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We consider different models of inositol 1,4,5-trisphosphate �IP3� receptor �IP3R� channels in order
to fit nuclear membrane patch clamp data of the stationary open probability, mean open time, and
mean close time of channels in the Xenopus oocyte. Our results indicate that rather than to treat the
tetrameric IP3R as four independent and identical subunits, one should assume sequential binding-
unbinding processes of Ca2+ ions and IP3 messengers. Our simulations also favor the assumption
that a channel opens through a conformational transition from a close state to an active state.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3156402�

The dynamics of inositol 1,4,5-trisphosphate (IP3) recep-
tor (IP3R) channels is an important issue in cellular
physiology and is central to many problems of cellular
signaling. Models for calcium channels are widely used to
investigate a variety of topics such as calcium oscillations
and excitation-contraction coupling in cardiac cells. In
particular, the mechanism that permits cells to organize
regular calcium spikes in response to increased IP3 levels
is an intriguing issue of great interest for both the bio-
logical and physical communities. A crucial step in the
analysis of IP3 channels is the study of channel dynamics
under (nonphysiological) conditions without Ca2+ feed-
back. Our work builds on recent patch clamp experi-
ments for single IP3 channels located in the nuclear mem-
brane. We discuss different traditional and new IP3R
models by fitting their parameters to the stationary data
of patch clamp recordings. Our analysis not only suggests
that sequential binding-unbinding processes by Ca2+ ions
and IP3 messengers should be assumed but also supports
the recent incorporation into the gating model of a
ligand-independent conformational transition. An under-
standing of the single channel gating is fundamental to
any further modeling approach of intracellular and inter-
cellular calcium dynamics. This fact gives a central im-
portance to the results presented in this work.

I. INTRODUCTION

Calcium is one of the most important messengers in the
cytosol of living cells.1 It can trigger and modulate a wide
variety of calcium dependent signaling events and reaction
cascades. A major mechanism of calcium signaling involves
the liberation of Ca2+ ions from the endoplasmic reticulum
�ER� through IP3Rs.2 Structurally, the IP3R is a homomer
with four subunits forming a single ion-conducting channel.
The opening of the channel requires the binding of second

messenger inositol 1,4,5-trisphosphate, which is generated in
the cytoplasm in response to the binding of extracellular
ligands to plasma membrane receptors. Gating of IP3R is
biphasically modulated by Ca2+ ions, such that small eleva-
tions of cytosolic Ca2+ concentration promote channel open-
ing, whereas higher Ca2+ concentrations result in inactivation
of the channel. This Ca2+ feedback, in addition to the clus-
tered distribution of functioning IP3Rs on the ER membrane,
results in complex spatiotemporal Ca2+ signals, including
Ca2+ puffs, saltatory waves, spreading waves, and spiral
waves.3

Models of calcium signals play an important role to elu-
cidate quantitatively the complex dynamics of various Ca2+

patterns generated by the IP3 pathway. Because of the crucial
role of IP3R channels for the generation of calcium signals,
an accurate IP3R channel model is fundamental in order to
simulate the calcium system properly.4 Several IP3R
models4–9 have been developed to describe experimental
data obtained from IP3R reconstituted in a bilayer membrane
in vitro,10 with the De Young–Keizer5 model in particular
being widely applied.

The intracellular calcium signals involve liberation
through IP3R from the ER. Although there is no single-
channel experiment by now with IP3R located on the ER
membrane, IP3R data were measured in different environ-
ments. Most recently patch-clamp recordings from native
IP3R in Xenopus oocyte nuclei have been obtained.11,12 The
experimental results indicate that there are significant differ-
ences in behavior of the reconstituted IP3R in bilayer
membrane10 versus that of IP3R in their native environment
of the nuclear envelope in the Xenopus oocyte.11,12 Although
we do not know what exactly can be expected for IP3R be-
havior on the ER versus that on the nuclear membrane, we
take the available data as the closest estimate of the ER be-
havior. This assumption is supported by the fact that the ER
membrane is physically connected to the nuclear membrane.

