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Abstract

The objective of this study was to determine the effects of binge-like alcohol drinking on gene
expression changes in the nucleus accumbens (ACB) of alcohol-preferring (P) rats. Adult male P
rats were given ethanol under multiple scheduled access (MSA,; three 1-hr dark-cycle sessions/day)
conditions for 8 weeks. For comparison purposes, a second ethanol drinking group was given
continuous/daily alcohol access (CA; 24 hr/day). A third group was ethanol-naive (W group).
Average ethanol intakes for the CA and MSA groups were approximately 9.5 and 6.5 g/kg/day,
respectively. Fifteen hr after the last drinking episode, rats were euthanized, the brains extracted, and
the ACB dissected. RNA was extracted and purified for microarray analysis. The only significant
differences were between the CA and W groups (p < 0.01; Storey false discovery rate = 0.15); there
were 374 differences in named genes between these 2 groups. There were 20 significant Gene
Ontology (GO) categories, which included negative regulation of protein kinase activity, anti-
apoptosis, and regulation of G-protein-coupled receptor signaling. Ingenuity® analysis indicated a
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network of transcription factors, involving oncogenes (Fos, Jun, Junb had higher expression in the
ACB of the CA group), suggesting increased neuronal activity. There were 43 genes located within

rat QTLs for alcohol consumption and preference; 4 of these genes (Tgfa, Hspa5, Mtusl and

Creb3I2) are involved in anti-apoptosis and increased transcription, suggesting that they may be
contributing to cellular protection and maintaining high alcohol intakes. Overall, these findings
suggest that chronic CA drinking results in genomic changes that can be observed during the early
acute phase of ethanol withdrawal. Conversely, chronic MSA drinking, with its associated protracted
withdrawal periods, results in genomic changes that may be masked by tight regulation of these genes
following repeated experiences of ethanol withdrawal.

Keywords

Alcohol-Preferring rats; Nucleus accumbens; Gene Expression; Microarrays; Alcohol drinking; Self-
administration; Ethanol responsive genes; Ethanol withdrawal

1. Introduction

Microarray analysis has emerged as a tool to study the multiple, complex effects of
pharmacological treatments on changes in gene expression. Examining innate differences and
changes in gene expression in response to ethanol in lines or strains of mice and rats with
divergent responses to ethanol has provided important clues toward identifying genes and gene
networks involved in vulnerability to high ethanol-drinking behavior. Given this, examining
changes in gene expression following chronic ethanol drinking will, presumably, provide
information to identify genes and gene networks involved in maintaining this behavior, as well
as the consequences of chronic ethanol exposure.

Many innate genetic expression differences between high and low ethanol-consuming rodent
lines have been indentified. For example, Edenberg et al. (2005) examined differences in gene
expression in the hippocampus of inbred alcohol-preferring (iP) and inbred alcohol-non-
preferring (iNP) rats, and reported differences for genes involved in cell growth and adhesion,
cellular stress reduction and anti-oxidation, protein trafficking, cellular signaling pathways,
and synaptic function. In a subsequent study, Kimpel etal. (2007) reported on innate differences
in gene expression between iP and iNP rats in 5 CNS regions, including the nucleus accumbens
(ACB). These authors indicated that genes associated with anti-apoptosis, axon guidance, nerve
transmission as well as synaptic structure and function displayed expression differences
between the rat strains. Worst et al. (2005) reported on the transcriptome analysis of the frontal
cortex from ethanol-naive AA (Alko, alcohol) and ANA (Alko, non-alcohol) rats, with mRNA
level differences found that could reflect altered neurotransmitter release. Using a whole brain
analysis of inbred long-sleep and inbred short-sleep mice, Xu et al. (2001) detailed expression
differences for metabolic-associated genes with higher levels seen in the long-sleep mice. In
a comprehensive transcriptome meta-analysis of gene expression differences across a number
of different mouse strains, Mulligan et al. (2006) identified several cis-regulated candidate
genes for an ethanol preference QTL on chromosome 9.

