hypotheses. Thirdly, the penalised part in the scoring function plays an

2The assumption of i.i.d. does not hold in some application areas and data sets where there exist correlations between examples, e.g.
the data set used in this paper. However, this is still an open question and has no standard way to minimize the problem in the machine
learning community.
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important role in the learning as it overcomes the overfitting (to data) problem caused by
only employing likelihood.

2.3 SLPs and Failure-Adjusted maximisation Algorithm
Stochastic logic programs (SLPs) (Muggleton, 1996) are one of the developed PILP
frameworks that provide a natural way of associating probabilities with logical rules. SLPs
were introduced originally as a way of lifting stochastic grammars to the level of first-order
logic programs. SLPs were considered to be a generalisation of hidden Markov models and
stochastic context-free grammars. SLPs have later been used to define distributions for
sampling within ILP.

Definition 3 (Stochastic Logic Programs)—An SLP S is a definite logic program,
where each clause C is a first-order range-restricted definite clause3 and some of the definite
clauses are labelled/parameterised with non-negative numbers, l : C. S is said to be a pure
SLP if all clauses have parameters, as opposed to an impure SLP if not all clauses have
labels. The subset Sq of clauses in S whose head share the same predicate symbol q is called
the definition of q. For each definition Sq, we use πq to denote the sum of the labels of the
clauses in Sq. S is normalised if πq = 1 for each q and unnormalised otherwise.

For our purposes, SLPs are restricted to define probability distributions over definite
clauses, where each l is set to be a number in the interval [0,1]. In a pure normalised SLP,
each choice for a clause C has a parameter attached and the parameters sum to one, so they
can therefore be interpreted as probabilities. Pure normalised SLPs are defined such that
each parameter l denotes the probability that C is the next clause used in a derivation given
that its head C+ has the correct predicate symbol. Impure SLPs are useful to define logic
programs containing both probabilistic (or parameterised) and deterministic (or non-
parameterised) rules4. Unnormalised SLPs can conveniently be used to represent other
existing probabilistic models, such as Bayesian nets (Cussens, 2001).

Generally speaking, an SLP S has a distribution semantics (Muggleton, 2000), that is one
which assigns a probability distribution to the atoms of each predicate in the Herbrand base
of the clauses in S. Let n(S) denote the logic program formed by dropping all the probability
labels from S. A stochastic SLD-resolution procedure will be used to define a probability
distribution over the Herbrand base of n(S). The stochastic SLD-derivation of an atom a is
as follows: suppose ← g is a unit goal with the same predicate symbol as a and without
other function symbols and distinct variables; next suppose there exists a ground substitution
θ such that gθ = a (since the clauses at n(S) are range restricted, θ is necessarily ground);
now suppose the first atom in ← g can unify with the heads of m > 0 stochastic clauses {l1 :
C1,…, lm : Cm} in which the clause li : Ci is chosen (by some selection function), then the

probability of the choice is 5; and the probability of a derivation of is a the
product of the probabilities of all the choices made in the derivation; moreover, the
probability of the atom a is the sum of the probabilities of all the derivations of a. Such
stochastic SLD-derivation of a goal is always represented as a stochastic SLD-tree. It is clear
that a Markov chain, whose states are goals, is defined by a pure normalised SLP and an

3A definite logical clause C is range-restricted if every variable in C+, the head of C, is found in C−, the body of C.
4The desired meaning for unparameterised clauses in the impure SLPs is to see them as non-probabilistic domain knowledge acting as
constraints (Cussens, 2001). The ability of combining such deterministic background knowledge with those probabilistic
(parameterised) clauses is one of the central features of SLPs. However, one should satisfy an equivalence relation constraint to apply
impure SLPs so that only one single refutation (with probability 1) could be derived from possibly multiple non-probabilistic rules in
the underlying SLD-derivations. More details are discussed in Cussens (2001).
5It is li if S is normalised.
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initial goal through a stochastic SLD-resolution. The clause parameters thus define transition
probabilities between goals in the Markov chain.

Furthermore, some quantitative results are shown in (Cussens, 2001), in which an SLP S
with parameter λ = log l together with a goal g defines up to three related distributions in the
stochastic SLD-tree of g: ψλ,S,g (x), fλ,S,g(r) and pλ,S,g(y), defined over derivations {x},
refutations {r} and atoms {y}, respectively. An example is illustrated in Fig. 1, in which the
example SLP S defines a distribution, for a goal : –s(X), {0.1875, 0.8125} over the sample
space {s(a), s(b)}. As stated in (Cussens, 2001), SLPs do not define distributions over
possible worlds, i.e., pλ,S,G(y) defines a distribution over atoms, not over the truth values of
atoms. Thus, we could claim that the distribution semantics of SLPs is in accordance with
type 1 or domain frequency probabilistic logic (Halpern, 1989) and SLPs have not
previously been provided with a possible worlds semantics.

Learning SLPs has been studied in (Cussens, 2001), which solves the parameter estimation
problem by developing failure-adjusted maximisation (FAM) algorithm, and in (Muggleton,
2000, 2002a), which presents a preliminary approach to structure learning. The problem of
SLP structure selection is still an open hard problem in the area that requires one to solve
almost all the existing difficulties in ILP learning (De Raedt and Kersting, 2003).

FAM is designed to deal with SLP parameter learning from incomplete or ambiguous data in
which the atoms in the data have more than one refutation that can yield them. It is an
adjustment to the standard EM algorithm where the adjustment is explicitly expressed in
terms of failure derivation. The algorithm maximises, at iteration h, the likelihood of
parameters λh given the observed data y with empirical frequencies, i.e. Pe(y|λh), the
probability of y given the current parameters. Since an SLP's parameters are its clausal
probabilities, FAM works on the expected contribution a particular clause has in stochastic
SLD-derivations with respect to the data at hand. This is ψλh[νi|y], the expected frequency
for clause Ci given the observed data y and the hth iteration parameter estimation λh

where νi counts times Ci appeared in some derivation, Nk is the number of times datum yk
occurred in the observed data, N = ΣkNk is the number of observed data, ψλh[νi|yk] is the
expected number of times Ci was used in refutations yielding yk, ψλh[νi|fail] denotes the
expected contribution of Ci to failed derivations, and Zλh is the probability of all the
refutations (Cussens, 2001). Therefore, the first part corresponds to refutations while the
second term to failed derivations. Broadly speaking, the equation gathers together the
contributions of a particular clause Ci to derivations against the program, the current
parameters and the data. The counts are used to estimate the probabilities for the
parameterised clauses in each FAM iteration.

2.4 Abductive Logic Programming
Considering a logical approach to the problem of incremental development of scientific
models, scientists have distinguished three forms of reasoning: deduction, abduction and
induction. Several studies have been conducted on the comparison and integration of
abduction and induction from the perspective of Artificial Intelligence (Kakas et al., 1992;
Flach and Kakas, 2000). A basic assumption in the study of abduction is that a logical theory
or model T can be separated into two disjoint sets of predicates: the observable predicates
describe the empirical observations of the domain and the abducible predicates describe
underlying relations in the model that are not observable directly, but can bring about
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observable information through T. In practice, observations are typically represented by
ground atomic facts on the observable predicates, and abducibles are the ground atoms
generated during reasoning on the abducible predicates that could complement the current
theory T. These two types of predicates form the basis of abductive explanation for
understanding the observations. In general, abduction generates, in the explanations,
extensional knowledge that refers only to the abducible predicates and that is specific to
some particular state of world; whereas induction generates intensional knowledge in the
form of new general rules that can provide new links between predicates. The combination
of abduction and induction has been deployed within ILP, e.g. the framework of theory
completion and its implementation Progol 5.0 (Muggleton and Bryant, 2000; Muggleton,
2002b), application of abductive ILP to learning metabolic network inhibition (Tamaddoni-
Nezhad et al., 2006).