Therefore, we think that a suitable IP3R model should be
based on the recent data obtained on the nuclear membrane.
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By now, only a few models have incorporated nuclear mem-
brane data. Among these, an allosteric four-plus-two-
conformation model was considered by Mak et al.13 That
model postulates that each of the four IP3R monomers has
one IP3-binding site and three different functional
Ca2+-binding sites on the cytoplasmic side of the channel.
Another model was developed by Baran,14 consisting of one
activation module and one inhibition module, both allosteri-
cally operated by Ca2+, IP3, and adenosine triphosphate
�ATP�, together with one adaptation module driven by IP3

and Ca2+. However, these models can predict only the
steady-state gating properties and not the kinetics of indi-
vidual channel openings and closings. A kinetic model, in-
cluding an explicit dependence of channel gating with lumi-
nal calcium, was suggested by Fraiman and Dawson15 to
simulate a monomeric IP3R. A further model, recently pro-
posed by Shuai et al.,16 contains a conformational change but
is otherwise based on the De Young–Keizer model. The
model successfully reproduces experimental estimates in-
cluding the open probability, mean open and close times, and
the multiexponential distributions of open and close time
durations.

In this paper, we consider different types of IP3R models
and compare their data fitting to patch clamp data of IP3R on
the nuclear membrane in Xenopus oocyte.11–13 In detail, in
this study, we compare the data matching of various models
to the open probability, mean open time, and mean close time
of the channel as a function of calcium concentration and IP3

concentration. We explore the behavior of IP3R models by
using the deterministic matrix transition analysis.17,18 Our
discussion suggests the inadequacy of De Young–Keizer-
type models, which propose four independent and identical
subunits. We conclude that the tetramerically structured IP3R
shows a sequential binding-unbinding process with Ca2+ ions
and IP3 messengers.

II. EXPERIMENTAL DATA OF IP3R
IN XENOPUS OOCYTE

The experimental data for IP3R type-1 channels in
nuclear membrane in the Xenopus oocyte have been obtained
at various calcium concentrations C and IP3 concentrations
I.11–13 The open probability PO shows the following at-
tributes. �1� At saturating IP3 concentration, i.e., I=10 �M,
the channel exhibits a steep responding dynamics around C
=0.2 �M, changing from PO=0.13 at C=0.08 �M to PO

=0.73 at C=0.56 �M. �2� At I=10 �M, for a large range of
calcium concentration from C=0.7 �M to 25 �M, the
channel shows a flat but large open probability around PO

�0.8, indicating that calcium concentrations in this region
are optimal. �3� At I=10 �M, the channel shows a steep
decrease in open probability with higher calcium concentra-

tion around C=50 �M. �4� The channel also shows a very
sensitive response to unsaturating IP3 concentration around
I=0.02 �M, changing from PO=0.02 at I=0.01 �M to
PO=0.67 at I=0.033 �M at calcium concentration around
1 �M.

The channel mean open time �O and mean close time �C

were measured for saturating IP3 concentration. The mean
open times typically scatter around 8 ms at various calcium
concentrations, except for the two extreme values at large
and small calcium concentrations where the observed open
times are small. For those two parameter regimes, however,
the standard deviations are large. Thus, it is difficult to define
a clear curve for �O as a function of C. As suggested by Mak
et al.,12,13 �O first increases monotonically with C, and after
reaching the maximum around C=2 �M, it monotonically
deceases with C. However, in Ref. 15, the authors interpreted
it simply as a constant �O, which is independent of C.

III. THE FITTING OF MODELS
TO EXPERIMENTAL DATA

We consider various models by fitting the stationary
open probability, mean open time, and mean close time to
data obtained in experiments. To find an optimal fitting, all
the model parameters were changed systematically in a rea-
sonable region and the fitting results were judged by an
evaluation function. In order to calculate the open probabil-
ity, the only parameters we need are the reaction dissociation
constants, while to determine the open time and close time,
binding/unbinding rates are needed. For the experimental
data, the open probability is given at varying Ca2+ concen-
trations with four different IP3 concentrations, while the
mean open and close times are given at I=10 �M only.