Alterations in gene expression produced by exposure to ethanol have been reported in a few
studies. Acute ethanol injections (6 g/kg; i.p.) produced gene expression changes associated
with cell signal regulation, gene regulation, and homeostasis/stress responses in the whole brain
from C57BL/6J and DBA/2J, high- and low-ethanol drinking mice, respectively (Treadwell
and Singh, 2004). Kerns et al. (2005) reported that acute i.p. ethanol injections altered the
expression of genes involved in glucocorticoid signaling, neurogenesis, myelination,
neuropeptide signaling, and retinoic acid signaling in the ACB, prefrontal cortex and VTA of
C57BL/6J and DBA/2J mice. Differences in the expression levels of genes coding for oxido-
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reductases and ADP-ribosylation factors have also been found in the dorsal hippocampus of
Lewis rats given 12% ethanol or water for 15 months (Saito et al., 2002). In a recent study,
Bowers et al. (2006) reported that chronic ethanol consumption, in a liquid diet, altered the
expression of over 100 genes in the cerebellum of PKCgamma wild-type and mutant mice. In
contrast, Saito et al. (2004) in a previous study found no statistically significant effects of
chronic free-choice ethanol drinking on gene expression in the striatum of C57BL/6By mice.
The above studies were conducted using ethanol injections or 24-hr free- or forced-choice
drinking. A recent study from our laboratory (Rodd et al., 2008) reported that operant ethanol
self-administration produced approximately 500 significant changes in gene expression in the
ACB when measured 24 hr after the last 1-hr operant session, whereas saccharin self-
administration produced less than 60 significant changes, suggesting that chronic ethanol
consumption was producing persisting effects on gene expression in the ACB of P rats.
However, it is important to determine if the effects of ethanol drinking alone (absence of
operant responding) produce similar changes in gene expression in limbic regions that are
involved in regulating ethanol drinking.

In an initial study from our laboratory, Bell et al. (2006a) examined protein expression changes
in the ACB and amygdala of iP rats given 24-hr continuous access (CA) or multiple scheduled
access (MSA,; four 1-hr sessions during the dark cycle) to ethanol for 6 weeks. The results of
this study indicated that ethanol drinking conditions differentially changed protein expression
in the ACB and amygdala. However, a relatively insensitive 2-dimensional gel electrophoresis
procedure was used in this study and only the most abundant proteins found in tissue from the
whole ACB or amygdala could be detected. The microarray procedure offers a potentially more
sensitive method to measure changes resulting from ethanol drinking under different conditions
of availability, which produce different patterns of ethanol intake and associated blood alcohol
levels (c.f., Bell et al., 2006a, 2006b). Therefore, the objective of this study was to examine
changes in gene expression associated with chronic ethanol drinking under binge-like ethanol
drinking conditions. For comparison purposes, the effects of 24-hr free-choice drinking on
gene expression were also determined. Gene expression changes were determined the next day
after the binge-like group's last scheduled access period of the previous day. Ethanol was
removed from both groups at the same time to control for the length of ethanol deprivation
before brain tissue was harvested. The hypothesis to be tested was that chronic binge-like
ethanol drinking would produce significant persisting effects on gene expression in the ACB
of P rats that would not be observed with 24-hr continuous ethanol access drinking.

2.1. Animals and ethanol drinking procedures

Subjects were adult (> 90 days old), ethanol-naive, male P rats from the S52 generation. The
rats were single-housed in hanging stainless steel wire-mesh (bottom and front) cages on a
reverse 12 hr/12 hr dark-light cycle (light offset at 1000 hr). Animals had ad libitum access to
food. Rats were randomly divided into three groups (n = 9/group): the 15t group had access to
water as their sole fluid, the 2"d group had continuous/daily, concurrent, free-choice access to
15% and 30% (v/v) ethanol and water, and the 3" group had bout-like, concurrent access to
15% and 30% ethanol, with water available ad libitum. The bout-like group experienced a
multiple scheduled access (MSA) protocol, such that they received three 1-hr access periods
each separated by 2 hr starting at the beginning of the dark cycle (i.e., 1000-1100, 1300-1400,
and 1600-1700 hr). The MSA animals were given ethanol access in 5-day blocks (Monday—
Friday), with each block separated by 2 days without ethanol. Measurements of water and
ethanol intake, and body weights were taken Monday through Friday at 0900 hr; ethanol
intakes, for MSA animals, were also taken at the end of each 1-hr access period. After the MSA
group's 15t day of re-exposure to ethanol access, of the 9t week, both groups of ethanol-
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drinking rats had ethanol removed at 1700 hr. To ensure that ethanol blood levels were absent
and the deprivation period was equivalent for both groups, all rats were Killed the next day (15
hr after removing ethanol). Rats were Killed by decapitation and their brains processed for
microarray analyses, as described below.