A general approach of integrating abduction with induction is developed in (Flach and
Kakas, 2000). Abduction is first used to transform the observations to an extensional
hypothesis on the abducibles. The induction takes this as input and tries to generalize the
extensional information to general rules for the abducible predicates now treating them as
observables for its own purposes. The cycle can then be repeated by adding the learned
information on the abducibles back into the model as new partial information on the
incomplete abducible predicates. This will affect the abductive explanations of new
observations to be used again in a subsequent phase of induction. Hence through the
integration, the abductive explanations of the observations are added to the theory in a
generalized form given by a process of induction on them. Adding an explanation to the
model allows us to predict further observable information but the predictive power of
abduction is restricted to come from the already known rules in the model.

A framework that supports abduction in logic programming is that of abductive logic
programming (ALP) (Kakas et al., 1992; Kakas and Denecker, 2002).

Definition 4 (Abductive Logic Programming)—(I) An ALP theory or model T is a
triple (LP, A, IC), in which a logic program LP contains definitional knowledge about the
domain through a set of observable predicates and background predicates, a set of abducible
predicates A appear only in the condition parts of the program rules with no definition in LP,
and a set of integrity constraints formulae IC represent assertional knowledge about the
domain, augmenting the model in LP but without defining any predicates. (II) Given an ALP
theory, an abductive explanation for an observation O is a set Δ of ground abducible atoms
on the predicates A such that LP∪Δ |= O and LP∪ |Δ |= IC.

An ALP system thus returns an abductive explanation Δ which represents a hypothesis that
together with the model T explains how an observation O could hold. An abductive
explanation partially completes the current model T by providing new knowledge
(abducibles). This framework provides the background for the studies of abductive ILP in
(Tamaddoni-Nezhad et al., 2006) and abductive SLPs in this paper.

2.5 PRISM and ICL
PRogramming In Statistical modeling (PRISM) (Sato, 1995) and Independent Choice Logic
(ICL) (Poole, 1997) are two existing PILP formalisms supporting abduction. The common
feature of these frameworks is that a purely probabilistic component (probabilistic facts or
alternatives) and a purely logical component (logical rules) are connected to produce a
hybrid model. Both of them, as well as SLPs, fall into the category of directed approaches
where there is a nonempty set of formulae all of whose probabilities are explicitly stated
(Cussens, 2007).
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There are two disjoint sets of ground atomic formula in the languages: probabilistic facts in
PRISM, similarly to the alternatives in ICL, that define a base distribution; and those come
from using a set of logical rules that extend the base distribution to an induced distribution
over the set of least models. The PRISM system represents probabilistic facts in the form of
multiary random switches (msw). In ICL, an atomic choice specifies the truth value of an
alternative and a total choice specifies atomic choices for all alternatives. The base
distributions are defined over a set of mutually independent msw facts or atomic choices
with the closed-world assumption (CWA). From a statistical point of view, both
probabilistic facts and alternatives can be treated as random variables that have truth values
and probabilities. Thus possible worlds semantics are explicitly invoked in the two
formalisms, where a possible world is determined by a total choice in ICL and a conjunction
of msw facts in PRISM.

In both frameworks, there is a strict separation between probabilistic facts, whose
probabilities are explicitly given, and formulae whose probabilities have to be inferred from
the probabilistic facts, the logical rules and the CWA (Cussens, 2007). The logical rules are
non-probabilistic and are used to deterministically map the base distribution defined over
facts to other atomic formulae. To compute the probability of a formula F which is not a
probabilistic fact, it suffices to find the possible conjunctions of facts that entail F, each of
which is a product of base probabilities, and then compute the sum of the probabilities of the
conjunctions with the help of CWA. This is based on the distribution semantics defined in
PRISM. Moreover, abduction is a key operation in finding the required conjunctions. The
importance of abduction is reflected in the name probabilistic Horn abduction (PHA)(Poole,
1993), the original version of ICL. In PRISM, abduction is achieved by one of the two
underlying probabilistic inferences: explanation search. An explanation for a probabilistic
goal G is a conjunction E of the ground switch instances that occurs in a derivation path of
G. Explanation search works as an underlying subroutine for probability calculation and
parameter learning. In particular, the parameter estimation in the PRISM is exactly a process
of abduction, where the base probabilities of a set of msw facts (abducibles defined by
multi-valued switch declarations) are estimated from a set of ground atomic formulae
(observables defined by target declarations). From a point of view of prediction, the learning
could be done with a subset of examples (train data) and we could further calculate the
probabilities for another subset of examples (test data) with the learned models using
explanation search so as to evaluate the performance of modeling. An example of applying
PRISM for such abductive learning and prediction can be found in the next section.

An explicit difference can be found between SLPs and PRISM/ICL, i.e. pure SLPs attach
probabilities to first-order clauses/rules as well as facts, but the logical rules are restricted to
be deterministic in PRISM/ICL. This further extends to the difference between their
probabilistic semantics, i.e. PRISM and ICL have possible worlds semantics but SLPs define
probabilities for proofs without much concern about the probabilities with which the atomic
formulae are true. However, as shown later, both PRISM and abductive SLPs can achieve
the same goal of abductive learning. To understand the representation problem better let us
consider the case of learning metabolic network inhibition.

2.6 Learning Metabolic Network Inhibition
Metabolism provides a source of energy for cells and degrades toxic compounds in
preparation for excretion. The graph of these interlinked chemical reactions is known as the
metabolic network (Alm and Arkin, 2003). The reactions that take place in the network are
catalysed by highly specialised proteins known as enzymes. One of the less understood
phenomena in the metabolic network is inhibition. Some chemical compounds, known as
inhibitors, can affect enzymes, impeding their function. This in turn affects the normal flux
in the metabolic network, the result of which is reflected in the accumulation or depletion of
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certain metabolites. Inhibition is important because many substances designed to be used as
drugs can have an inhibitory effect on other enzymes. Any system able to predict such
inhibitory effect on the metabolic network would be useful in assessing the potential side-
effects of drugs.

In the Systems Biology project (MetaLog Project, 2006), several machine learning
techniques have been conducted to use experimental data on the accumulation and depletion
of metabolites to model the inhibitory effect of various toxins, such as hydrazine, in the
metabolic network of rats (Fig. 2). In order to measure the actions of toxin, a group of rats
were injected with hydrazine and the changes on the concentrations of a number of chemical
compounds are monitored during a period of time. Relative concentrations of chemical
compounds are extracted from Nuclear Magnetic Resonance (NMR) spectra of urine which
provide information concerning the flux of metabolite concentrations before, during and
after administration of a toxin.

One of the applied machine learning approaches is abductive ILP (Tamaddoni-Nezhad et al.,
2006), a variant of ILP supporting both abductive and inductive logic programming. In that
work, the binary information on up/down regulations of metabolite concentrations following
toxin treatment is combined with background knowledge representing a subset of the Kyoto
Encyclopedia of Genes and Genomes (KEGG) metabolic diagrams. Based on the underlying
ALP paradigm, an abductive ILP program is used to suggest the inhibitory effects occurring
in the network, which includes a set of different types of predicates (Table 1), a set of
general rules under which the effect of the toxin can increase or reduce the concentration of
the metabolites, and some integrity constraints involving self-consistency requirements of
the model. In general, we can have a set of metabolites on each side of the reaction and a set
of different enzymes that can catalyze the reaction. An example of metabolic network and
the learned inhibition are demonstrated in Fig. 3.

