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Purpose: Accurate segmentation of lungs with severe interstitial lung disease �ILD� in thoracic
computed tomography �CT� is an important and difficult task in the development of computer-aided
diagnosis �CAD� systems. Therefore, we developed in this study a texture analysis-based method
for accurate segmentation of lungs with severe ILD in multidetector CT scans.
Methods: Our database consisted of 76 CT scans, including 31 normal cases and 45 abnormal cases
with moderate or severe ILD. The lungs in three selected slices for each CT scan were first
manually delineated by a medical physicist, and then confirmed or revised by an expert chest
radiologist, and they were used as the reference standard for lung segmentation. To segment the
lungs, we first employed a CT value thresholding technique to obtain an initial lung estimate,
including normal and mild ILD lung parenchyma. We then used texture-feature images derived
from the co-occurrence matrix to further identify abnormal lung regions with severe ILD. Finally,
we combined the identified abnormal lung regions with the initial lungs to generate the final lung
segmentation result. The overlap rate, volume agreement, mean absolute distance �MAD�, and
maximum absolute distance �dmax� between the automatically segmented lungs and the reference
lungs were employed to evaluate the performance of the segmentation method.
Results: Our segmentation method achieved a mean overlap rate of 96.7%, a mean volume agree-
ment of 98.5%, a mean MAD of 0.84 mm, and a mean dmax of 10.84 mm for all the cases in our
database; a mean overlap rate of 97.7%, a mean volume agreement of 99.0%, a mean MAD of
0.66 mm, and a mean dmax of 9.59 mm for the 31 normal cases; and a mean overlap rate of 96.1%,
a mean volume agreement of 98.1%, a mean MAD of 0.96 mm, and a mean dmax of 11.71 mm for
the 45 abnormal cases with ILD.
Conclusions: Our lung segmentation method provided accurate segmentation results for abnormal
CT scans with severe ILD and would be useful for developing CAD systems for quantification,
detection, and diagnosis of ILD. © 2009 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3222872�
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I. INTRODUCTION

Computer-aided diagnosis �CAD� schemes for thoracic com-
puted tomography �CT� are widely used to characterize,
quantify, and detect numerous lung abnormalities, such as
emphysema,1,2 lung nodules,3,4 and interstitial lung disease
�ILD�.5–7 An accurate lung segmentation method is always a
critical first step in these CAD schemes and can significantly
improve the performance level of these CAD schemes. Al-
though manual or semiautomatic lung segmentation methods
for CT images were used in some early CAD schemes,8–10

they are impractical for current CAD schemes because mul-
tidetector CT �MDCT� scanners can generate hundreds of CT
slices for a patient. An automated lung segmentation method
is needed for MDCT.
Various techniques based on CT values, such as
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thresholding, region growing, and edge
tracking,15,16 were often employed for segmenting lungs.
These methods become unreliable when the CT scans of
lungs contain high attenuation patterns such as ILD. Haider
et al.17 developed a region growing-based segmentation
method followed by a manual revision for lungs with ILD.
Uchiyama et al.6 segmented lungs with ILD by use of a
combination of the gray-level thresholding technique and
morphological operation; manual correction was further ap-
plied to the cases with consolidation patterns to obtain accu-
rate lung segmentation results. Sluimer et al.18 employed a
fully automated atlas-driven method for lung segmentation,
in which a normal lung scan was elastically registered to, and
utilized to guide the segmentation of a scan with severe ILD.
Their approach was evaluated on ten CT scans with severe

19
ILD and achieved a mean overlap rate of 82%. Prasad et al.
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segmented lungs by use of an adaptive thresholding tech-
nique guided by the curvature of ribs. Their segmentation
method obtained a mean overlap rate of 87% for 44 CT scans
with different disease patterns of scleroderma, asthma, and
emphysema. Korfiatis et al.20 used statistical texture features
and SVM classifier for distinction between abnormal lung
regions and surrounding tissues. This method was evaluated
on 22 HRCT scans with ILD patterns and achieved a high
mean overlap rate of 95%.