For the open probability PO we consider the mismatch
function

WPO
= �

I,C
�PO

expt�I,C� − PO
mod�I,C�� �1�

to obtain the optimal fitting parameters of all the reaction
dissociation constants in the model. The mismatch values for
PO fitting with various IP3R models are given in Table I.
Further, we use the mismatch function

WT =
�C��O

expt�C� − �O
mod�C��

�C�O
expt�C�

+
�C��C

expt�C� − �C
mod�C��

�C�C
expt�C�

�2�

for �O and �C at I=10 �M to obtain the optimal fitting pa-
rameters of the binding rates. We notice that the open time
duration experimentally is of the order of 10 ms, while the
close time duration is distributed in the range of 1–2000 ms.
To balance the contributions of open and close time in Eq.

TABLE I. The mismatch value for PO fitting of the eight models. Here the value has been rescaled by the
averaged open probability of the channel for the experimental data.

Model 8-state 6-state 9-state 7-state 13-state 20-state 21-state 46-state

Mismatch value 0.188 0.188 0.168 0.169 0.128 0.177 0.150 0.132
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�2�, we rescale the errors between the experimental and nu-
merical data by the experimental results.

IV. THE DE YOUNG–KEIZER IP3R MODELS

In many numerical simulations of Ca2+ signals, a widely
applied IP3R model is the De Young–Keizer model5 as well
as its simplified versions.19,20 Therefore, in this section we
will first discuss the fitting of the modified De Young–Keizer
model to experimental data.

A. Model 1: IP3R model with four 8-state subunits

The De Young–Keizer IP3R model5 comprises four iden-
tical and independent subunits. In each subunit, there are two
independent Ca2+ binding sites �i.e., an activating binding
and inhibitory binding site� and an IP3 binding site. The state
of each subunit is denoted as �ijk�, where the index i repre-
sents the IP3 binding site, j the activating Ca2+ binding site,
and k the inhibitory Ca2+ binding site. An occupied site is
represented by 1, and a nonoccupied site by 0. A schematic
picture of the state transitions for De Young–Keizer IP3R
subunit is shown in Fig. 1. The channel is open when three or
four subunits are in the �110� state.

For all binding/unbinding loops given in Fig. 1, the ther-
modynamic constraint of detailed balance requires that the
reaction dissociation constants satisfy the relation K1K2

=K3K4. In the model, each subunit has eight different states

with transitions governed by second-order rate constants ai

for binding processes and first-order rate constants bi for
unbinding processes �Fig. 1�a��. In order to calculate the
channel open probability, the necessary parameters are the
reaction dissociation constants, i.e., Ki=bi /ai, while the cal-
culation of mean open time and mean close time requires the
values of binding and unbinding rates. Parameter values
needed for PO, �O, and �C are given in the legend of Fig. 1.

Now we apply the deterministic matrix transition
method17,18 to analyze the channel open probability, mean
open time, and mean close time. The probability of an IP3R
subunit being in state �ijk� is denoted by Pijk with �Pijk=1.
By mass action kinetics, the equations describing the subunit
dynamics are

dP

dt
= PQ , �3�

where Q is the generator matrix of transition rates and P is
the vector of probability of subunits.

Mathematically, the equilibrium state is defined as
dP /dt=0. The equilibrium vector w satisfies wQ=0 accord-
ing to the transition matrix theory. Detailed balance is im-
posed so that we can solve for the vector w easily. This is
done by calculating the probabilities in terms of their prob-
abilities relative to state �000� along the shortest binding/
unbinding path. These unnormalized probabilities are de-
noted as qijk with q000=1. As an example, the equilibrium