The key point in the abductive ILP study is that, as introduced in section 2.4, it supports the
integration of abduction and induction and provides abductive explanations for observations
in an ILP setting. Abduction is a procedure of finding explanations for observations and
induction is a procedure of formulating general rules for the abducible predicates. There are
three main reasons for us to revisit this application work of abductive ILP by using a
probabilistic ILP approach. Firstly, we believe the data set provides us a test bed for
developing a method that can extract probabilistic examples instead of non-probabilistic
examples, as it contains raw data for control and treatment cases. Secondly, we attempt to
reject a null hypothesis “learning probabilistic logic models from probabilistic examples
does not provide better prediction than learning probabilistic logic models from non-
probabilistic examples” with the empirical probabilities as the base line. Finally, we want to
demonstrate that probabilistic logic models provide richer interpretability than pure logic
models from the application point of view. Therefore, by adapting the pure logic program to
an SLP program and extracting probabilistic examples from the same data, our study aims at
learning probabilistic logic models of metabolic network inhibition from probabilistic
examples.

3 Abductive SLPs
3.1 Abduction with SLPs based on a Possible Worlds Semantics

Despite their use in stochastic contexts, SLPs have not previously been provided with a
(type 2) possible worlds semantics and their interpretation has generally been allied in the
literature (Puech and Muggleton, 2003) to Halpern's (type 1) domain frequency based
probabilistic models (Halpern, 1989). Abductive SLPs provide a setting to SLPs which
supports abductive modeling and learning with SLPs through defining a probability
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distribution over the abductive hypotheses based on a possible worlds semantics (Arvanitis
et al., 2006).

As stated in section 2.3, SLPs are originally set to have a distribution semantics (Sato,
1995), that assigns a probability distribution to the atoms in the Herbrand base of the clauses
in an SLP program according to a stochastic SLD resolution strategy (Muggleton, 2002a).
The stochastic SLD-derivation procedure gives SLPs a domain-based semantics which
define probability distributions over ground atoms through building stochastic SLD-trees.
However, being motivated by Markov models, we now provide a new setting which
interprets the probabilities assigned to the clauses as conditional probabilities between
possible worlds. When introducing abduction into SLPs (Arvanitis et al., 2006), given a
clause p : H ← B being applied in a stochastic SLD-derivation, the probability p is
interpreted as Pr(B | H), i.e. the conditional probability of the ground body B being true (in
some possible worlds) given that the ground head H is true (in the same possible worlds).
This setting corresponds to an explanatory semantics of conditional probability that explain
the possible causes for a given result, in contrast with the normal causal semantics (Pr(H |
B)) that infer the result given the causes, like the semantics defined in Bayesian Networks
(Pearl, 1988) and BLPs (Kersting and De Raedt, 2000). Under the explanatory semantics,
the possible explanations that are computed for an atom are based on possible worlds, i.e.
each possible world (explanation) corresponds to a stochastic SLD-refutation (a branch in a
proof tree) and the probability of the atom is the sum of the probabilities over all the
possible worlds (explanations or proofs). In fact, all the stochastic SLD-refutations of an
atom compose a subset of possible worlds (in which the atom is true), each of which is
associated with a non-zero probability, while all the other possible worlds are set to have
zero probabilities under a closed world assumption (CWA). When addressing this in logical
reasoning and learning, the new setting also suggests the possibility of introducing abduction
into SLPs which can find abductive explanations for observations. Therefore, SLPs with
abduction setting are called abductive SLPs which provide SLPs with a possible worlds
semantics.

3.2 A Worked Example
We now explain the idea with an example. Suppose we are given the following SLP and the
domain is set to be {a, b}

We are now asked to provide explanations of the observation s(a)6. We can view the labels
in the SLP above as providing probabilities associated with various abductive explanations
of s(a) and s(b). Thus 0.6 is the probability associated with the explanation from the first
clause above. If we abduce p(a) from s(a) then a CWA leads us to conclude that ¬q(a) holds
in the world description in which this hypothesis is true7. Thus we have the following
conditional probabilities

6We apply skolemisation to deal with existential quantifiers appeared in abducible predicates. For example, assuming a clause s(X) ←
p(X, Y) (in which Y is a existentially quantified variable) and an observation s(a), a ground fact p(a, $y) could be abduced from,
where $y is a skolem constant of Y.
7It means that in the worlds that p(a) is true the explanation of q(a) is false. This shows a mutual exclusion of the two explanations of
s(a) and implies that 0 : s(X) ← p(X), q(X), which could not be derived under the distribution semantics. It is also worth noting that
the CWA here has the same meaning with the exclusiveness condition set in the PRISM, which states that with any parameter settings,
for any observable goal G, the explanations (and sub-explanations) for G (and subgoals of G) are probabilistically exclusive to each
other.
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By the laws of conditional probability

Suppose we know a prior distribution over the observations8, i.e. Pr({s(a), s(b)}) = {0.8,
0.2}. Thus we get the following possible worlds along with their probabilities

This leads to an assignment in which all other possible worlds have probability 0. In this
context, there are two possible explanations for s(a): p(a) with probability 0.48 and q(a) with
probability 0.32. Suppose we now extend the SLP above with the following.

By applying the normal Markov chain assumption in SLPs, and employing the same
arguments as above we get the following possible worlds with probabilities

Furthermore, the marginal probabilities of all the abducibles of the two observations are

8Please be aware that this distribution is the subjective prior knowledge (de-noted by Pr), not the objective empirical distribution
(denoted by Pe).
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Thus, we could conclude that the abducible u(a) is the abduced explanation for the
observation s(a) with the highest probability 0.464 in the example. It is also worth noting
that there is no overlapping between the possible worlds that abduce u(a) (or u(b)), as the
worlds derived from the rule 0.5 : p(X) ← u(X) and the rule 0.7 : q(X) ← v(X), v(X) are
two sets of different worlds that have no connections between each other.

3.3 Framework of Abductive SLPs
We now define the framework of abductive SLPs by three parts–abductive SLPs, stochastic
abduction and learning setting of abductive SLPs.

Definition 5 (Abductive SLPs)—An abuductive SLP SA is a first-order SLP with
abductive logic programming setting based on a possible worlds semantics. Let n(SA)
denote the logic program formed by dropping all the probability labels from SA, then n(SA)
is an ALP theory (as defined in Definition 4). Given an abductive SLP SA, a stochastic
abductive explanation for an observation can be derived by applying the following defined
stochastic abduction procedure.

Definition 6 (Stochastic Abduction with Abductive SLPs)—Suppose that SA is an
abductive SLP, e is a first order ground atom (defined by some observable predicate) with a
given prior probability Pr(e), δ(e, SA) is a ground stochastic SLD-derivation of e derived
from SA involving a set of ground abducibles Ae (defined by some abducible predicates).
We say that a model Me is a least Herbrand model of (SA, e, Ae) if it contains all and only
the ground facts in δ and we have

where C is a (grounded) stochastic clause with probability Pr(C) in δ. From this, we have the
probability of the possible world (e, Me)

Now suppose an arbitrary abducible a  Ae, then the (marginal) probability of a can be
defined to be the sum of the probabilities of all the least models that have a in their abduced
facts
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In the definition, a stochastic SLD-derivation δ is a least Herbrand model of the observation
e if and only if δ is a stochastic SLD-refutation of e that proves e to be true.

Based on the underlying process of stochastic abduction, abductive SLPs further provide a
learning mechanism to learn a set of abducibles. Ideally, abductive SLPs should support
structure selection that combines induction and abduction in the learning. However, as SLP
structure learning is still a challenging problem in the area, we only consider SLP parameter
estimation in our study which learns probabilities for a given set of abducibles. This can be
done by applying some SLP parameter estimation algorithms, such as FAM (Cussens,
2001).