The aim of our work is to develop a novel texture
analysis-based method for the segmentation of lungs with
severe ILD in MDCT scans. We first created texture-feature
images, in which each pixel represents a specific texture-
feature value. We then selected two effective texture features
that well characterize abnormal lungs and provide very good
distinction between abnormal lungs and surrounding tissues.
From these texture-feature images, we can readily identify
lung areas with severe ILD.

II. MATERIALS

IRB was obtained for this project. The database used in
this study was collected from the University of Chicago
Medical Center between September 2004 and August 2005.21

Two radiologists first identified 134 MDCT cases with ILD
based on clinical reports. They also subjectively rated the
severity of the disease as mild, moderate, and severe. They
further selected 45 CT scans, each containing �1� at least one
of the four kinds of abnormal patterns, i.e., ground glass
opacity �GGO�, reticular, nodular, and honeycombing, and
�2� at least one abnormal pattern with a severity level of
moderate or severe. In addition, the radiologists added to the
database 31 normal cases, where each slice was considered
to be normal.

The CT scans of all the subjects were acquired by use of
64-row �Brilliance 64; Philips Medical Systems, the Nether-
lands�, 40-row �Brilliance 40�, or 16-row �Brilliance 16P�
CT scanners with an x-ray tube voltage of 120–140 kVp and
a radiographic exposure of 200–400 mA s. The slice thick-
ness ranged from 1 to 3 mm. Each slice had a matrix size of
512�512 pixels and the pixel size ranged from
0.50 to 0.89 mm with a 12-bit gray level in Hounsfield unit
�HU�.

A reference standard for lungs was established to assess
the accuracy of the lung segmentation method. To establish
the reference standard in a manageable way, an expert chest
radiologist �25 years of experience� first selected three slices
for each CT scan based on the following criteria: an upper
slice at the aortic arch level or above, a middle slice at the
level of main bronchi or below, and a lower slice at the level
of lower lobar bronchi or below. Radiologists at the Univer-
sity of Chicago Medical Center commonly use such three
slices for diagnosis of ILD in clinical practice. A medical
physicist used a LCD monitor to identify the lung regions in
the three selected slices of each CT scan. The delineated
lungs were confirmed or revised, if needed, by an expert
chest radiologist �37 years of experience�. Figure 1 shows a

CT slice with severe ILD and the manually delineated lungs.
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III. METHODS

Figure 2 shows the overall scheme of the automated lung
segmentation method. Our method first identifies and elimi-
nates airways in each CT slice by use of pixel CT value and
contiguity of the airways between adjacent slices. It then
obtains an initial lung estimate that includes normal and
mildly abnormal lung parenchyma by use of a CT value
thresholding technique. It further calculates texture features
for each pixel from the co-occurrence matrix and identifies
the abnormal lung regions with severe ILD from the texture-

(a) (b)

FIG. 1. �a� A CT slice with severe interstitial lung disease and �b� the manu-
ally delineated lungs.

Identification and elimination of
airways

Estimation of initial lungs by use
of thresholding technique

Identification of abnormal lung
regions with severe ILD by use of
texture-feature images

Calculation of texture features
based on co-occurrence matrix

CT images

Final lung segmentation results
FIG. 2. The diagram of the automatic lung segmentation method.
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feature images. Finally, it generates the final segmentation
results by combing the initial lungs and the identified abnor-
mal lung regions.

III.A. Elimination of airways

Because the airways are filled with air only, they have
very low CT values around −1000 HU in CT images. There-
fore, we used a threshold of −900 HU to segment airways by
indicating all the pixels with CT values lower than −900 HU
as air-component pixels. With this technique, the trachea,
bronchi, as well as some unwanted regions in lungs were
identified as airways.