FIG. 1. Model 1: �a� The structure of the De Young–Keizer IP3R subunit model. The graph shows the dependence of �b� the open probability PO, �c� the mean
open time �O, and �d� the mean close time �C as a function of Ca2+ concentration for different concentrations of IP3. The lines show the results calculated with
the deterministic transition matrix theory and the symbols show the results obtained from single-channel patch clamp from IP3R on native nuclear membranes
�Refs. 11–13�. Here, thick lines and stars are for �IP3�=10 �M, thin lines and circles are for 0.033 �M, dashed lines and squares are for 0.02 �M, and dotted
lines and triangles are for 0.01 �M. Same notations are used in the following figures. The parameters used in the model are K1=0.0072 �M, K2=78 �M,
K3=0.22 �M, K4=K1K2 /K3, K5=0.21 �M, a1=500 �M−1 s−1, a2=0.01 �M−1 s−1, and a5=400 �M−1 s−1.
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probability �q110� of state �110� relative to that of state �000�
is just the product of forward to backward rates along any of
the shortest paths connecting �000� to �110� �i.e., either
through state 100 or state 010� given as

q110 =
IC

K1K5
. �4�

Then the normalized equilibrium probability for state
�ijk� is

wijk =
qijk

Z
, �5�

where Z is the normalization factor defined by Z= �qijk and
given as

Z = 1 +
C

K4
+

C

K5
+

C

K4

C

K5
+

I

K1
+

I

K1

C

K2
+

I

K1

C

K5

+
I

K1

C

K2

C

K5
. �6�

Thus, the normalized equilibrium probability for state �110�
is as follows:

w110 =
I

K1

C

K5

1

Z
. �7�

For the tetrameric IP3R model, the channel opens when three
out of four subunits are in state �110�, so the channel open
probability is written as

PO = P4O + P3O = w110
4 + 4w110

3 �1 − w110� �8�

with P4O=w110
4 and P3O=4w110

3 �1−w110�.
Because channel states �110, 110, 110, not �110� are the

only open states that connect to closed channel states by any
one of three �110� states changing to the other three states,
i.e., 100, 010, or 111 with rate b5, b1, or a2�Ca2+�, we can
directly write the equilibrium probability flux between open
and close states as follows:

J = 3P3O�b1 + b5 + a2C� . �9�

The mean open and close times are then given by

�O =
PO

J
,

�10�

�C =
1 − PO

J
.

The fittings of the channel model to the experimental
data are shown in Figs. 1�b�–1�d� for PO, �O, and �C. For the
fitting of PO at I=10 �M, the model does not provide a flat
PO for calcium concentrations changing from C=0.7 to
25 �M. The model also fails to give a steep response to IP3

concentration changes around I=0.02 �M. A calcium con-
centration dependent �O is clearly obtained from the model.

FIG. 2. Model 2: �a� The subunit structure of the channel model, �b� the open probability PO, �c� the mean open time �O, and �d� the mean close time �C. In
the model K1=0.008 �M, K2=78 �M, K3=0.22 �M, K4=K1K2 /K3, K5=0.21 �M, a1=400 �M−1 s−1, a2=0.01 �M−1 s−1, and a5=400 �M−1 s−1.
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B. Model 2: IP3R model with four 6-state subunits

Now we consider a simplified De Young–Keizer IP3R
model in which each subunit has six states only, as shown in
Fig. 2. The channel is open when three or four identical and
independent subunits are in the �110� state.

For this model, the normalization factor is written as

Z = 1 +
C

K5
+

I

K1
+

C

K4

C

K5
+

I

K1

C

K5
+

I

K1

C

K2

C

K5
. �11�

The other formulas are the same as those for model 1.
The fittings of the channel model to the experimental

data are given in Figs. 2�b�–2�d� for PO, �O, and �C. One can
see that the fitting results of this model are quite similar to
the fittings of model 1. As given in Table I, the mismatch
values for PO fitting are 0.188 for both model 1 and model 2.
It appears that the states and transitions omitted in the deri-
vation of model 2 from model 1 are not essential for the
gating behavior.

