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Abstract
We present a computational framework for predicting targets of transcription factor regulation.
The framework is based on the integration of a number of sources of evidence, derived from DNA
sequence and gene expression data, using a weighted sum approach. Sources of evidence are
prioritized based on a training set, and their relative contributions are then optimized. The
performance of the proposed framework is demonstrated in the context of BCL6 target prediction.
We show that this framework is able to uncover BCL6 targets reliably when biological prior
information is utilized effectively, particularly in the case of sequence analysis. The framework
results in a considerable gain in performance over scores in which sequence information was not
incorporated. This analysis shows that with assessment of the quality and biological relevance of
the data, reliable predictions can be obtained with this computational framework.
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Introduction
Recent technological and computational advances have made it possible to study biology as
an information science [1]. Several high throughput measurement technologies have
expanded the possibilities of molecular biology, making it possible to measure the behavior
of biological systems at the molecular level for multiple genes. Equally dramatic changes
have been seen in the accumulation of biological information. Currently, large amounts of
information about the behavior and structure of biological systems are available in
databases, making it straightforward to obtain genome sequences, metabolic networks, and
other systems-level information for a variety of organisms.

While many advances have been made in organizing biological information, much
information is still scattered and needs to be extracted directly from scientific publications.
Recently, projects such as the Cancer Census have started to systematically collect and
annotate information that is biologically relevant to a given area of study [2]. For
computational biology to uncover and characterize the regulatory mechanisms in biological
systems in more detail and with greater accuracy, a more effective utilization of
accumulated information in the data analysis process is required. Indeed, data integration in
different forms has become a major direction of research in systems biology [3,4]. Large
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efforts in data integration have focused on unifying and integrating the data that is stored in
various databases. To effectively utilize all this data, vocabularies that are used in different
databases need to be translated into a unified form. While progress has been made in this
area to automate the process, there is still often a need for manual annotation, translation and
interpretation of the data.

Another aspect of data integration is the development of principled computational methods
for combining different sources of information to infer mechanisms of biological regulatory
networks. Numerous application-specific algorithms and frameworks have been proposed.
These include Bayesian frameworks [5] that allow for the incorporation of uncertainty
related to the quality and the origin of the data as well as general data analysis frameworks
that rely on transforming different data sources into a common representation, such as p-
values [4].

Here, we present a data analysis framework that is built on biological knowledge that has
been collected about the system under study. This framework uses machine learning
approaches to generate predictions about the targets of a transcription factor based on
existing biological knowledge and high-throughput data. We present this framework in the
context of BCL6 transcription factor target prediction. The DREAM initiative has
constructed a “gold standard” 200 gene set of targets and non-targets of BCL6 as part of the
DREAM2 BCL6 transcriptional-target challenge [6]. We use this DREAM2 200 gene set
(53 targets of BCL6 and 147 “decoys”) to quantify the performance of our approach. We
demonstrate that our computational framework is able to generate highly accurate
predictions when biological prior knowledge is used effectively.

Results
Using a panel of more than 300 microarrays, measured from B cells under different
conditions, we propose a data analysis framework that can be used to predict targets for the
transcription factor BCL6. To quantify the performance of our approach, we focus on the
verified DREAM2 gene set [6]. In addition to microarray data, we also use genomic
sequence information in our analysis. Other sources of information, such as gene ontologies,
could easily be incorporated into this framework.

First, we performed an extensive literature review to find a set of 51 genes that have
previously been verified as BCL6 targets [7–17]. These genes, denoted as the positive target
set, are listed in Table 1 together with information about the origin of evidence. Out of these
51 genes, only one gene (STAT1) overlaps with the DREAM2 gene set. In addition to
positive targets, we also generated a non-target gene set by selecting 94 genes from the
microarray data at random. As there are more than 12000 probe sets on the array, it is
expected that a random sampling will not include a significant number of target genes. As
such, our training set should be relatively unbiased. These sets of 51 target and 94 non-target
genes form a training set that we utilize to establish our data analysis framework.