We then accurately identified airways from the air com-
ponent pixels by use of the contiguity of airways. Generally,
the trachea is the only significant air component in the be-
ginning of a thoracic CT scan. Thus, we employed a 3D
connected-component labeling algorithm in the first 30 slices
to identify and retain the largest volume of air-component
pixels that represents upper part of the trachea; other small
connected components were eliminated as noise. Next, we
used the identified trachea as a seed and traced the entire
airways from an upper slice to a lower slice through the CT
scan. In each slice, if an air-component pixel is adjacent to
an airway pixel in the previous slice, the air-component pixel
was added to the airway. Finally, we employed a morpho-
logical opening operation to separate the airways and un-
wanted regions and a 3D connected-component labeling al-
gorithm to retain the largest volume as the airways. The
segmented airways were then removed from the CT images
to prevent interference in lung segmentation. The solid
curves in Fig. 3 show the segmented airways in an upper
slice, a middle slice, and a lower slice of a CT scan that were
identified by our airway segmentation method.

III.B. Estimation of initial lungs

After removing airways from the CT images, we em-
ployed a CT value thresholding technique to estimate initial
lungs. The initial lungs contain normal lung regions and
mildly abnormal lung regions. In our previous study,4 we
used a threshold of −400 HU to segment the lungs for nodule
detection. Because many of the ILD patterns exhibited in-
creased attenuation, in this study, we investigated the effect
of different thresholds ranging from −400 HU to −200 HU
with an increment of 50 HU and empirically selected a
threshold of −300 HU to estimate initial lungs. The threshold
was applied to the CT images to generate a 3D binary lung

(a) (b) (c)

FIG. 3. The segmentation of airways in �a� an upper, �b� a middle, and �c� a
lower slices in a CT scan.
mask for each CT scan. The resulting binary lung masks
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included unwanted background air pixels from outside of the
body and some isolated pixels with low CT values caused by
noise or streak artifacts in surrounding tissue. To remove the
unwanted pixels, we first applied a 2D connected-component
labeling algorithm to each slice of the 3D binary lung masks
to identify the connected components. If a connected com-
ponent is connected to image edges, we considered it a back-
ground area and removed it. Next, we applied a 3D
connected-component labeling algorithm to the 3D binary
lung mask to identify the two largest components. If the
largest component had a volume that was at least ten times
larger than that of the second largest component, the two
lungs were considered being connected and we retained the
largest component as the initial lungs. Otherwise, the two
lungs were not connected and we retained the two largest
components as the initial lungs. Figures 4�a� and 4�b� show a
CT image of a patient with severe ILD and the initial lungs,
respectively. The lung regions with very severe ILD pattern
were missed by the thresholding technique and resulted in
poor segmentation of the initial lungs in Fig. 4�b�.

III.C. Identification of abnormal lung regions
with severe interstitial lung disease

We found that the severe ILD patterns generally have rich
texture �frequent spatial changes in CT values� compared to
surrounding soft tissue. Such texture information can be used
to identify the abnormal lung regions. We employed a 3D
co-occurrence matrix �COM� to analyze the texture features
of all the pixels in the CT images, except the background air
pixels and airway pixels, to identify abnormal lung regions.

(a) (b) (c)

(d) (e) (f)

(g)

FIG. 4. �a� Original CT image of lungs with severe interstitial lung disease,
�b� initial estimate of the lungs, �c� entropy image, �d� inverse difference
moment image, �e� combined feature image, �f� the identified lung regions
with severe interstitial lung disease, and �g� the final lung segmentation
result obtained by combing the initial estimate and the lung regions with
severe ILD, followed by a postprocessing to fill the holes in the segmented
lung regions.
From a volume of interest �VOI� of 15�15�15 pixels cen-



4595 Wang, Li, and Li: Segmentation of lungs with disease 4595
tered at each pixel, we determined a COM and calculated the
following five COM texture features for the pixel: �1� energy,
�2� entropy, �3� contrast, �4� maximum probability, and �5�
inverse difference moment.22

An element of a COM was defined by the number of pairs
of pixel values separated by a given distance along a specific
direction in a VOI.22 We compared the performance levels
for lung segmentation using COMs with four different dis-
tances of 1, 2, 4, and 8 pixels and found that the performance
levels for these distances were comparable; thus, we used
only a COM that was constructed with a distance of 1 pixel.
Because the ILD patterns extended in all directions nearly
homogenously, they can be considered nondirectional.
Therefore, we first constructed three COMs for the x, y, and
z directions, and then determined a combined COM by cal-
culating the mean value of the corresponding elements in the
three COMs.