V. IP3R MODELS WITH CONFORMATIONAL
CHANGE DYNAMICS

A. Model 3: IP3R model with four 9-state subunits

In Ref. 16, we have proposed a modified De Young–
Keizer IP3R model. The model comprises four identical and
independent subunits. Two independent Ca2+ binding sites
for each subunit �i.e., an activating binding and inhibitory
binding site� and an IP3 binding site, are assumed for each
subunit. The model further includes a conformational change

whereby a subunit in the �110� state �one IP3 and one acti-
vating Ca2+ bound� is “inactive” and must change through a
conformational transition to an “active” �A� state before it
can contribute to channel opening. This conformational step
is analogous to the well-characterized behavior of nicotinic
acetylcholine receptors21 and further implies that the active
state is locked with respect to agonist binding and dissocia-
tion. The model also assumes that the channel is open when
either three or four subunits are in active state. A schematic
picture of the state transitions for a subunit is shown in Fig.
3�a� and the fitting results are shown in Figs. 3�b�–3�d�. No-
tice that the parameters obtained here are slightly different
from those in Ref. 16, where the optimized fitting process
was not used. As shown in Table I, the open probability is
better fitted with this model than with the models 1 and 2.
This supports our assumption that a channel opens through a
conformational transition from a close state to an active
state.

B. Model 4: IP3R model with four 7-state subunits

Now we consider a simplified IP3R model based on
model 3. In the model, each subunit has seven states, as
shown in Fig. 4. For this model, the equilibrium probability
for the active state �i.e., A-state� is given as

wA =
I

K1

C

K5

1

K0

1

Z
�12�

with

FIG. 3. Model 3: �a� The subunit structure of the channel model. A conformational transition to an active state �state-A� occurs before the subunit can
contribute to channel opening. �b� The open probability PO, �c� the mean open time �O, and �d� the mean close time �C. In the model K1=0.0054 �M, K2

=17.6 �M, K3=0.64 �M, K4=K1K2 /K3, and K5=1.04 �M. For the conformational change, K0=0.135 �M and a0=535 �M−1 s−1.
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Z = 1 +
C

K5
+

I

K1
+

I

K1

C

K2
+

I

K1

C

K5
+

I

K1

C

K2

C

K5

+
I

K1

C

K5

1

K0
. �13�

The equilibrium probability flux between open and close
states is given as

J = 3b0P3O. �14�

The other formulas are the same as those for model 1.
The fittings of the channel model to the experimental

data are given in Figs. 4�b�–4�d� for PO, �O, and �C. In fact,
the fittings of this model are quite similar to the fittings of
model 3. Compared to the results given by model 1 and
model 2, model 3 and model 4 give a better fitting of PO at
optimal calcium concentrations around C=2 �M at I
=10 �M. However, the model also fails to give a sensitive
response to IP3 concentrations around I=0.02 �M. Again,
model 3 and model 4 give a similar approximation of the
experimental data, suggesting that the two omitted states are
inessential.

C. Model 5: IP3R model with four 13-state subunits

The above four models all show a low sensitivity in
response to I around 0.02 �M. In order to obtain a sensitive
response of the channel to IP3 concentration, we consider a
13-state subunit IP3R model.

The model comprises four identical and independent
subunits. We still consider two independent Ca2+ binding

sites for each subunit, i.e., an activating binding site and an
inhibitory site. However, in order to account for the observed
strongly cooperative dependence of IP3R channel opening on
I, we assume that there are two IP3 sequential binding sites in
each subunit. A schematic picture of the transitions among
13 states for each subunit is shown in Fig. 5�a�. The channel
is open when either three or four subunits are in the active
state.

For this model, the normalization factor Z is a sum of 13
terms that can be easily written out and we have

wA =
I

K1

I

K1

C

K5

1

K0

1

Z
. �15�

The other formulas are the same as those for model 4. The
fittings of the channel model to the experimental data for PO,
�O, and �C are given in Figs. 5�b�–5�d�. As a comparison of
Fig. 5 with Figs. 1–4, one can see that a more sensitive
response of the channel for PO to IP3 concentration can be
obtained with model 5. As shown in Table I, compared to the
previous four models, a better fitting for the open probability
is obtained with this model.