2.2. Brain dissections

Rats were killed by decapitation within the same 2-hr time frame over 2 days with equal number
of animals from each group being killed on each day to minimize differences in time of sacrifice
and dissection, and maintain the experimental balance across groups. During the 7" and 8t
weeks, the rats in the MSA group dissected on the 2" day had ethanol access moved to Tuesday
through Saturday to preserve the 5-day a week schedule. The head was immediately placed in
a cold box maintained at -15°C, where the brain was rapidly removed and placed on a glass
plate for dissection. All equipment used to obtain tissue were treated with RNAse Zap (Ambion,
Inc. Austin, TX) to prevent RNA degradation. The ACB was dissected according to the
coordinates of Paxinos and Watson (1998). Briefly, the ACB was dissected from a 2-mm
section generated by a coronal cut at 2 mm anterior to the optic chiasm (Bregma 1.70 mm) and
a coronal cut at the optic chiasm (Bregma —0.26 mm). Dissected tissue was immediately
homogenized in Trizol reagent (Invitrogen, Carlsbad, CA) and processed according to the
manufacturer's protocol, but with twice the suggested ratio of Trizol to tissue, as discussed
previously (Edenberg et al., 2005). Ethanol precipitated RNA was further purified through
RNeasy® columns (Qiagen, Valencia, CA), according to the manufacturer's protocol. The
yield, concentration and purity of the RNA were determined by running a spectrum from 210
to 350 nm, and analyzing the ratio of large and small ribosomal RNA bands using an Agilent
Bioanalyzer. Yields and purity of the RNA were deemed excellent.

2.3. Microarray procedures

Separate preparations of total RNA were made from the ACB of individual animals. Samples
were not pooled. Standard Affymetrix protocols (GeneChip® Expression Analysis Technical
Manual, Rev. 5 and updates) were used to synthesize biotinylated cRNA, starting with 5 ug
total RNA from each region, using the Affymetrix kits for cDNA synthesis, in vitro
transcription and sample cleanup. Fifteen ug of fragmented, biotinylated cRNA from each
independent sample were mixed into 300 pul of hybridization cocktail, of which 200 pl were
used for each hybridization. Hybridization was for 17 hr at 42°C. Samples were hybridized to
the Affymetrix GeneChip® (Rat Genome 230 2.0 array GeneChips). Washing and scanning
of the GeneChips were carried out according to standard protocols, as previously described
(Edenberg et al., 2005; McClintick et al., 2003). To minimize potential systematic errors, all
stages of the experiment were balanced across experimental groups. That is, equal numbers of
animals in each group were sacrificed within the same 2-hr time frame each day, and equal
numbers of RNA preparations from the representative groups were processed through the
labeling, hybridization, washing and scanning protocols on a given day, in a counterbalanced
order, using premixes of reagents.

2.4, Statistical and neuroinformatic analyses of microarray data

Each GeneChip® was scanned using an Affymetrix Model 3000 scanner and underwent image
analysis using Affymetrix GCOS software. Microarray data are available at the National Center
for Biotechnology Information's Gene Expression Omnibus,
http://www.ncbi.nlm.nih.gov/geo/, under series accession no. GSE13524 [GSM341183...
GSM341211] (Barrett et al., 2005; Edgar et al., 2002). Raw .cel files were then imported into
the statistical programming environment R (R: A language and environment for statistical
computing Ver 2.2.0; R Foundation for Statistical Computing, 2005) for further analysis with
tools available from the Bioconductor Project (Gentleman et al., 2004), with these further
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expanded by the authors using the R language. Expression data from the 27 arrays of the ACB
region were normalized and converted to log(2) using the Robust Multi-chip Average (RMA)
method (Irizarry et al., 2003) implemented in the Bioconductor package RMA. As a
standardization step to facilitate later comparisons with other experiments, expression levels
were scaled such that the mean expression of all arrays was 10g,(1000). Because the primary
objective was identifying genes that could be subjected to further bioinformatic analysis, all
probesets currently annotated by Affymetrix as “expressed sequence tags” or whose gene
names contained the words “riken”, “predicted”, or “similar to” were filtered out. Next, probe
sets with a very low likelihood of actual expression in our samples were removed, with this
accomplished by the Bioconductor package “genefilter.” Probe sets that did not have at least
25% of samples with normalized scaled expression greater than 64 were filtered out as well.
Linear modeling to calculate gene-wise p-values for the contrasts of the CA versus W group
and the MSA versus W group was performed using the package Limma (Smyth, 2004); probe
sets were considered to be statistically significant at p < 0.01, with a false discovery rate (FDR)
less than 0.15. An FDR of 0.15 was used as a cutoff because this allowed a significant number
of genes to be included in the Gene Ontology (GO) and Ingenuity® Pathways Analysis to help
identify networks of genes that changed. This FDR value is a reasonably stringent cutoff value
that provides a good balance between allowing more thorough gene network analyses (limiting
beta-error) without including too many false positives (limiting alpha-error) in the analyses.
Thus, to facilitate discussion of the present results in the context of our laboratory's previously
published work with microarray data (c.f., Edenberg et al., 2005; Kimpel et al., 2007; Rodd et
al., 2008), we have used the same standard statistical procedures used previously, and by the
field (Gentleman et al., 2004; Irizarry et al., 2003; Smyth, 2004), to determine the effects of
the two different ethanol drinking conditions on changes in gene expression.