Next, we derived a number of features from the various data sources. We used MotifLocator
[18] and ProbTF [19] algorithms to compute the p-values and to predict the probabilities of
BCL6 binding upstream of the putative target genes. By making use of the biological
insights obtained from the literature review, we extracted features from gene expression data
that should be biologically relevant. For example, it is known that BCL6 works mostly as a
repressor [7,16]. Thus, if the expression of BCL6 is high, it may be expected that the
expression of BCL6 targets is low. Thus, we used correlation of putative target genes
expression to BCL6 expression as a feature. Also perturbations of CD40 and anti-IgM are
known to regulate BCL6 [16]. As BCL6 activity is downregulated, given CD40 or anti-IgM
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stimuli, we compute the expression ratios for CD40 and anti-IgM stimulated conditions
against non-stimulated conditions within a given cell type. We also utilized a machine
learning approach to predict whether a given gene is a target using support vector machines,
trained with our literature derived training set. All of the used features are listed in Table 2.

To identify which features are the most informative we measure the degree of class
separation using the constructed training set. Class separation is measured using the Mann-
Whitney U-test to test whether the distributions of the two classes are separated using a
given feature. As a result, a p-value for class separation is obtained for each feature.
Features with the smallest p-values are selected from each group of features (see Table 2)
and are used to score the target genes from the DREAM2 200 gene set. The best features are
highlighted in Table 2.

We combine the best features using a weighted sum. After the features are normalized (see
Methods), we optimize the weights on the training set. Marginal distributions of weights for
each feature are shown in Figure 1. It should be noted that using the p-values of the features
directly as weights does not give optimal results, as this approach would discard possible
joint contributions of the features.

Using the best weight combination, we score each gene of the DREAM2 gene set and rank
the genes based on the score. The performance of our approach is illustrated by precision-
recall and receiver operating characteristic (ROC) curves in Figure 3. The area under the
precision-recall curve for this prediction is 0.80. We can also observe that there is only one
mis-classification among the first 25 predicted targets.

Effect of incorporating the sequence data
By examining the weights in Figure 1, it is evident that sequence based information
contributed only marginally to the classification result. This indicates that our sequence
scores are not very informative about class separation. If this sequence evidence is given
more weight than proposed by the weight optimization, it actually lowers the prediction
accuracy.

This is somewhat surprising as the use of sequence data can potentially help exclude non-
targets from the list of target predictions. The ROC curve (Figure 4), computed against the
DREAM2 200 gene set, illustrates that the initial sequence features that we derived are not
very informative.

This raises the question about the validity of our promoter sequence analysis. There are two
obvious possibilities for the sources of error. First, it was not originally disclosed in the
DREAM2 challenge what type of ChIP-on-chip array was used for the validation of the
DREAM2 200 gene set. Thus, it was not possible to know with any certainty which genome
build to use, which set of gene annotations to refer to, and what size of the promoter regions
to use to search for binding sites. Second, the position weight matrices (PWMs) that we have
obtained may not be the optimal ones for identifying BCL6 binding in these experiments.

To test whether these issues caused problems in the analysis, we performed an additional
analysis. After the DREAM2 conference, it was disclosed that the ChIP-on-chip array that
was used for the generation of the DREAM2 gene set was the Agilent Human Promoter
ChIP-on-chip array. This array is based on the NCBI 36.1 (March 2006) genome build and
includes probes covering −5.5kb upstream to +2.5kb downstream of the transcriptional start
sites for approximately 17000 human transcripts. Thus, we extracted the sequence areas
corresponding to the probes on the array, repeat masked the sequences [20], and applied
binding site prediction algorithms [19]. In addition, to test whether there are more
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informative motifs than the BCL6 position weight matrices that we had obtained, we applied
the PRIORITY motif discovery algorithm [21] to the sequences from our training set and
also to the 200 genes from the DREAM2 set.

From the training set, PRIORITY identified low-complexity motifs (Figure 5). However,
when applied to the DREAM2 gene set together with the ProbTF algorithm, these motifs
show good discrimination (AUC = 0.7639) in terms of the ROC curve (Figure 6). Motif
searching on DREAM2 gene set yields a slightly more complex motif (Figure 7) that also
gives good discrimination (AUC = 0.7594) between targets and non-targets and performs
slightly better especially on low false positive rates (Figure 6). Low-complexity motifs may
reflect as-yet uncharacterized sequence features that correlate with BCL6 transcription, but
are themselves not a model for direct BCL6 binding cis-elements.