Each monomer of the tetrameric channel complex has
two IP3 binding sites with different dissociation constants, as
has also been suggested in Ref. 6. However, the molecular
structure study of the IP3R indicates that there is one IP3 core
binding domain and several calcium binding sites for each
monomer.2,22 Thus the experimental data do not favor the
assumption of two IP3 binding sites for each subunit. How-
ever, this model clearly shows that a sequential binding of
IP3 messengers can give a steep change in PO versus I.

FIG. 4. Model 4: �a� The subunit structure of the channel model, �b� the open probability PO, �c� the mean open time �O, and �d� the mean close time �C. In
the model K1=0.018 �M, K2=24 �M, K3=0.4 �M, K4=K1K2 /K3, K5=0.56 �M, and K0=0.194 �M with a0=360 �M−1 s−1.
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VI. SEQUENTIAL BINDING IP3R MODELS

A. Model 6: 20-state IP3R model

In contrast to the five models discussed above—with the
assumption of four independent units—we will now consider
the tetrameric IP3R channel as a single unit with sequential
binding processes. In the model, we assume that there are
only two sequential activating Ca2+ binding sites and only
one inhibitory Ca2+ binding site. There are four sequential
IP3 binding sites. We assume that only after the two activat-
ing binding sites are occupied by Ca2+ ions, the inhibitory
Ca2+ binding site becomes available. Further, only after the
inhibitory Ca2+ binding site becomes empty, the unbinding
processes for activating Ca2+ ion can occur sequentially. The
Ca2+ binding/unbinding processes are independent of the IP3

binding/unbinding processes. A schematic picture for the
transitions among the 20 channel states is shown in Fig. 6�a�.
The channel is open when it is in state �420� with four IP3

messengers bound to the IP3 sites and two Ca2+ ions bound
to the activating sites.

For this model, the normalization factor Z is a sum of 20
terms and we have

w420 = � I

K1
	4� C

K5
	2 1

Z
. �16�

Obviously, we also have

PO = w420, �17�

J = PO�b1 + b5 + a2C� , �18�

and so

�O =
PO

J
=

1

b1 + b5 + a2C
. �19�

The fittings of the channel model 6 to the experimental
data are given in Figs. 6�b�–6�d� for PO, �O, and �C. For the
fitting of PO at I=10 �M, the model could not supply a flat
PO at optimal calcium concentration. The model fails to ex-
hibit a steep decreasing PO with large C at I=10 �M. With
this model, as given by Eq. �19�, �O almost stays constant for
C�2 �M and then decreases at large C.

B. Model 7: 21-state IP3R model

Next, based on model 6, we furthermore consider the
conformational change dynamics at state �420� for the chan-
nel to become open. A schematic picture for the transitions
among the 21 states is shown in Fig. 7�a�. With J=b0PO, we
have a simple result for the mean open time as �O=1 /b0,
which is independent of any concentrations.

The fittings of the channel model 7 to the experimental
data are shown in Figs. 7�b�–7�d� for PO, �O, and �C. After
considering the conformation change, the model can provide
a flat PO at optimal calcium concentration and also increases
the sensitivity of PO to I at optimal C. However, the model
still fails to give a steep decreasing PO with large C at I
=10 �M. This failure occurs because only one inhibitory
Ca2+ binding site is assumed in the model.

FIG. 5. Model 5: �a� The subunit structure of the channel model, �b� the open probability PO, �c� the mean open time �O, and �d� the mean close time �C. In
the model K1=0.005 �M, K2=15.6 �M, K3=2.25 �M, K4=K1K2 /K3, K5=1.01 �M, and K0=0.135 �M with a0=535 �M−1 s−1.
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FIG. 6. Model 6: �a� The state structure of the sequential binding IP3R model, �b� the open probability PO, �c� the mean open time �O, and �d� the mean close
time �C. In �c�, the mean open time is independent of IP3 concentration. In the model K1=0.009 �M, K2=48 �M, K3=0.3 �M, K4=K1K2 /K3, K5

=0.18 �M, a1=240 �M−1 s−1, a2=0.3 �M−1 s−1, and a5=720 �M−1 s−1.