Definition 7 (Parameter Estimation Setting of Abductive SLPs)—Suppose B is a
background knowledge theory in the form of logic program, E = {(e, Pe(e))} is a set of
independently observed ground probabilistic examples, and A is a set of mutually
independent abducibles (ground facts) based on some abducible predicates, abductive SLPs
aim to learn a set of parameters λ for (A, B) such that (A, B, λ) composes an abductive SLP
SA, A Λ B |= E and λ is chosen to maximise the likelihood of SA,

where γ(e, SA) represents the set of stochastic SLD-derivations of e from SA.

The above parameter learning setting is a special case of Definition 2, where the scoring
function is set to be the maximum likelihood. Because FAM is not developed for the
abduction purpose, i.e. it does not explicitly compute probabilities for abducibles, we have
to treat abducibles as ground clauses and learn their probabilities using FAM by maximising
the likelihood Pr(E|SA). In fact, FAM estimates a clausal probability for a clause using the
same computation process as the stochastic abduction for an abducible through stochastic
SLD-resolution and it supports learning from empirical probabilities/frequencies.

3.4 Possible Worlds Semantics vs. Distribution Semantics
Distribution semantics are originally introduced in Sato (1995) as a basic attitude towards
the use of probability in logic or logic programming. The distribution approach defines a
specific probability distribution which gives the probability that each logical formula is true.
It is common that the probability distribution in question is defined over possible worlds
(first-order models) which (by marginalization) give for each closed logical formula the
probability that it is true (Cussens, 2001). Thus, distribution semantics are originally
designed for representing Halpern's type 2 possible worlds probability logic.

SLPs were given a distribution semantics over Herbrand models or a proof-theoretic
interpretation to the probability labels attached with stochastic clauses: whenever an SLD-
resolution procedure has to choose between clauses, the choice is made according to
probability labels. On the other hand, SLPs represent uncertain knowledge as procedural
descriptions of sampling distributions, e.g. those defined in stochastic grammar and hidden
Markov models (Muggleton, 2000). A pure SLP thus defines a distribution over
instantiations of any top-level goal, which is a sample space of ground atoms, but not over
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the truth values of atoms. Although more complex SLPs can be used to encode other
probabilistic models, such as Bayesian net and Markov nets (Cussens, 2001), the
distributions encoded are over hypothesis spaces of logic program rather than possible
worlds. In fact, for a given goal, an SLP defines an empirical distribution over a stochastic
SLD-tree which is determined by an empirical distribution over a set of observations or
atoms. Thus, the distribution semantics used in SLPs are similar to Halpern's type 1 domain
frequency probability logic (Puech and Muggleton, 2003) and SLPs have not previously
been provided with a possible worlds semantics.

Possible worlds semantics provide model-theoretic interpretation to the probabilities: some
models or atoms or formulae are said to be true only in some possible worlds or states,
which are determined by multiple (exclusive) joint instantiations of some facts. For
example, in Poole (1997), “Possible worlds are built by choosing propositions from sets of
independent choice alternatives”. It is common that the probability distributions in possible
worlds semantics are often defined over the truth values of atoms or variables. One of the
advantages of possible worlds semantics lies in the easy interpretation and understanding of
probabilities. On the other hand, from the logic programming perspective, there is a need in
SLPs to discuss probability distributions over the truth values of atoms and clauses.

Abductive SLPs are a framework that provides possible worlds semantics for SLPs with the
help of abduction. On the one hand, abductive SLPs provide a new setting to SLPs: by
introducing abduction and abductive explanation, the probability label of a clause can be
interpreted by a conditional probability of its body given its head; and under possible worlds
semantics, we could define and discuss probability distributions over the truth values of
atoms. We have already shown in the previous sections how stochastic abduction works and
how the distributions are computed over possible worlds in the underlying SLD-resolution
proof procedures. Another advantage of the possible worlds semantics lies in that there is
implicitly a closed world assumption set in the stochastic abduction procedure in which the
atoms that are not in the derivations are considered false in the world of the derivations.

On the other hand, abductive SLPs do not define any new probability distributions, i.e. for a
given goal or atom, the distribution defined under possible worlds semantics over a set of
possible worlds is equivalent to that defined under distribution semantics over a set of
stochastic SLD-derivations. This is based on a fact that a stochastic SLD-refutation in the
traditional SLPs corresponds to a possible world or an abductive explanation in abductive
SLPs, while some possible worlds are assumed to have zero probabilities under the CWA. In
addition, the computation of the probability of an abducible (is true) is equivalent to the
computation of the probability of an atom (without truth value) in SLPs, i.e. fλ,S,G(r). For
example, in Fig. 1, a distribution is defined over a set of four refutations (r1, r2, r3 and r4
from left to right in Fig. 1(b)) in the SLP S:

When treating S as an abductive SLP, an equivalent distribution can be computed over a set
of 16 possible worlds (for proving s(a) and s(b) to be true):

Chen et al. Page 14

Mach Learn. Author manuscript; available in PMC 2009 November 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



in which four possible worlds have probabilities and all the others are set zero probabilities
under the CWA.

This is the reason why we could transform type 2 empirical validities into type 1 empirical
frequencies in our study, as the same distribution is built over two equivalent spaces
(possible worlds vs. derivations) that have different semantics (type 2 vs. type 1).

3.5 Abductive SLPs and PRISM
As both abductive SLPs and PRISM support abductive learning, we now show with an
artificial example how they work respectively. We suppose a simple metabolic network in
the example which contains three metabolites (a, b and c) and two pathways (one is between
a and b through enzyme e1 and the other is between a and c through enzyme e2). We use the
same background knowledge as that in the later experiment, which models the toxic
inhibition (inhibited/49) in the network caused by the concentration up/down regulation
changes (concentration/2). We assume two probabilistic examples (concentration levels of b
and c) have been observed as training data. The inputs for both approaches are the
background knowledge, the abducibles and the observed probabilistic examples. And the
outputs will be the probability distributions learned for the abducibles by abductive learning
and the probability predicted for the concentration level of a (test datum) by the probability
predictions . In addition, abductive SLPs will also estimate the probabilities for the
probabilistic clauses (concentration/2), which has to be treated as pure logical (non-
probabilistic) rules in the modeling part of PRISM program.

The following SLP program shows the learning and prediction result using abductive SLPs
by running FAM software Pe-pl 0.12 (Angelopoulos and Cussens, 2006).

%% abducibles, inhibition, with learned probabilities

0.3497 : inhibited(e1,a,b,t). 0.0999 : inhibited(e2,a,c,t).

0.1499 : inhibited(e1,b,a,t). 0.3997 : inhibited(e2,c,a,t).

0.0002 : inhibited(e1,a,b,f). 0.0002 : inhibited(e2,a,c,f).

0.0002 : inhibited(e1,b,a,f). 0.0002 : inhibited(e2,c,a,f).

%% probabilistic background knowledge with learned probabilities

0.4496 : concentration(X,down) :-

reactionnode(X,Enz,Y),inhibited(Enz,Y,X,t).

0.0004 : concentration(X,down) :-

reactionnode(X,Enz,Y),inhibited(Enz,Y,X,f),observed(Y,down).

0.5496 : concentration(X,up) :-

reactionnode(X,Enz,Y),inhibited(Enz,X,Y,t).

9It denotes inhibited if the fourth argument is set to be t or not-inhibited if the fourth argument is f.
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0.0004 : concentration(X,up) :-

reactionnode(X,Enz,Y),inhibited(Enz,Y,X,f),observed(Y,up).