In order to investigate the usefulness of COM features
and select proper features for the segmentation of lung re-
gions with severe ILD, we created five feature images, in
which each pixel represents a feature value of energy, en-
tropy, contrast, maximum probability, or inverse difference
moment of COM. We found that the severe ILD patterns
have very large entropy values compared to normal lung pa-
renchyma, and thus can be easily identified in the entropy
image, Fig. 4�c�. However, the lung borders also have large
entropy values in Fig. 4�c�. Because the inverse difference
moment emphasizes small changes in pixel values between
pixel pairs, the lung borders, which have large changes, have
a relatively low value in the inverse difference moment im-
age, Fig. 4�d�. Therefore, we generated a new combined fea-
ture image, Fig. 4�e�, by multiplying the values of the corre-
sponding pixels in the entropy image, Fig. 4�c�, and inverse
difference moment image, Fig. 4�d�. This combined feature
further enhanced the lung regions with severe ILD and sup-
pressed most of the borders between lungs and surrounding
tissue.

We empirically applied a fixed threshold of 600 to the
combined feature images in Fig. 4�e� to identify the abnor-
mal lung regions that were missed in the initial lungs in Fig.
4�b� and employed a 2D connected-component labeling tech-
nique to eliminate unwanted regions that were smaller than
10 mm in diameter. By doing this, we created the abnormal
lung regions with severe ILD in Fig. 4�f� and added them to
the initial lungs in Fig. 4�b� to generate the combined seg-
mentation result in Fig. 4�g�.

III.D. Postprocessing for filling “holes” in the lungs

The segmented lungs may contain holes caused by blood
vessels and other structures with high CT values. These holes
were automatically identified and filled by use of a 2D
connected-component labeling technique in each CT slice.
The peak of the diaphragm, however, often resulted in a
similar hole in the segmented lungs. In order to exclude the
pixels that belonged to the diaphragm, we did not fill holes
that exceeded 10% of the area of the segmented lungs in

slices located in the lower half of the CT scan.
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III.E. Evaluation of the segmentation method

We employed an overlap rate of lungs, a volume agree-
ment of lungs, a mean absolute distance �MAD�, and a maxi-
mum absolute distance �dmax� of lung borders as performance
metrics to assess the accuracy of our lung segmentation
method. The overlap rate is defined as the ratio of the inter-
section to the union between the automatically segmented
lungs and the reference lungs in a CT image. The value of
the overlap rate ranges from 0%, no overlap between the two
lungs, to 100%, a perfect overlap. We employed the volume
agreement to evaluate the accuracy in the size of segmented
lungs. The volume agreement is defined as one minus the
ratio of the absolute difference in the volume between the
automatically segmented lungs and reference lungs to the
volume of reference lungs. The typical value of the volume
agreement ranges from 0% to 100%. The larger the agree-
ment value, the closer the two volumes of the automatically
segmented lung and the reference lung. To assess the shape
accuracy of a segmented lung, the MAD is calculated by
measuring the average distance from all points on the border
of the automatically segmented lung to that of the reference
lung. The smaller the MAD, the closer the points on the
border of automatically segmented lung and that of the ref-
erence lung. To assess the local discrepancy between an au-
tomatically segmented lung and a reference lung, the maxi-
mum absolute distance dmax between the border of
automatically segmented lung and that of reference lung was
calculated. The mean value for each of the above four met-
rics for a case is defined as the average of the corresponding
metric in the three selected slices.