FIG. 7. Model 7: �a� The state structure of the sequential binding IP3R model, �b� the open probability PO, �c� the mean open time �O, and �d� the mean close
time �C. In the model K1=0.016 �M, K2=8 �M, K3=0.3 �M, K4=K1K2 /K3, K5=0.44 �M, and K0=0.151 �M with a0=960 �M−1 s−1.
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C. Model 8: 46-state IP3R model

In this model, we consider four sequential activating
Ca2+ binding sites, four sequential inhibitory Ca2+ binding
sites, and four sequential IP3 binding sites. Thus each mono-
mer has one activating Ca2+ binding site, one inhibitory Ca2+

binding site, and one IP3 binding site. We assume that only
after the four activating binding sites are occupied sequen-
tially by Ca2+ ions, the four inhibitory Ca2+ binding sites
become available sequentially. Only after the inhibitory Ca2+

binding site becomes empty sequentially, the unbinding pro-
cesses for activating Ca2+ ion can occur sequentially. The
Ca2+ binding/unbinding processes and the IP3 binding/
unbinding processes are independent. We furthermore con-
sider the conformational change dynamics at state �440� �i.e.,
with four activating Ca2+ and four IP3 bound on the channel�
for the channel to become open. Thus there are in total 46
states in this model. A schematic picture for the transitions
among the 46 channel states is shown in Fig. 8�a�. Similar to
model 7, with J=b0PO a constant mean open time is given as
�O=1 /b0.

For this model, there are two dissociation constants for
the inhibitory Ca2+ binding, K2 and K4. At the bottom of Fig.
8�a�, i.e., without any IP3 bound, the dissociation constants
for four inhibitory Ca2+ bindings all equal K4, and at the top
of Fig. 8�a�, i.e., with four IP3 bound, the dissociation con-

stants for four inhibitory Ca2+ bindings all equal K2. In be-
tween, with increasing number of IP3 bindings, the dissocia-
tion constant K4 at the most right side will be replaced by K2

one by one.
The fittings of the channel model 8 to the experimental

data are given in Figs. 8�b� and 8�c� for PO, �O, and �C. It can
be seen that this model can reproduce the following charac-
teristics of the experimental data. �1� The model provides a
flat PO at optimal calcium concentration at I=10 �M. �2�
The model gives a sensitive response of PO to I at optimal C.
�3� The model exhibits a steep increasing response and a
steep decreasing response of PO to C at saturating I. As
shown in Table I, a small mismatch value is obtained for PO

fitting with this model. Thus, except for the 13-state model,
this model gives the best fitting for the channel open prob-
ability among the seven models. However, compared to all
other models discussed above, this model is much more
complex.

VII. DISCUSSION

The IP3R channel model plays a key role for the simu-
lation of intracellular calcium signals. Different IP3R models
have been proposed in the past.5–9,13–16,19,20 We here suggest
that a proper IP3R model should reflect the tetrameric struc-
ture of the channel and we fit the IP3R patch clamp data

FIG. 8. Model 8: �a� The state structure of the sequential binding IP3R model, �b� the open probability PO, and �c� the mean close time �C. The inset figure
in �c� is the plot of the mean open time �O. In the model K1=0.02 �M, K2=53 �M, K3=0.2 �M, K4=K1K2 /K3, K5=0.21 �M, and K0=0.233 �M with
a0=155 �M−1 s−1.
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recorded in their native environment of the nuclear mem-
brane. As an example, we consider the fitting of patch clamp
data of IP3R on the nuclear membrane in Xenopus oocytes.
Different types of IP3R models are discussed in the paper in
order to fit the experimental data of the open probability,
mean open time, and mean close time of the channel as a
function of calcium concentration and IP3 concentration. Our
discussion indicates that rather than possessing four indepen-
dent and identical subunits, an IP3R channel shows a sequen-
tial binding-unbinding process with Ca2+ ions and IP3 mes-
sengers. Our simulations also favor the assumption that a
channel opens through a conformational transition from a
close state to an active state.