Testing for over-representation of Gene Ontology (GO) biologic process categories (Harris et
al., 2004; Ashburner et al., 2000) was performed using the Bioconductor package GOstats
(Gentleman, 2004). Briefly, for each gene set tested, a list of unique Entrez-Gene identifiers
was constructed. This list was then compared to the list of all known Entrez-Gene identifiers
that are represented on the Affymetrix chipset Rat Genome 230 2.0. Identification of over-
represented GO categories was then accomplished within GOstats using the hypergeometric
distribution. To filter out uninteresting categories, only those categories with greater than 9
and less than 300 genes represented on the chipset were included in the analysis. GO categories
were called significant at p < 0.05. In addition, network analyses were conducted with
Ingenuity® Pathway Analysis (Ingenuity® Systems, www.Ingenuity.com). Briefly, a data set
containing gene identifiers and corresponding fold-changes was uploaded into the application.
Each gene identifier was mapped to its corresponding gene object in the Ingenuity® Pathways
Knowledge Base. An FDR cutoff of 0.15 was set to identify genes with expression levels that
were significantly altered. These genes, called focus genes, were overlaid onto a global
molecular network developed from information contained in the Ingenuity® Pathways
Knowledge Base. Networks of these focus genes were then algorithmically generated based
on their connectivity.

2.5. Quantitative Real-Time PCR

Real-Time PCR was carried out using SybrGreen chemistry and the ABI Prism 7300 Sequence
Detection System (Applied Biosystems Inc. Foster City, CA). The amplification primers were
designed using Vector NTI (Invitrogen, Carlsbad, CA). Total RNA, isolated for the microarray
analyses, was treated with DNase | for these analyses. Following reverse transcription of the
RNA (SuperScript™ I First-Strand Synthesis System for RT-PCR, Invitrogen, Carlsbad,

CA), an aliquot of each reverse transcription reaction was amplified in triplicate. This reaction
was repeated to generate 6 values for each test group. Two control reactions were run for each
RNA preparation: 1) a reverse transcription and PCR reaction with no added RNA to control
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for contamination of the reagents; and 2) a PCR reaction without the reverse transcription
reaction in the presence of RNA to detect DNA contamination of the RNA preparation. To
correct for sample-to-sample variation, an endogenous control (GAPDH) was amplified with
the target and served as an internal reference to normalize the data. Relative quantification of
data from the ABI Prism 7300 Sequence Detection System was performed using the standard
curve method (Applied Biosystems, User Bulletin #2; htpp://www.appliedbiosystems.com).
Quantitative RT-PCR (qRT-PCR) measurements were conducted on genes to verify
differences observed with microarray hybridization. These genes were selected on the basis of
significant differential expression, relatively large fold changes, and the availability of primers.

3.1. Ethanol drinking

Daily ethanol intakes (mean = S.E.M.) of the CA group averaged 9.6 + 0.9 g/kg/day across the
8 weeks, whereas daily ethanol intakes of the MSA group averaged 6.4 + 0.3 g/kg/day, with
hourly intakes ranging between 1.7 and 2.7 g/kg (Fig. 1, upper panel). Overall, the distributions
of drinking scores for the two groups did not overlap (Fig. 1, lower panel: the boxplot depicts
the means, interquartile ranges, and the most extreme scores). In the present study, the average
daily intakes of the CA group and average hourly intakes of the MSA are higher than previously
reported (Bell et al., 2006a), despite the fact that the MSA group had access to only three 1-hr
sessions compared with four 1-hr access sessions in the Bell et al. (2006a) study. These
differences may have been due to the use of selectively bred P rats in the present study versus
inbred P rats used in the previous study and/or the use of male P rats in the present study versus
the use of female inbred P rats in the previous study.

3.2. Effects of ethanol on gene expression in the ACB

Comparison of the CA versus W group indicated 406 probe sets of named genes were
significantly (p < 0.01; FDR < 0.15) different between the two groups, with 233 probe sets
higher and 173 probe sets lower in the CA group (Table 1). These 406 significantly different
probe sets represented 374 uniquely named genes. Most of the gene expression differences
(Table 1) were in the range of 1.1- to 1.3- fold.