(a)

(b)

(c)

FIG. 5. �a� Original CT images of a normal lung, an abnormal lung with
moderate interstitial lung disease, and three abnormal lungs with severe
interstitial lung disease, �b� segmentation results, and �c� their corresponding

reference standard.
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IV. RESULTS

Figure 5 shows �a� original CT images of a normal lung,
an abnormal lung with moderate ILD, and three abnormal
lungs with severe ILD, �b� lung segmentation results, and �c�
the corresponding reference standard. It is apparent that we
obtained accurate lung segmentation results for the normal
lungs as well as the abnormal lungs with severe ILD.

Table I shows the mean, standard deviation, and range of
the overlap rate, volume agreement, MAD, and dmax for our
segmentation method. The �1� mean overlap rate, �2� mean
volume agreement, �3� mean MAD, and �4� mean dmax for
the segmentation of normal cases, abnormal cases, and all
cases were �1� 97.7%, 96.1%, and 96.7%, �2� 99.0%, 98.1%,
and 98.5%, �3� 0.66, 0.96, and 0.84 mm, and �4� 9.59, 11.71,
and 10.84 mm, respectively. By use of two-tailed t-tests for
unpaired data, we found that there were significant differ-
ences in the mean overlap rate �p�0.0001�, mean volume
agreement �p=0.003�, mean MAD �p�0.0001�, and mean
dmax �p=0.03� between the normal lungs and abnormal
lungs. The difference itself was quite small and, overall, the
performance level for the abnormal lungs was quite high.
However, for a small number of severely abnormal cases, the
segmentation results may still be poor.

Table II shows the performance metrics for the abnormal
lungs with moderate and severe ILD. The �1� mean overlap

TABLE I. Accuracy of segmentation for normal lungs, abnormal lungs, and a
and maximum absolute distance.

Normal

Overlap
�%�

Agreement
�%�

MAD
�mm�

dmax

�mm�
Overlap

�%�
A

Mean 97.7a 99.0b 0.66c 9.59d 96.1a

SD 0.6 0.6 0.21 3.97 2.3
Min 96.3 97.4 0.36 4.14 89.7
Max 98.7 99.7 1.35 22.28 98.7

ap�0.0001.
bp=0.003.
cp�0.0001.
dp=0.03.

TABLE II. Accuracy of segmentation for lungs with m
agreement, mean absolute distance, and maximum ab

Moderate

Overlap
�%�

Agreement
�%�

MAD
�mm� �

Mean 95.8a 97.4b 0.92c 1
SD 2.5 2.7 0.44
Min 90.0 90.0 0.35
Max 98.7 99.8 1.85 2

ap=0.65.
bp=0.20.
cp=0.66.
d
p=0.66.
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rate, �2� mean volume agreement, �3� mean MAD, and �4�
mean dmax for the lungs with moderate and severe ILD were
�1� 95.8% and 96.2%, �2� 97.4% and 98.4%, �3� 0.92 and
0.98 mm, and �4� 11.24 and 11.89 mm, respectively. There
were no significant differences in the mean overlap rates
�p=0.65�, mean volume agreement �p=0.20�, mean MAD
�p=0.66�, and mean dmax �p=0.66� between lungs with mod-
erate and severe ILD.

We found that the segmentation results were poor for
some abnormal lungs. Figure 6 shows the lung segmentation
results for the two poorest lungs in our database. The mean
overlap rate, mean volume agreement, mean MAD, and
mean dmax were 89.7%, 94.4%, 2.30 mm, and 23.10 mm for
the first case, and 90.0%, 90.0%, 1.85 mm, and 14.01 mm
for the second case.