%% deterministic (non-probabilistic) background knowledge

reactionnode(a,e1,b). reactionnode(b,e1,a).

reactionnode(a,e2,c). reactionnode(c,e2,a).

observed(b,down). observed(c,up).

%% observables, probabilistic examples (with empirical probabilities),

%% the train data

%(concentration(b,down),0.70), (concentration(b,up),0.30)

%(concentration(c,down),0.20), (concentration(c,up),0.80)

%% probabilities predicted for the test data

%Pr(concentration(a,down))=0.483, Pr(concentration(a,up))=0.517

In the above abductive SLP, the possible world semantics apply to not only the abductive
learning but also the probability predictions, e.g. the probability Pr(concentration(a, down))
is computed by searching from sets of possible worlds (refutations) as done in abduction.
The following PRISM program shows the learning and prediction results using PRISM
1.11.2 (Sato et al., 2008).

%% Declaration of targets and msws

target(concentration,2).% Observable predicate

target(failure,0).% Handling failures

data(user). % Data

values(inhibited,[[e1,a,b,t],[e2,a,c,t],[e1,b,a,t],[e2,c,a,t],

[e1,a,b,f],[e2,a,c,f],[e1,b,a,f],[e2,c,a,f]]). % Abducibles,msw values

%% Modeling part, logical background knowledge rules

failure :- not(success).

success :- concentration(_,_).

concentration(X,down) :-

reactionnode(X,Enz,Y),msw(inhibited,[Enz,Y,X,t]).
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concentration(X,down) :-

reactionnode(X,Enz,Y),msw(inhibited,[Enz,Y,X,f]),observed(Y,down).

concentration(X,up) :-

reactionnode(X,Enz,Y),msw(inhibited,[Enz,X,Y,t]).

concentration(X,up) :-

reactionnode(X,Enz,Y),msw(inhibited,[Enz,Y,X,f]),observed(Y,up).

%% Utility part, other background knowledge

reactionnode(a,e1,b). reactionnode(b,e1,a).

reactionnode(a,e2,c). reactionnode(c,e2,a).

observed(b,down). observed(c,up).

%% Observations, probabilistic examples, train data

%learn([count(failure,1),count(concentration(b,down),70),

%count(concentration(b,up),30),count(concentration(c,down),20),

%count(concentration(c,up),80)])

%% Probabilities learned for abducibles by calling show_sw

%Switch inhibited: unfixed_p: [e1,a,b,t] (p: 0.3460) [e2,a,c,t] (p: 0.1075)

%[e1,b,a,t] (p: 0.1589) [e2,c,a,t] (p: 0.3876) [e1,a,b,f] (p: 0.0000005)

%[e2,a,c,f] (p: 0.000001) [e1,b,a,f] (p: 0.0000) [e2,c,a,f] (p: 0.0000)

%% Probabilities predicted for the test data by calling prob()

% prob(concentration(a,down))=0.5465,prob(concentration(a,up))=0.4535

From the learning results, we conclude that similar inhibition have been found by the two
frameworks in terms of the probabilities learned for the abducibles. However, different
predictions have been made by them for the test datum. The reason lies in the difference in
the representations, learning algorithms and implementations. A distinct difference in the
above example is that it is necessary to represent and learn the background knowledge
clauses (concentration/2) as probabilistic rules in the abductive SLPs10. By contrast, the
background knowledge clauses have to be modelled as purely logical rules in the PRISM

10It is necessary because such probabilistic rules in the impure SLP forms can derive more than one refutations for an observation
(e.g. concentration(citrate,down)) in the SLD-derivation. As a counterexample, we used unparameterised background knowledge to
learn the abductive SLPs for the above example and got the predictions: Pr(concentration(a, down)) = Pr(concentration(a, up)) = 0.5,
which means no predictions at all.
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code. Although deterministic clauses seem more natural in some cases, they have to be
treated as parameterised probabilistic rules in the SLPs when multiple refutations are
needed, otherwise the probabilities could not be correctly calculated. In such cases, if we
consider the SLD-derivations as Markov chains, then the difference between the SLPs and
the PRISM becomes whether the transitions in the Markov chains are attached with
probabilities or not. The probability calculations of the states in the Markov chains are
consequently different. In addition, abducibles are denoted by random switches in the
PRISM, but by the ground atomic formulae in the SLPs, and probabilities are also estimated
for the probabilistic rules. Please note that failures are handled by applying FAM algorithm
in the recent versions of PRISM in order to relax its strict uniqueness condition – that
exactly one atomic formula representing observed data is derivable from any instantiation of
the base distribution.

4 Extracting Probabilistic Examples from Scientific Data
In this section we outline a method to extract probabilistic examples from scientific data
divided into control and treated cases11 and exemplify its application to our rat metabolic
network data set. Table 2 presents a pseudo code for the following explained algorithm
applied to our rat metabolic network inhibition data set.

We have a scientific data set involving a set of data values collected from some control
cases as well as a set of data points from some treated cases. All the data are mutually
independent. In the ILP study, a positive example extracted from such data set is a ground
atom stating that some attribute takes some non-probabilistic value by comparing the
difference of the average of the values observed in the control cases and treated cases
respectively. In our study, we attempt to extract, in addition to a non-probabilistic example,
an empirical probability for the example which shows the degree we believe it holds certain
value.

The method consists in constructing, for each metabolite α in the control case (step 2.1), a
normal distribution Nα with parameters μ and σ calculated from a set of concentration
values of α, Cα, in all the control cases (step 2.2 and 2.5). Then, for each concentration
value of α, τα, that is observed in the treated cases (step 2.3), the integral from −∞ to τα is
calculated in Nα (e.g. using the function PNORM(x, m, sd)12, step 2.5). Meanwhile, a binary
state value (up or down) is set for α by comparing the difference between Mean(Cα) and
MEAN({τα}) (step 2.4). Finally, the average of the integrals (each in [0, 1]), ρα, is taken to be
the extracted probability (step 2.5).

Next, we claim that ρα indicates to what extent the set of τα in the treated cases differ from
the concentration values of α in the control cases. It follows that a value of ρα < 0.5
specifies α is less expressed in the treated cases compared to that in the control cases in
terms of the concentration levels, ρα > 0.5 indicates α is more expressed, and ρα = 0.5
shows that the concentration of α observed in the treated cases has no difference from that
in the control cases. Furthermore, we could say that Cα = ρα if ρα > 0.5 or Cα = 1 − ρα
otherwise13, where Cα represents the confidence (or degree of belief) of the assertion ‘α is
more or less expressed in the treated cases relative to the control cases’. From our point of
view, Cα is the estimated type 2 empirical probability (or validity) of the concentration of α

11The control cases are a set of data gathered from rats without toxin and the treated cases are a set of data gathered from rats with
toxin injection.
12PNORM(x, m, sd) is a function in the R language, which calculates the area to the left of x in a normal distribution with mean m and
standard deviation sd, i.e. the cumulative distribution of the normal distribution.
13We do so under an assumption that α takes a binary state value, e.g. up or down, and a threshold of 0.5 is set. It could be extended
to categorical cases by setting multiple thresholds.
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happened in the treated cases against the control cases, i.e. we believe the statement ‘the
concentration level of metabolite α takes some value’ is true with some probability Cα. For
example, a tuple (concentration(citrate, down), 0.9843) derived from the method
corresponds to a probabilistic example that means ‘the concentration of metabolite citrate is
observed in the given data set to have a down regulation with empirical probability 0.9843’.