There were 20 significant Gene Ontology (GO) Biological Processes categories with over-
representation of gene differences between the CA and W groups (Table 2, which lists GO
category name and GO identification number, as well as member gene names and symbols).
Some of these GO categories included (a) ‘anti-apoptosis’ with a total of 10 gene expression
differences, 5 higher (Fragl, Hrpap20, Sod2, Tgfa, Zfp91) and 5 lower (Adam17, Foxola,
Hspab, Hdh, Tsc22d3) in the CA group; (b) ‘negative regulation of programmed cell death’
with a total of 13 gene expression differences, 7 higher (Btg2, Fragl, Hrpap20, Scg2, Sod2,
Tofa, zfp91) and 6 lower (Adam17, Angptl4, fox0la, Hspa5, Hdh, Tsc22d3) in the CA group;
(c) “microtubule-based movement’ with a total of 8 gene expression differences, 3 higher
(Actrl0, Kif2, Tubb2b) and 5 lower (Hdh, Kifl1, Kiflb, Kif6, Klc1) in the CA group; (d)
‘regulation of kinase activity’ with a total of 11 gene expression differences, with 7 higher
(Cdc42, Dusp6, Pkib, Spdy1, Spry2, Tgfa) and 4 lower (Cav, Dgka, Plcel, Rgs3) in the CA
group; (e) ‘negative regulation of protein kinase activity’ with a total of 5 gene expression
differences, 3 higher (Dusp6, Pkib, Spry2) and 2 lower (Cav, Rgs3) in the CA group; (f)
‘regulation of MAPK activity’ with a total of 7 gene expression differences, 4 higher (Chrna?,
Dusp6, Spry2, Tgfa) and 3 lower (cav, Plcel, Rgs3) in the CA group; (g) ‘regulation of G-
protein coupled receptor protein signaling pathway’ with a total of 6 genes displaying decreased
expression levels (Ecel, Plcel, Rasgrp4, Ramp2, Rgs3, Rgs9) in the CA group; and (h)
‘anatomical structure formation’ with a total of 11 gene expression differences, 7 higher (Btg1,
Ctgf, Nr4a3, Pofutl, Scg2, Scyel, Tgfa) and 4 lower (Angptl4, Tek, Hdh, Tiel) in the CA group.
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Among the named genes that were significantly different between the CA and W groups (Table
1), there were 43 genes located within rat QTLs for alcohol consumption and preference (Bice
etal., 1998;Carr et al., 1998,2003;Foroud et al., 2003). There were 11 genes located within
Alc18 on chromosome 4, 6 genes located within Alc15 on chromosome 2, and 5 genes located
within Alc8 on chromosome 3. Four or fewer genes were located within each of the following:
Alc6 on chromosome 12, Alc11 on chromosome 16, Alc17 on chromosome 6, Alc5 on
chromosome 10, Alc10 on chromosome 12, and Alc20 on chromosome 8 (Table 1).

Comparison of the MSA and W groups revealed 87 probe sets (representing 84 individual
named genes) were significantly different at p < 0.01. However, because this number is less
than 1% of the identifiable genes on the Affymetrix GeneChip® (Rat Genome 230 2.0 array
GeneChips) and the overall estimated FDR rate was greater than 0.90, these differences could
have occurred by chance alone (data not shown). Of the 84 named genes, there were 35
differences in common with differences observed between the CA vs. W groups, some of which
included Arc, Cav2, Fos, Jun, Junb, Nos3, Pik3c3, and Plcel (indicated in bold type in Table
1).

Comparison of the CA versus MSA group revealed 51 significant differences (p < 0.01).
However, the FDR-values for these findings were approximately 0.4, suggesting a high number
of false positives. Therefore, this analysis indicated there were few genes with significant
expression differences between the two alcohol drinking groups, even though there were a
significant number of differences between the CA versus W group but not between the MSA
versus W group.

3.3. RT-PCR confirmation

Eight genes from the list of significant genes in Table 1 were selected for RT-PCR. The criteria
for selection were fold change (at least 20% difference), that the gene was neurobiologically
interesting (e.g., Fos and Jun changes may be related to neuronal activity), and the availability
of primers. The microarray results indicated that 6 of the 8 genes were up regulated in the
alcohol drinking group and 2 of the genes were down regulated. RT-PCR confirmed the
direction and magnitude of the changes observed with the microarray analysis between the CA
and W control groups (Table 3).

3.4. Supplemental tables

See supplemental tables A and B for more complete information on data for gene expression
differences in the ACB between the CA, MSA and W groups.