V. DISCUSSION

Because the normal lungs generally have low density, we
obtained good segmentation results for normal lungs by
solely using the thresholding technique. In contrast, most of
the abnormal lungs with severe ILD have increased density,
thus, the thresholding technique lacks power for the identifi-
cation of abnormal regions and the texture-analysis step is
needed. In this study, we employed texture feature images to
identify the abnormal lung parenchyma with severe ILD. In

lungs in terms of overlap rates, volume agreement, mean absolute distance,

normal All

ent MAD
�mm�

dmax

�mm�
Overlap

�%�
Agreement

�%�
MAD
�mm�

dmax

�mm�

b 0.96c 11.71d 96.7 98.5 0.84 10.84
0.44 4.28 2.0 1.5 0.39 4.26
0.35 5.39 89.7 90.0 0.35 4.14
2.30 23.10 98.7 99.8 2.30 23.10

te and severe ILD in terms of overlap rates, volume
e distance.

Severe

Overlap
�%�

Agreement
�%�

MAD
�mm�

dmax

�mm�

96.2a 98.4b 0.98c 11.89d

2.2 1.1 0.44 4.18
89.7 94.4 0.40 5.39
98.3 99.7 2.30 23.10
ll the

Ab

greem
�%�

98.1
1.8

90.0
99.8
odera
solut

dmax

mm�

1.24d

4.64
5.50
0.10
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fact, if we excluded the texture-analysis step and segmented
lungs by use of a CT value thresholding technique alone with
a threshold of −300 HU, the mean overlap rate would de-
grade from 96.1% �range of 89.7%–98.7%� to 94.2% �range
of 71.6%–98.7%�, the mean volume agreement from 98.1%
�range of 90.0%–99.8%� to 95.8% �range of 73.5%–99.8%�,
the mean MAD from 0.96 mm �range of 0.35–2.30 mm� to
1.51 mm �range of 0.35–5.78 mm�, and mean dmax from
11.71 mm �range of 5.39–23.10 mm� to 15.48 mm �range of
5.39–29.85 mm� for the 45 abnormal CT scans.

We anticipated that the thresholding technique alone
would work well for normal and mildly abnormal cases, and
that the texture analysis would improve the performance of
lung segmentation primarily for severe ILD cases. To verify
our anticipation, we defined the “very severe” ILD cases as

(a)

(b)

(c)

FIG. 6. �a� CT images of two abnormal lungs with severe and moderate ILD,
�b� poor segmentation results, and �c� their reference standards. The mean
overlap rates, mean volume agreement, mean MAD, and dmax were 89.7%,
94.4% 2.30 mm, and 23.10 mm for the first case and 90.0%, 90.0%,
1.85 mm, and 14.01 mm for the second case.
those with an overlap rate less than 93.0% for initial lungs
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�obtained by thresholding alone�. We visually confirmed that
these were indeed very severe ILD cases. The mean overlap
rate, volume agreement, MAD, and dmax for the ten very
severe ILD cases were 84.7%, 86.3%, 3.21 mm, and
22.89 mm for initial lungs and were improved considerably
to 92.7%, 96.4%, 1.53 mm, and 15.45 mm by use of texture
analysis step. The performance level for each of the ten cases
was improved. On the other hand the mean overlap rate,
volume agreement, MAD, and dmax for the 35 “not very se-
vere” ILD cases were 96.9%, 98.4%, 1.03 mm, and
13.67 mm for initial lungs and were improved only slightly
to 97.0%, 98.6%, 0.80 mm, and 10.64 mm by use of texture
analysis step. Therefore, our texture analysis step can con-
siderably improve the segmentation results of very severe
abnormal cases and can only slightly improve those of not
very severe ILD cases, because thresholding alone works
well for them already.

It is intuitive to think that the segmentation results for the
lungs with moderate ILD would be better than that for the
lungs with severe ILD. However, we did not find significant
difference in performance levels between cases with moder-
ate ILD and severe ILD. As described in the Results section,
the increased attenuation of abnormalities led to difficulty in
segmentation of abnormal lungs. However, the attenuation is
not the only factor that affects the lung segmentation results;
the location and distribution of the disease patterns are also
key factors. The image on the right side of Fig. 6�a� repre-
sents a lung with moderate ILD. Its segmentation result in
Fig. 6�b� was poor because the lung contained a small por-
tion of very high attenuation pattern in peripheral lung. If
this small abnormal region was located completely inside the
lung, then it would not constitute a problem.