In our sample data file, after some pre-processing, we had the raw data values of 20 rows
(one per rat) and 20 columns (one per metabolite). The first 10 rows represent control rats
(injected with a placebo) and the latter 10 represent treated rats which were injected with
30mg dose of hydrazine. Each column has information on the concentration of a given
metabolite at the 8th hour after the injection14. The above method has been applied to the
raw data set by developing a small R script. We are aware that using only 10 data points to
build a normal distribution for control case is not ideal but have to treat it as an appropriate
approximation with the data at hand15. The result matrix with the estimated concentration
level and empirical probabilities for hydrazine are presented in column 2 and 3 of Table 4.

5 Experiments - Learning Metabolic Network Inhibition
The experiments16 include two learning tasks – learning abductive SLPN and PRISM model
PSMN from non-probabilistic examples, and learning abductive SLPP and PRISM model
PSMP from probabilistic examples. Our learning algorithm is shown in Table 3.

5.1 Hypotheses to Be Tested
The null hypotheses to be empirically investigated in the study are

– The predictive accuracy of an SLPP model does not outperform an SLPN model for
predicting the concentration levels of metabolites in a given rat metabolic network
inhibition (caused by a given toxin, such as hydrazine) experiment.

– The predictive accuracy of an PSMP model does not outperform an PSMN model for
predicting the concentration levels of metabolites in a given rat metabolic network
inhibition (caused by a given toxin, such as hydrazine) experiment.

Based on the above null hypotheses and our interests of study in this paper, the following
restrictions and assumptions should be followed in the experiment – 1) only PILP models,
i.e. the SLPP, SLPN, PSMP and PSMN models, are learned and evaluated; 2) empirical
probabilities are used as metric to evaluate the predictive performance of the PILP models,
as we believe they provide more accurate information than the non-probabilistic values; 3)
we do not compare PILP models with the ILP models, as they use different evaluation
metrics; 4) we only compare the predictive performance between SLPP and SLPN; 5) we
only compare the predictive performance between PSMP and PSMN; 6) we do not compare
the predictive performance between the abductive SLP models and the PRISM models as it
is beyond the research purpose of this paper.

5.2 Materials and Inputs
The (estimated) type 2 empirical probabilities are extracted from the raw data consisting of
the concentration level of 20 metabolites on 20 rats (10 control cases and 10 treated cases)
after 8 hours of the injection of hydrazine. In particular, each observation inputted into SLPP

14The data of metabolite concentrations are gathered at some time points. For our research purpose, we are using the non-temporal
data collected after 8 hours of toxin injection. The methods in the paper could also be applied to process the data at other time points.
Temporal data have been dealt with in (Tamaddoni-Nezhad et al., 2006).
15Please note that experiments in some scientific areas, such as metabolic network inhibition, are very expensive.
16The probabilistic examples and programs used in the experiments can be found at http://www.doc.ic.ac.uk/~cjz/AbductiveSLPs.
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is associated with a type 2 empirical probability ρ we have obtained in last section. In
addition, our learning framework also allow us to provide the complementary observations
with probability (1 − ρ) (like the negative examples in ILP). Both the FAM implementation
Pe-pl (Angelopoulos and Cussens, 2006) and the PRISM system indirectly support the
introduction of probabilities in the observation list by allowing the same observation to
duplicate an arbitrary (integer) number of times (or frequencies). This makes us possible to
transform the type 2 empirical probabilities extracted from the data set into the type 1
empirical frequencies. For instance, a (positive) non-probabilistic example would be simply
inputted in SLPN as follows,

concentration(citrate, down)-1.

In addition, a corresponding probabilistic example could be inputted to SLPP in the
following form,

concentration(citrate, down)-98.

concentration(citrate, up)-2.

This could be done by using predicate count/2 in the PRISM system (as shown in section
3.5). We use the numbers 98 and 2 to stand for the relative frequencies of the observation,
which implicitly corresponds to ‘the concentration of metabolite citrate is down with an
empirical frequency 98% and is up with frequency 2%’17. So, probabilistic examples are
applied in the abductive SLP and the PRISM frameworks rather than positive and negative
non-probabilistic examples in the standard ILP learning18.

A background theory B has been derived and adapted from the existing ILP model (see
section 2.6). A set of abducibles A is manually chosen based on the abducible predicates
(inhibited/4) and we are interested in finding the potential inhibitions (denoted by
inhibited(enzyme, metabolite1, metabolite2, t)) in a given metabolic network
involving the pathways between metabolites catalyzed by enzymes. Thus, A and B together
with the initial parameters (in an uniform or random distribution) compose of the initial SLP
that could be inputted for learning abductive SLPs, while A and B are needed to build up a
PRISM program for learning the PRISM models.

5.3 Methods
We apply leave-one-out cross validation technique to do the prediction and evaluation, in
which 20 SLPN models, 20 SLPP models, 20 PSMN models and 20 PSMP models are built
respectively. Each model is trained by 19 metabolites and tested by the left out one. We
perform the SLP learning by playing FAM using Pe-pl 0.12 (Angelopoulos and Cussens,
2006) with both non-probabilistic examples (SLPN) and probabilistic examples (SLPP)
under Yap 5.1.1 (Costa et al., 2006). The corresponding PRISM models PSMN and PSMP
are learned by PRISM 1.11.2 (Sato et al., 2008).

17We could choose any integers x and y that satisfy , but the sum (x + y) is required equivalent for all the metabolites.
18It is worth noting that the method of duplicating examples to represent frequency information can also be employed in ILP systems
such as Progol. However the resulting learned logic programs will predict new examples as either true or false, compared with the
frequency assignment given by a learned SLP. On the other hand, the simultaneous appearance of both concentration(citrate,down)
and concentration(citrate,up) in ILP systems will be treated as noise that could be avoided.
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5.4 Results
The following SLP shows part of the learned SLPP model and Fig. 4 illustrates a complete
model built from all the probabilistic examples, in which we set a threshold (0.02) to decide
which abducibles are significant (e.g. the significant inhibitions we have found) based on
their learned probabilities.

%% abducibles

0.0592 : inhibited(2.6.1.39,l-2-aminoadipate,2-oxo-glutarate,t).

0.0010 : inhibited(2.6.1.39,2-oxo-glutarate,l-2-aminoadipate,t).

……

0.0358 : inhibited(2.3.3.1,beta-alanine,citrate,t).

0.0015 : inhibited(2.3.3.1,citrate,beta-alanine,t).

……

0.0239 : inhibited(3.5.2.10,creatinine,creatine,t).

0.0249 : inhibited(3.5.2.10,creatine,creatinine,t).

……

%% probabilistic background knowledge

0.3762 : concentration(X,down) :- reactionnode(X,Enz,Y), 
inhibited(Enz,Y,X,t).

0.0856 : concentration(X,down) :- reactionnode(X,Enz,Y), 
inhibited(Enz,Y,X,f), observed(Y,down).

0.4535 : concentration(X,up) :- reactionnode(X,Enz,Y), inhibited(Enz,X,Y,t).

0.0846 : concentration(X,up) :- reactionnode(X,Enz,Y), inhibited(Enz,Y,X,f), 
observed(Y,up).

%% non-probabilistic background knowledge

reactionnode(l-2-aminoadipate,2.6.1.39,2-oxo-glutarate).

reactionnode(2-oxo-glutarate,2.6.1.39,l-2-aminoadipate).

……

enzyme(2.6.1.39).

……
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metabolite(l-2-aminoadipate). metabolite(2-oxo-glutarate).

……

observed(citrate,down). observed(2-oxo-glutarate,down).

……

The program for learning PRISM models has a similar form as the one shown in section 3.5.
The abducibles with significant probabilities learned by the program are listed as follows,

[e2_6_1_39,l-2-aminoadipate,2-oxo-glutarate,t] (p: 0.096670606)

[e1_13_11_16,hippurate,succinate,t] (p: 0.044315196)

[e2_6_1,taurine,citrate,t] (p: 0.057226669)

[e3_5_2_10,creatinine,creatine,t] (p: 0.045813141)

[e3_5_2_10,creatine,creatinine,t] (p: 0.052581862)

[e4_1_2_32,methylamine,tmao,t] (p: 0.072195070)

[e2_6_1_14,beta-alanine,citrate,t] (p: 0.074273705)

in which the second pattern is not found by the SLPP model.