4. Discussion

The major finding of this study was that chronic, continuous/daily ethanol drinking under 24-
hr free-choice conditions (CA) altered the expression of over 370 uniguely named genes in the
ACB of P rats, whereas intermittent ethanol drinking, using a multiple scheduled access
protocol (MSA), with three 1-hr sessions each day for 5 days per week did not produce a
significant number of gene expression differences. These results do not support our hypothesis
that binge-like alcohol-drinking would produce significant changes in gene expression in the
ACB of P rats. The disparity in findings could be due to the higher daily intakes of the CA
group (~9.5 g/kg/day) versus the MSA group (~6.5 g/kg/day). However, the MSA group
consumed their ethanol in distinct bouts of 1.7—2.7 g/kg/hr with most of the intake expected
to occur within the first 15 min of each access session (Bell et al., 2006b), mimicking binge-
like drinking, with BACs approximating 80 mg% or greater (Bell et al., 2006b, 2008). The
relative lack of effect of ethanol in the MSA group versus the W group suggests that gene
expression in the ACB may be tightly regulated, such that, with intermittent ethanol exposure
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under a regimented protocol (i.e., with an inherently strong time-of-day conditioning
component), the genetic machinery may adjust to ethanol-induced alterations (e.g.,
neuroadaptations) and be able to maintain new steady-state protein levels with basal levels of
gene expression. This conclusion is supported by the finding that there were very few
differences (approximately 50) between the 2 alcohol drinking groups. This suggests that the
MSA procedure may be producing similar changes as the CA procedure but the effects of binge
drinking may be much smaller compared with the effects of 24-hr continuous access drinking.
It is noteworthy that ~ 40% of the genes with significant differences in expression between
the MSA and W groups were also similarly different between the CA and W groups. Therefore,
increasing power, by increasing the number of animals in the MSA and W groups, in future
studies may result in detecting a significant number of differences in gene expression between
these two groups.

The lack of a significant number of differences in gene expression between the MSA and W
groups of the present study, such that the number of gene expression differences (with p-values
less than 0.01) was less than that expected by chance (i.e., less than 1% of the total number of
genes), appears to disagree with a recent genomic study examining inbred P rats in a 1-hr
operant ethanol self-administration procedure (Rodd et al., 2008). These authors reported that
inbred P rats responding for ethanol displayed a significant number (> 200) of gene expression
differences, in the ACB, compared to a water control group, when animals were killed the day
after the last operant session. This lack of agreement suggests that multiple factors, other than
temporal (i.e., time-of-day) conditioning and ethanol alone, are influencing the number of gene
expression differences between the effects of MSA sessions of oral self-administration of
ethanol per day and daily sessions of operant ethanol self-administration, compared with their
respective controls. Some of these factors may include the role of Pavlovian and instrumental
conditioning or lever pressing in the operant study (Rodd et al., 2008), as well as total ethanol
consumed or expected peak BACs achieved and reduced conditioning to environmental cues
found in the home-cage setting of the present study (i.e., animals were habituated to the wire
mesh home cages before ethanol was made available).

Although 24-hr free-choice ethanol access is not regimented in the same manner as the MSA
procedure, the same routine of body and fluid measurements are used each day and, based upon
the results between the MSA and W groups, the expectation is that the genetic machinery of
the CA group would also adjust to chronic ethanol-drinking conditions, with a corresponding
modest number of gene expression changes. The chronic ethanol-drinking conditions
experienced by the CA group should produce tolerance (Gatto et al., 1987; Lumeng and Li,
1986; Stewart et al., 1991) and possibly dependence (Kampov-Polevay et al., 2000; Waller et
al., 1982). Even though similar studies have yet to be conducted with P rats consuming ethanol
under MSA conditions, it is anticipated that tolerance, and possibly dependence, would also
develop in the MSA group, because BACs of 80 mg% or greater are expected during each
ethanol access session, when using the present MSA protocol (Bell etal., 2006b, 2008; Murphy
etal., 2002). Gene expression was measured 15 hr after the MSA group's last drinking episode
when ethanol was also removed from the CA group. It is noteworthy that 10 of these hours
occurred during the daily light-cycle, when P rats normally drink limited amounts of ethanol
(Bell et al., 2006b, 2006¢; Murphy et al., 1986). Nevertheless, it is likely that the CA group
experienced symptoms of its first protracted withdrawal at this time point (Kampov-Polevoy
etal., 2000; Waller et al., 1982). Therefore, the gene expression differences observed between
the CA and W groups may be due in part to ethanol withdrawal. It would be difficult to resolve
the issue of withdrawal effects from continuous chronic alcohol drinking without undertaking
amore detailed time-course study with this alcohol drinking protocol. However, since the MSA
group did not show a significant number of differences in gene expression compared to the W
control group (suggesting little effect of repeated BACs, that exceeded 50 mg% per access
period, five days per week), the differences between the CA and W groups may reflect the
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effects of removal of the ethanol. A recent study (Bell et al., 2009) indicated significant
behavioral changes (alterations in motor activity and rearing behavior) occur between 9 and
13 hr after removal of ethanol in P rats that had 24-hr continuous/daily free-choice access to
ethanol for approximately 6 months. These studies suggest some behavioral alterations are
occurring after removal of ethanol from P rats given continuous access, and there may be a
relationship between the changes in gene expression within the ACB observed in the present
study and these changes in general motor activity.