At saturating IP3 concentration stimulus, the observation
that the channel shows a steep increase in open probability at
small Ca2+ concentration favors a sequential binding of acti-
vating Ca2+ ions, while the observation that the channel
shows a rapid decrease in open probability at large Ca2+

concentration favors a sequential binding of inhibitory Ca2+

ions. Similarly, the sensitivity of the channel open probabil-
ity to small IP3 stimuli requires a sequential binding dynam-
ics of IP3 messengers on the channel. At the optimal Ca2+

concentration, the open probability shows a flat behavior,
which can be easily matched by assuming a conformational
change with constant rates leading to the opening of the
channel. Without the conformational change, a flat behavior
can only be achieved at PO=1 for the channel model.

By considering the tetrameric IP3R which consists of
four independent and identical subunits, both the number of
model states and the number of model parameters can be
largely reduced. This provides an advantage for any IP3R
simulations. However, if we consider a structurally symmet-
ric channel with dynamically sequential binding IP3R, both
the number of model states and the number of model param-
eters are large. For example, if considering one IP3 binding
site and two Ca2+ binding sites for activating and inhibitory
processes each, at least a 45-state channel should be imple-
mented, which is similar to model 8. As a result, the sequen-
tial IP3R model will complicate simulations.

On the other hand, relaxing requirements to obtain a
handy model, one may consider that even a model as simple
as model 2 can roughly fit the experimental data. Thus in
some situations the model 2 may be sufficient for calcium
signaling simulations. In that sense, in order to simplify the
numerical process in the modeling, the De Young–Keizer
model may still be regarded a good choice for calcium sig-
naling studies.

For the De Young–Keizer model, model 1, we cannot fix
the values of the binding rates a3 and a4 with stationary data
of PO, �O, and �C. A similar limitation that the steady state
results of PO, �O, and �C are not sufficient to determine all
the binding parameters in the models holds also for the other
seven models. In this paper, parameters of the models are
chosen to fit the steady state experimental data, and the dif-
ferent models are compared based on such fittings. In Ref.
23, three IP3R models have been compared by fitting them to
the dynamic data of IP3R responding to step increases in
Ca2+ and IP3 concentrations, rather than the stationary data at
steady Ca2+ and IP3 concentrations. With the original De

Young–Keizer model, the peak of the bell-shaped curve
moves to the right with increasing �IP3�, while when the
best-fit parameters are used in the De Young–Keizer model
for dynamic data, a left moving peak is obtained. In biologi-
cally realistic situations, the IP3R channels typically respond
to oscillating Ca2+ concentration. It was argued in Ref. 23
that during an oscillation, the steady-state response is less
important than the response to a changing Ca2+ concentra-
tion, and the receptors seldom experience a steady Ca2+ con-
centration except at resting state. Thus the important ques-
tion is posed as to what extent the steady-state data should be
used to constrain the parameter fitting of the model. On the
other hand, another conclusion drawn in Ref. 23 is that time-
dependent responses to steps of Ca2+ and IP3 concentrations
alone are insufficient to determine the model parameters un-
ambiguously. Thus, a reasonable modeling approach in the
future should incorporate both the steady state11–13 and dy-
namic data.24,25

Here we did not address the kinetic feedback of calcium,
i.e., the physiological condition that released calcium may
bind back to the channel. As shown, for instance, in Ref. 26
such feedback leads to largely increased open probabilities
and bursts of channel openings/closings. Under those condi-
tions, details of the single channel model, such as the con-
formational transition, further affect gating dynamics. To
give an example, release bursts for models with this transi-
tion may occur independent of momentary calcium
concentration.26 The bursts are therefore different from the
bursts for earlier models, where the opening/closing transi-
tion involves calcium binding/unbinding. We expect that our
kinetic parameter fittings will be useful for further analysis
of integrative calcium release models.
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