The probabilistic background knowledge in the program are interpreted as follows,

– the concentration level of metabolite X is down if, in the metabolic network, there is a
reaction edge between X and metabolite Y through an enzyme Enz that has been
inhibited from Y to X.

– the concentration level of metabolite X is up if, in the metabolic network, there is a
reaction edge between X and metabolite Y through an enzyme Enz that has been
inhibited from X to Y.

– the concentration level of metabolite X is down/up if, in the metabolic network, there
is a reaction edge between X and metabolite Y through an enzyme Enz that has not been
inhibited from Y to X and the concentration level of Y has been observed to be down/
up.

The program models both inhibited reactions (inhibited(_,_,_ ,t)) and not-inhibited reactions
(inhibited(_,_,_,f)) occurred in the metabolic network as well as the changes of metabolite
concentrations. In our experiments we adapted the recursive model used in (Tamaddoni-
Nezhad et al., 2006) to a non-recursive one because both the SLP learning software Pe-pl
and the PRISM system failed to converge using the recursive programs. The recursion in the
program stands for not-inhibited reactions occurring between a chain of metabolites in the
network. Using some means to control the depth of the recursion, such as Peano numbers,
Pe-pl played well for the recursive models with depth 0 (i.e. non-recursive model), but could
not provide stable outputs for the recursive models with depth 1 and even crashed for some
recursive models with depth 2. Therefore, we assumed the metabolic network exhibits a
locality property, i.e. the status of a metabolite is mostly affected by its nearest neighbours,
which we believe is not very far from the truth19. From the perspective of PILP, the learning

Chen et al. Page 22

Mach Learn. Author manuscript; available in PMC 2009 November 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



aims to induce and abduce the probabilities for a set of inhibited reactions (abducibles) from
a set of observed metabolite concentration levels (probabilistic examples) given a set of
background knowledge rules. The background knowledge are represented by probabilistic
clauses in abductive SLPs and by unparameterised logical clauses in PRISM, respectively.

5.5 Model Evaluation
The evaluation of the prediction models is made by calculating the predictive accuracy of
SLPN, SLPP, PSMN and PSMP against the probabilistic examples respectively. As shown in
Table 4, the prediction of a metabolite is the predicted probability of its concentration level
(down or up) when it is a test datum in the leave-one-out prediction; the predictive accuracy
of a model is defined to be (1 - the average absolute error of predictions over all the
metabolites against empirical probabilities); by convention, we calculate the root mean
square errors (RMSE) for the predictions against empirical probabilities; and the
significance of difference is made by a one-tailed t-test20 (on the deviations from the
empirical probabilities) between SLPN (or PSMN) and SLPP (or PSMP) predictions, i.e. the
p-value by which we test the null hypothesis.

In particular, when treating the empirical probabilities as the evaluation baseline, SLPP
outperforms SLPN by 72.74% against 68.31% in predictive accuracy (1-absolute error) and
by 32.29% against 36.34% in RMSR with a significance level of 0.041 (p-value); PSMP
outperforms PSMN by 70.02% against 56.27% in predictive accuracy and by 38.99% against
52.54% in RMSR with a significance level of 0.034. It is worth noting that in Table 4 the
abductive SLP models appear to outperform the PRISM models. An explanation of this
outcome is beyond the scope of this paper, and is believed to be based on differences in the
representations and associated learning algorithms.

Based on these results, the null hypotheses to be tested in the experiments could be rejected,
i.e. both the abductive SLP models and the PRISM models that are learned from
probabilistic examples outperform the corresponding models learned from non-probabilistic
examples in terms of prediction in the metabolic network inhibition experiments.

5.6 Interpretability
By comparing the learned SLPP model (illustrated in Fig. 4) with the previous ILP model
(illustrated in Fig. 3), apart from the inhibition patterns found in both models, at least two
promising new findings have been discovered in the SLPP model21. The inhibition from
‘beta-alanine’ to ‘citrate’ that was not shown in the ILP model has been confirmed to be
crucial by the experts. Moreover, the inhibition between ‘creatine’ and ‘creatinine’ showed a
contradictory result,

0.0239 : inhibited(3.5.2.10,creatinine,creatine,t).

0.0249 : inhibited(3.5.2.10,creatine,creatinine,t).

19The non-recursive assumption restricts the predictive ability of the PILP models to some extent, which might be one of the reasons
why the predictive errors are relatively high. However, the assumption does not affect the hypotheses we test in the study. It will be
the future work to further investigate this problem.
20One-tailed test is used because of the hypotheses to be tested, in which SLPP (or PSMP) either outperforms SLPN (or PSMN) or
does not.
21There are also three inhibitions found in the ILP model but not shown significant in the SLPP model. They might be included if we
reduce the significance threshold for the SLPP model, however, it is our future work to investigate the cases with the help of domain
experts.
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in which the learned probabilities of the two inhibited reactions are very close, i.e. the
inhibition could happen in both directions (as shown in a bilateral arrow in Fig. 4). This can
be further explained by their empirical probabilities,

concentration(’creatine’,’down’)-51.

concentration(’creatine’,’up’)-49.

concentration(’creatinine’,’down’)-58.

concentration(’creatinine’,’up’)-42.

which suggest that their down/up regulations are less expressed to decide the possible
inhibition between them.

These findings have also been found in the PSMP model, which also has discovered an extra
pattern. In addition, the PILP models learned not only the patterns but also the probabilities
(the degrees of belief) of the patterns which improve the interpretability from the learned
models.

6 Discussion and Conclusions
6.1 Related Work

We now conclude the discussion of the relationship between abductive SLPs and PRISM/
ICL. First of all, clauses or rules are treated as probabilistic (associated with probability
labels) in SLPs but purely logical in both PRISM and ICL. Logical rules are used to
deterministically map a base probability distribution to an induced distribution in PRISM
and ICL, however, there is no mechanism of choosing between rules that have the same
head. We believe that the ability of dealing with probabilistic clauses is one of the distinct
features of SLPs based on the discussion in section 3.5. Cussens (2007) presents some
methods of translating impure SLPs into PRISM programs.

From the point of view of semantics or the interpretation of probability, traditional SLPs
have a distribution semantics and interpret probabilities as sampling distributions or domain
frequencies over atoms and Herbrand base; PRISM is a distribution approach which defines
probability distributions over the truth values of logical formulae in possible worlds; ICL
explicitly defines possible worlds by choosing propositions from sets of independent choice
alternatives; and the framework of abductive SLPs is designed to introduce possible worlds
semantics to SLPs through abduction, where the possible worlds are determined by
stochastic SLD-refutations. Abduction is always applied in the frameworks with possible
worlds semantics.

In terms of applying abduction, abductive SLPs provide a way to directly learn the
parameters for a set of abducibles, i.e. a distribution over a set of ground atomic formulae.
The PRISM system provides the explanation search function for abductive learning and
probability calculations; and ICL assumes all the atomic choices as abducibles to find
consistent explanations that imply the observations.

Despite of the above differences and comparison, as we have shown in the previous
sections, both abductive SLPs and PRISM can be used to do abductive learning (abduction)
and probability predictions (probability calculations). The experiment results appear to show
that the abductive SLPs to abduction are a step forward compared to the previous work in
PRISM. However, a further discussion of the topic is beyond the research scope and purpose
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of this paper. The most significant feature of using PRISM is the efficiency achieved by
dynamic programming and sophisticated logic programming “tabling” technology.