A proteomics study of the ACB using similar drinking procedures with inbred P rats indicated
that the levels of 12 proteins were altered by MSA drinking compared to the W group and 8
proteins were altered by CA drinking compared to the W group (Bell et al., 2006a). None of
the proteins that were different in the ACB between the CA and W groups of the proteomics
study (Bell et al., 2006a) were found to be different between the CA and W groups in the gene
expression data of the present study (Table 1). These results suggest that a direct relationship
between changes in MRNA and protein levels may not be necessary (for an example of
dissociations between DNA, RNA and protein levels in the brain after ethanol exposure see
Babu et al., 1994) within this brain region. This could be due to a number of factors, not the
least of which is procedural differences between the studies, but, in addition, proteins may be
synthesized in other regions and transported to the ACB. Another possibility is that there is
temporal discontinuity between changes in the expression levels of mMRNA and protein, such
that protein levels may increase (or decrease) leading to their accumulation (or reduction)
because of post-translational modifications and/or changes in chaperoning or trafficking.

The Gene Ontology (GO) analysis indicated several significant biological processes categories.
The categories of ‘anti-apoptosis’ and ‘negative regulation of programmed cell death’ suggest
that cellular changes may have occurred to counter any neurotoxic effects of chronic ethanol
exposure. A number of the genes identified in the CA group of the present study as having
significantly changed expression levels (Table 1) and were members of over-represented GO
categories (Table 2) have also been reported in the literature as genes altered by or associated
with high ethanol-consumption. For example, (a) Btg2 gene expression, elevated in the CA
group, is greater in inbred P versus inbred NP rats as well (Edenberg et al., 2005); (b) Scg2
gene expression, elevated in the CA group, is also increased in the frontal cortex, but decreased
in the motor cortex of alcoholics (Mayfield et al., 2002); (c) Tgfa, with gene expression
increased in the CA group, over-expressing mice display greater ethanol preference than their
wild-type counterparts (Hilakivi-Clarke and Goldberg, 1995); and (d) a gene moderately
similar to Zfp91 is altered in the prefrontal cortex of alcoholics (Flatscher-Bader et al., 2005),
with Zfp91 gene expression increased in the CA group of the present study as well. The results
of the GO analysis (Table 2) also suggest that significant changes are occurring in intracellular
signaling systems, involving protein kinase activity, G-protein coupled receptor protein
signaling, and MAPK activity. These changes in intracellular signaling systems may indicate
that major neuronal alterations occurred in the ACB of the CA group.

Several of the kinase activity-related genes (Table 2) identified as having altered expression
levels in the CA group (Table 1) have been implicated in alcohol abuse. For instance, (a)
Cav2 gene expression, which was reduced in the present study as was gene expression of the
family member Cav, is increased in the ACB of iP rats after operant self-administration of
ethanol (Rodd et al., 2008); (b) Dusp6 gene expression, which was increased in the CA group
of the present study, is greater in iNP than iP rats (Kimpel et al., 2007), with gene expression
differences also found between high and low alcohol-consuming mice (Kerns et al., 2005); and
(c) Pkib gene expression is increased in the frontal cortex of alcoholics vs. nonalcoholics (Liu
et al., 2006), which was elevated in the CA group of the present study as well. Interestingly,
inhibition of PKA in the ACB shell increases ethanol intake (Misra and Pandey, 2006), and
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family member Pkia (cCAMP-dependent, regulatory) gene expression is decreased in the frontal
and motor cortices of alcoholics (Mayfield et al., 2002).

Chrna7 gene expression was increased in the CA group (Table 1) and was identified in the
over-represented GO category “regulation of MAPK activity” (Table 2). It is noteworthy that
several reports support a role for Chrna7 in substance abuse, for instance, (a) Chrna7 knock
out mice display greater sensitivity to lower dose ethanol-induced motor activation and higher
dose ethanol-induced hypothermia and loss of righting reflex compared with their wild-type
counterparts (Bowers et al., 2005); (b) Chrna7 has been proposed to reduce ethanol-induced
neurotoxicity (de Fiebre and de Fiebre, 2003); and (c) a significant association between the
Chrna7 gene, altered cognitive (response inhibition and sustained attention) function (Rigbi
et al., 2008) or psychological characteristics (Greenbaum et al., 2006), and smoking behavior
have been reported in humans.

Although the Arc gene was identified under the GO category ‘regionalization’ (Table 2), this
gene was one of the most cited genes both detected as significantly changed in the present
study (its gene expression was increased 1.5-fold in the CA group, Table 1) and implicated in
substance abuse for morphine (Ammon et al., 2003), amphetamine (Gonzalez-Nicolini and
McGinty, 2002), cocaine (Freeman et al., 2002;Samaha et al., 2004) and nicotine (Schochet et
al., 2005;Samaha et al., 2005). Arc is an immediate early gene found in soma and dendrites
and is involved in, or associated with, synaptic modification and learning/memory (e.g.,
Guzowski etal., 2006). Inarecent study (Pandey et al., 2008), the BDNF-Arc signaling pathway
has been implicated in both alcohol dependence and the comorbid expression of anxiety with
alcohol abuse.