Segmentation of lungs plays an import role in thoracic
CAD schemes and has great impact on the overall perfor-
mance level of a CAD scheme. Inaccurate lung segmentation
may miss some lung parenchyma with severe abnormalities
and may incorrectly include some nonlung structures as part
of the lungs. A CAD scheme based on inaccurate lung seg-
mentation thus will obtain a lower sensitivity and a lower
specificity than that based on an accurate lung segmentation
method. In this study, our lung segmentation method
achieved good segmentation results for most of the cases.
However, the segmentation results were poor for a small
fraction of lungs with very severe ILD. In the future, others
may develop a method to automatically identify and improve
the poor segmentation results for lungs with very severe
ILD. In some interactive CAD schemes, end users such as
radiologists may also manually identify and refine the poor
segmentation results for lungs based on their subjective judg-
ment.

Our segmentation method achieved high performance
level based on metrics of overlap rate, volume agreement,
and MAD, but not as good based on the maximum absolute
distance dmax. Our segmentation method employed a CT
value thresholding technique to segment initial lungs for nor-
mal and mildly abnormal lung parenchyma. The thresholding
technique may miss some “normal” structures inside the

lungs, such as blood vessels near the mediastinum. Some-
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times, these normal structures are treated as part of lungs by
physicists and radiologists when they create reference lungs.
Missing these normal structures by computer is not impor-
tant in clinical practice, but creates a large dmax value �low
performance�, even though overall segmentation results are
very good. Thus, we believe that dmax should be used only as
a secondary metric because it measures the performance
based only on a single point on the contour of a lung. The
overlap rate, volume agreement, and MAD measure the over-
all accuracy of the segmentation results, and thus are more
reliable performance metrics for assessing the lung segmen-
tation methods.

When the gray-level information alone is not able to dis-
tinguish abnormal lungs from adjacent normal soft tissues,
the use of shape constraints derived from normal lung atlas18

or surrounding structures19 could be beneficial. The mean
overlap rates were 82% and 87%, respectively, for an atlas-
driven lung segmentation method18 and a rib-curvature
guided segmentation method.19 These overlap rates were
relatively low probably because �1� the databases used in
these two studies included many extremely difficult cases
and �2� the usefulness of shape constraints were reduced for
these extremely severe lungs. As with our method, Korfiatis
et al. also employed a texture analysis-based lung segmenta-
tion method20 and obtained a mean overlap rate of 95%,
which is comparable to ours.

The lung segmentation is an initial step in many CAD
systems for detection of lung diseases; a fast and simple lung
segmentation algorithm thus would be a considerable advan-
tage for the development and application of the subsequent
CAD systems. Our segmentation method was implemented
in C �gcc 4.1.2� programming language. When we ran our
segmentation method on a workstation server �8 GB RAM
and 2.5 GHz Intel Xeon CPU�, the processing time for each
slice was approximately 5 s. Korfiatis et al. implemented
their texture analysis-based segmentation method in MATLAB

and ran it on a PC �2 GB RAM and Intel Core 2 Duo CPU�;
the processing time for each slice was approximately 20 s.20

VI. CONCLUSIONS

We developed an automatic segmentation method for
lungs with severe ILD in MDCT scans. The proposed
method is composed of the elimination of airways, the esti-
mation of initial lungs, and the identification of abnormal
lung regions with severe ILD by use of texture-feature im-
ages. The experiments on a database of 45 abnormal cases
with severe ILD and 31 normal cases indicated that our seg-
mentation method achieved a high accuracy for the segmen-
tation of lungs with ILD and would be very useful for devel-
oping computer-aided diagnosis schemes for ILD.
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