At last, as stated in (Cussens, 2007), the distinction between possible worlds approaches and
domain frequency approaches is not so fundamental since any probability distribution can be
viewed as one over some set of possible worlds. We develop the idea of abductive SLPs in
the paper in order to impose a possible worlds semantics on the traditional SLP formalism.
Abductive SLPs provide not only abduction but also possible worlds semantics that are easy
to understand.

6.2 Conclusions and Future Work
We revisit an application developed originally using ILP by replacing the underlying logic
program description with PILP (SLPs and PRISM). Instead of learning logic models from
non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based
on a general technique for introducing probability labels within a standard scientific
experimental setting involving control and treated data. The estimation of empirical
probabilities could introduce errors compared with the unknown real distribution of control
data due to the limited number of data points. However, our method shown here aims to
save some probabilistic information that may have lost in non-probabilistic examples, so that
PILP makes better predictions.

It is worth noting that the goal of learning probabilistic logic models from probabilistic
examples is to predict accurate (posterior) probabilities rather than the class labels (which is
the target of standard ILP). To achieve the goal, we use a regression method which makes
estimations of probabilities through abduction from probabilistic examples and then tests if
the predictions of the test examples fit the empirical probabilities and models well. During
the process, we not only introduce abductive logic programming setting into SLPs that
provides possible worlds semantics and abductive explanations for goals, but also transform
type 2 empirical probabilities extracted from raw data into type 1 empirical frequencies that
can be used in SLP and PRISM parameter learning.

The future work, in theory, include further research of the relationship between different
probabilistic semantics: model-theoretic or possible worlds, proof-theoretic, domain
frequency and distribution semantics. In practise, it is necessary to do some extra work to
investigate why the recursive models are not well applicable in the current PILP modeling
and how to achieve this goal. Another area that needs more consensus in the machine
learning community, although not directly related with the purpose of this paper, is the
proper way to do cross validation for data sets where the independent and identically
distributed (i.i.d.) assumption does not hold (i.e. the data is somewhat clustered). In our
problem we simply used leave-one-out because our data set was very small. However cross
validating by doing leave-one-out can yield an over estimation of the real predictive
probability if the left out observation is correlated with the training observations. Albeit
there is theoretical work about this problem from the statistical community (Martensa and
Dardenne, 1998) there is no standard way to minimise this problem employed by the
machine learning community.

In conclusion, the null hypotheses we have set in the paper and experiments were rejected
on the bases of the abductive SLP models and the PRISM models we are using and the
experimental results. Our results demonstrate that the PILP approach, e.g. SLPs and PRISM,
not only leads to a significant decrease in error accompanied by improved insight from the
learned result but also provides a way of learning probabilistic logic models from
probabilistic examples.
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Fig. 1.
(a)an example of SLP S (adapted from Cussens (2001)); (b)a stochastic SLD-tree for S with
goal :-s(X), including 6 derivations in which 4 are refutations (end with □) and 2 are fail
derivations (end with ‘fail’); (c)probabilities computed in S for the two fail derivations x1
and x2, for the leftmost refutation r1, and for the two atoms s(a) and s(b), respectively
(Cussens, 2001).
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Fig. 2.
Description of the scientific experiments for machine learning metabolic network inhibition.
The example data was derived from studies of the effects of toxins on rats using NMR time-
trace analysis of their biofluids.
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Fig. 3.
An example of rat metabolic network and the corresponding inhibition of hydrazine (at hour
8) learned by abductive ILP. Information on up/down changes in metabolite concentrations
(boxed nodes) from NMR spectra is combined with KEGG metabolic diagrams. The nodes
without boxes are the metabolites whose concentrations are not observed/observable. The
enzymes associated with a single reaction (solid line) or a linear pathway (dotted line) are
shown as a single enzyme or a sequence of enzymes. Colored arrows show the found
inhibition with directions.
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Fig. 4.
Metabolic network inhibition of hydrazine learned by abductive SLPs from probabilistic
examples (SLPP). Each observed metabolite is associated with its concentration and the
estimated empirical probability. The learned posterior probabilities for each inhibition (in
two directions) are shown in the associated ellipse. For example, the left corner ellipse
specifies a learned inhibition in the form of two SLP clauses:
‘0.000988:inhibited(2.6.1.39,2-og,l-2-aa,t).’ and ‘0.0592:inhibited(2.6.1.39,l-2-aa,2-og,t).’,
which mean there is a significant inhibition from metabolite l-2-aa to metabolite 2-og with a
probability 0.0592.
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Table 1

The predicates defined in the abduction ILP for learning metabolic network inhibition (Tamaddoni-Nezhad et
al., 2006).

Predicate Type Description

concentration(Metabolite,
Level, Time)

observable at some Time a Metabolite has
a certain Level of concentra-
tion (up or down)

reactionnode(Metabolites1,
Enzymes, Metabolites2)

background a metabolic pathway between
Metabolites1 and Metabo-
lites2 catalyzed by Enzymes

enzyme(Enzyme) background a (sequence of) Enzyme(s)

enzyme(Metabolite) background a (set of) Metabolite(s)

inhibited(Enzyme,
true, Metabolites1,
Metabolites2, Time)

abducible at Time the reaction from
Metabolites1 to Metabolites2
is inhibited by the toxin
through an adverse effect on
Enzyme that catalyzes the re-
action

inhibited(Enzyme,
false, Metabolites1,
Metabolites2, Time)

abducible at Time the reaction from
Metabolites1 to Metabolites2
is not inhibited by the toxin
through an adverse effect on
Enzyme that catalyzes the re-
action
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Table 2

Algorithm of estimating empirical probabilities from control/treatment data of metabolic network inhibition.

1. Initialize a matrix MR with column=2 and row=number of metabolites; % MR[α, 1] stores the state value of the concentration of α (up or
down) and MR[α, 2] stores the extracted probability, Pe(concentration(α, MR[α, 1]))

2. for each metabolite α do

2.1. Cα = a set of concentration values of α observed in the control cases;

2.2. Mα=MEAN(Cα),SDα=STANDARDDEVIATION(Cα);

2.3. Tα={τα}, a set of concentration values of α observed in the treated cases;

2.4. MR[α, 1] = Mα < MEAN(Tα) ? up : down; % Decide the state value (up or down) of the concentration of α by the difference
between MEAN(Cα) and MEAN(Tα)

2.5. MR[α, 2]=ρα=MEAN({PNORM(τα, Mα, SDα)}); % Calculate the average of the integrals returned by PNORM function

3. Apply matrix MR in the abductive SLP learning.
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Table 3

Learning algorithm used in the study.

1. Extract probabilistic examples E with type 2 empirical probabilities from
metabolic network inhibition data.

2. Transform type 2 empirical probabilities into type 1 empirical frequencies
in E.

3. Derive a background theory B from the abductive ILP study (Tamaddoni-Nezhad et al., 2006) and manually choose a set of abducibles, A.

4. Apply leave-one-out approach to learn 20 SLPP models and 20 SLPN
models, each of which estimates probabilities for (A, B) from E using FAM
implementation Pe-pl (Angelopoulos and Cussens, 2006).

5. Apply leave-one-out approach to learn 20 PSMP models and 20 PSMN
models, each of which estimates probabilities for A from E using the
PRISM system (Sato et al., 2008).

6. Evaluate the leave-one-out predictions made by abductive SLP models and
PRISM models against probabilistic examples with empirical probabilities.

7. Interpret the significance of the abducibles based on their learned proba-
bilities, e.g. abducibles are said to be significant if their probabilities are
greater than a threshold.
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