By replacing the earlier binding site prediction probabilities with the predictions obtained
with discovered motifs and reoptimizing the weights, we can obtain the performance that is
shown in Figure 8. The area under the precision-recall curve has increased from 0.80 to
0.84. Improved accuracy is evident also in the ROC curves. While it can be argued that this
increase in performance is due to over-fitting, as motifs have been learned from the same
data as they are tested on, it does illustrate that the sequences do carry information that can
be utilized to boost the target identification performance. Similar performance improvement
was also obtained using the motif inferred from the test set. Thus, if the knowledge about
biological motifs is reliable, sequence data can be a valuable source of evidence.

Discussion
This analysis emphasizes the importance of applying bioinformatics tools carefully by
taking biological insights into account. If necessary sanity checks and assessments of the
quality of the data are not made, the resulting predictions will likely be unreliable. The use
of sequence based evidence clearly illustrates this point. If we simply use sequence
information blindly, we will only introduce noise into predictions, hurting the performance.
However, careful use of this information makes it possible to improve the performance and
also contributes to more reliable predictions.

The proposed framework generates quite accurate predictions that clearly outperform those
that were obtained as part of the DREAM2 competition. In our DREAM2 submission we
utilized this framework using 1/p-values as weights. In addition, we considered only
negative correlation with BCL6 as a significant indication for being a target as it is known
that BCL6 works as a repressor [7,16]. Positive correlation was taken into account, but given
only half the weight of the negative correlation. This ad-hoc adjustment reduced accuracy of
the predictions significantly. Thus, this analysis, performed after the gold standard was made
available, also uncovered the wrong assumptions in our initial DREAM2 analysis. Summary
of the performance under different feature and weight combinations is given in Table 3.

The proposed analysis required a substantial amount of manual work in the form of
literature review. This illustrates the need for systematic collection and storage of biological
information in machine readable formats. Given a collection of prior biological information,
this analysis can be automatically applied to identify the targets for any transcription factor
and can further be extended to begin uncovering the entire regulatory network.

We have integrated various types of data: probability values, p-values, gene expression
ratios, decision values, and correlations. Normalization of the numbers to the [0,1] interval
and standardization of the distributions allows us to combine these data sources in a very
simple manner using a weighted sum. It would be straightforward to include evidence from
any other source as well, since these transformations make the scores comparable.
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Methods
Data

A panel of data from 336 Affymetrix HGU95Av2 GeneChip experiments was downloaded
from the Gene Expression Omnibus (accession number GSE2350) as described in the
DREAM2 BCL6-Targets challenge.

Sequences and gene annotations from the human genome NCBI build 36 were downloaded
from Ensembl [22].

Two PWMs for BCL6 transcription factors were obtained from the Genomatix database [23]
(PWM A and B) and two matrices were manually constructed (PWM C and D) from
literature review.

Data analysis tools
Transcription factor binding on putative target gene promoters was predicted with ProbTF
[19]. ProbTF is a probabilistic method for transcription factor binding prediction that makes
use of promoter sequences and PWMs to assess binding to the whole promoter region.
ProbTF outputs the probability of binding that naturally reflects our degree of belief in
transcription factor binding. Although ProbTF is able to incorporate practically any
additional genome-level information source, such as evolutionarily conservation and
nucleosome locations, we used the ProbTF method with promoter sequences and PWMs
only (with default parameter settings).

Promoter scanning for putatitive BCL6 binding sites on target gene promoters was also
carried out using MotifLocator [18]. Predicted sites meeting a p-value threshold of p <
0.001, based on a randomized sequence, were retained. For promoters containing a predicted
site, an overall score was assigned as the p-value for a single match, or the minimum p-
value, if multiple matches were found.

Support vector machines were used to train a classifier using the gene expression data from
the genes on the training set. We used LIBSVM implementation in this work with
polynomial kernel and default parameters [24]. With leave-one-out cross validation, we
obtained the error rate of 24.67%. This classifier was then applied to 200 DREAM2 genes to
obtain a decision value for each gene.

Motif discovery was performed with PRIORITY [21,25]. PRIORITY assumes the same
probabilistic sequence model as the standard MEME or Gibbs sampling method and indeed
samples motifs with the collapsed Gibbs sampling. In addition, PRIORITY is able to
incorporate a number of prior information sources, such as the structural class of
transcription factors and nucleosome locations, into motif discovery. PRIORITY can also be
applied in a discriminatory manner which allows principled use of two sequence sets, bound
and non-bound. We used PRIORITY with the default parameter settings.

Feature Selection and Data Integration
We derived a p-value for the class separation of each feature. This was done with the Mann-
Whitney U-test by testing the hypothesis: medians of the positive and negative target feature
distributions in the training set are equal. The feature with the smallest p-value from each
group of features was chosen (Table 2).

Next, each feature was scaled such that the range of values covered the [0,1] interval, 1
corresponding to a high confidence that the gene is a target. Features were further
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standardized to have the same distribution of values using the quantile normalization
algorithm [26].

Features were combined by a weighted sum to obtain a score for each of the DREAM2 200
target genes. The weights were obtained by running an exhaustive search over the parameter
space of the weights and using the performance on the training set to measure the goodness
of the different weight combinations. Each weight was iteratively given all the values [0,Δ,
2Δ,…,1], where we used Δ=0.2. Based on our tests, more fine grained search did not
improve results (data not shown). The SVM decision value was excluded from the weight
search as this feature was learned from the training set. However, based on the high cross-
validation accuracy, we included it in the computation of the total score with the highest
weight. When the weights were optimized, the SVM weight was given the value 1. When p-
values were used as weights, SVM was given the smallest p-value as a weight.

Performance quantification
To measure the performance of our predictions we used the same framework that was used
to score the DREAM2 competition predictions [5]. We generate precision-recall curves and
true positive rate - false positive rate ROC curves. The Area under the curve (AUC) is used
as a summary statistic to measure the performance [27].
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Figure 1.
Distributions for 100 weight combinations that yields the highest prediction accuracy on the
training set. Marginal distributions for each feature are shown. Weights have been obtained
with exhaustive search over the weight space with 0.2 steps on [0,1] interval. Features: (a)
ProbTF, (b) Motif scan, (c) CD40, (d) Anti-IgM, and (e) Correlation (only cell lines). The
SVM feature was excluded from the weight optimization (see Methods). The prediction
accuracy of these 100 weight combinations is shown in Figure 2.

Nykter et al. Page 8

Ann N Y Acad Sci. Author manuscript; available in PMC 2009 November 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Area under the precision-recall curve using the best 100 weights. Performance on the gold
standard is shown on the left and on the training data on the right. The SVM decision value
was used as an additional feature in gold standard predictions with weight 1.0.
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Figure 3.
BCL6 target prediction accuracy for weights = [0.0, 0.2, 0.6, 0.6, 0.8, 1.0]. First five weights
correspond to (a)–(e) in Figure 1 and the last weight is used for SVM score. Area under the
curve is 0.80468 and 0.91002 for (a) precision-recall and (b) ROC, respectively.
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Figure 4.
ROC curve computed against the gold standard 200 gene set using ProbTF and PWMs from
the literature.
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Figure 5.
Motif discovered from training set using PRIORITY.
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Figure 6.
ROC curve for ProbTF binding site predictions using motifs discovered from the training set
and the DREAM2 200 gene gold standard set.
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Figure 7.
Motif discovered from DREAM2 200 gene gold standard set using PRIORITY.
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Figure 8.
BCL6 target prediction accuracy using the ProbTF feature with discovered motif and
weights = [0.6, 0.2, 0.6, 0.6, 0.8, 1.0]. Area under the curve is 0.84488 and 0.92273 for (a)
precision-recall and (b) ROC, respectively.
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Table 1

Positive training set. List of verified BCL6 targets from the literature with sources. In these studies, BCL6
regulation was supported by a variety of targeted experiments, including direct binding assays and functional
perturbations.

NCBI GeneID Gene Name (HGNC) Reference

399 RHOH Polo et al

533 ATP6V0B Polo et al

545 ATR Ranuncolo et al

598 BLC2L1 Transfac

890 CCNA2 Hosokawa et al

894 CCND2 Shaffer et al

941 CD80 Niu et al

952 CD38 Polo et al

963 CD53 Polo et al

969 CD69 Shaffer et al

972 CD74 Polo et al

991 CDC20 Polo et al

1026 CDKN1A Phan et al

1027 CDKN1B Shaffer et al

1111 CHEK1 Polo et al

1161 ERCC8 Polo et al

1642 DDB1 Polo et al

1880 EBI2 Shaffer et al

2208 FCER2 Polo et al

3398 ID2 Shaffer et al

3487 IGFBP4 Hosokawa et al

3576 IL8 Toney et al

3606 IL18 Takeda et.al

3627 CXCL10 Shaffer et al

4152 MBD1 Polo et al

4790 NFKB1 Li et al

5134 PDCD2 Baron et al

6348 CCL3 Polo et al

6772 STAT1 Shaffer et al

6773 STAT2 Shaffer et al

6890 TAP1 Polo et al

6897 TARS Polo et al

7009 TEGT Polo et al

7157 TP53 Transfac

7184 HSP90B1 Polo et al

7316 UBC Polo et al

7852 CXCR4 Hosokawa et al

7862 BRPF1 Polo et al
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NCBI GeneID Gene Name (HGNC) Reference

8446 DUSP11 Polo et al

8519 IFITM1 Shaffer et al

8556 CDC14A Polo et al

10370 CITED2 Polo et al

10923 SUB1 Polo et al

10983 CCNI Polo et al

23522 MYST4 Polo et al

25816 TNFAIP8 Polo et al

25963 TMEM87A Polo et al

27095 TRAPPC3 Polo et al

54499 TMCO1 Polo et al

64116 SLC39A8 Polo et al
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Table 2

Table of all features. First group of features includes the binding site prediction probabilities using the ProbTF
algorithm [19] with four different position weight matrices (PWMs). Second group presents the binding
probabilities obtained using a standard motif scan with the same PWMs. Third and fourth groups include
features that are computed from gene expression data by utilizing biological insights. Fifth group shows the
correlation of gene expression with BCL6 under various subsets of conditions. Final feature is the support
vector machine (SVM) class prediction strength. The best feature from each group is shown in boldface. On
the right, p-value for class separation is given.

Feature Description / details p-value

ProbTF PWM A 5kb upstream scan 0.505000

ProbTF PWM B 5kb upstream scan 0.029101

ProbTF PWM C 5kb upstream scan 0.261820

ProbTF PWM D 5kb upstream scan 0.402930

ProbTF All matrices 5kb upstream scan 0.091943

Motif scan PWM A 5kb upstream scan 0.131780

Motif scan PWM B 5kb upstream scan 0.121910

Motif scan PWM C 5kb upstream scan 0.180070

Motif scan PWM D 5kb upstream scan 0.012267

CD40 variance Over CD40 stimulated samples 0.902780

CD40 U-statistic Stim vs unstim U-statistic 0.001373

CD40 stim-unstim Logratio 0.000315

CD40 (PEST_stim-PEST_unstim)<(stim-unstim) Binary indicator 0.067835

anti-IgM variance Over Anti-IgM stimulated samples 0.325410

anti-IgM U-statistic Stim vs unstim U-statistic 0.017266

anti-IgM stim-unstim Logratio 0.010253

anti-IgM (PEST_stim-PEST_unstim)<(stim-unstim) Binary indicator 0.142510

Pearson correlation to BCL6 expression All samples 0.014236

Pearson correlation to BCL6 expression Cell lines only 0.004112

Pearson correlation to BCL6 expression No pinko and biopsy samples 0.004623

SVM decision value Classifier trained on training set N/A
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Table 3

Summary of the prediction performance under different feature and weight combinations. Winning prediction
scores from the competition are shown as reference.

Method AUC precision - recall AUC ROC

DREAM2 best performer #1 0.7210 0.8475

DREAM2 best performer #2 0.6929 0.8525

Our DREAM2 submission 0.6751 0.8346

Equal weights 0.7430 0.8783

1/p-value weights 0.7738 0.8804

As in Figure 3 0.8047 0.9100

As in Figure 8 0.8449 0.9227
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