Among the 43 genes that were located within rat QTLs for alcohol consumption and preference,
some were evident in certain GO categories and gene networks. Tgfa (located within Alc18 on
chromosome 4) appears to be associated with ethanol preference in mice (Hilakivi-Clark &
Goldberg, 1995), anti-apoptosis (Table 2) and up-regulation of Fos-related transcription factors
(Fig. 2). Hspab (located within Alc8 on chromosome 3) is also involved in anti-apoptosis
(Table 2). Mtus1 (located within Alc11 on chromosome 16) and Creb312 (located within Alc18
on chromosome 4) are involved in transcription (Fig. 3). The anti-apoptosis involvement and
increased transcription functions of these genes suggest that increased cellular protection may
be occurring in the ACB of the CA group, which could be factors contributing to high alcohol
intakes.

Ingenuity® pathway analyses uncovered networks overlapping and extending those detected
with the GO analysis. In agreement with the GO biological processes category of ‘anti-
apoptosis’ genes, the Ingenuity® pathway analysis revealed a network of 11 genes involved
in apoptosis, 8 of which were reduced in the CA group (Cast, Ccr5, Ecel, Nos3, Ntrk2, Plcel,
Slc2al, Tgfbr3). Several of these genes have been implicated in alcoholism and drug abuse,
including reports that (a) Cast gene expression is reduced in the frontal cortex of alcoholics
vs. nonalcoholics (Liu et al., 2006); (b) female, but not male, Ccr5 knock-out mice display
greater ethanol intake, but not preference, as well as ethanol-induced conditioned taste aversion
than their wild type counterparts (Blednov et al., 2005); and (c) Slc2al (facilitated glucose
transporter) gene expression is increased in the ACB of iP rats operantly self-administering
ethanol, although, at the same time, family member Slc2a3 (facilitated glucose transporter)
gene expression is decreased (Rodd et al., 2008). Regarding Ntrk2, its gene expression is
decreased in the frontal and motor cortices of alcoholics (Mayfield et al., 2002). Moreover,
single nucleotide polymorphism (SNP)-based analyses implicate the Ntrk2 gene in alcohol
dependence (Xu et al., 2007). The Ntrk2 gene has been implicated in nicotine abuse as well
(Beuten et al., 2007; Sun et al., 2007). Several genes responding to glucocorticoid receptor
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signaling were also altered in the CA versus W groups with 3 genes having reduced expression
levels (Fkbp5, Hspal2h, Tsc22d3), whereas only one was increased (Duspl).

In addition to the oncogenes, Fos, Jun and Junb, there were several other genes in the oncogene
network that were up regulated in the ACB of the CA group compared with the control animals
(See Fig. 2). These genes included Ctgf, Tgfa, Plagll, Spry2 and Rdbp. The up-regulation of
Fos and other transcription factors in the CNS are often associated with increased neuronal
activity (Greenberg et al., 1986;Herrera and Robertson, 1996;Morgan and Curran, 1989).
Fos (along with Jun and JunB) is regulated by, or mediates the effects of, ethanol, for example,
Fos is induced in the ACB shell by acute ethanol and 80% of the Fos-positive cells labeled for
GAD as well (Leriche et al., 2008). Fos expression has also been associated with morphine
(Taracha et al., 2008), cocaine (Zhang et al., 2006) and nicotine (Schochet et al., 2005) abuse.
Ctgf and Tgfa are growth factors and their increased expression may indicate neuronal
alterations are occurring as well. These results are in agreement with the GO analysis (Table
2), suggesting that anatomical structural alterations may be occurring in the CA group. It is
noteworthy that CNS Ctgf gene expression levels differ between high alcohol-consuming AA
vs low alcohol-consuming ANA rats (Sommer et al., 2006) and this gene has been linked with
cocaine abuse (Mash et al., 2007), and, as indicated above, Tgfa over-expressing mice display
greater ethanol preference than their wild-type counterparts (Hilakivi-Clarke and Goldberg,
1995).

The higher expression of Plagll [a zinc finger protein (Yang et al., 2005)] and Rdbp [a nuclear
RNA-binding protein (Surowy et al., 1990)] are also consistent with increased transcription
associated with neuronal activity, with Plagl gene expression increased in the accumbens of
iP rats operantly self-administering ethanol (Rodd et al., 2008). Moreover, the higher
expression (Table 1) of several members of the oncogene family (Rabl, Rab3c, Rab21,
Rab35) and RNA binding motif proteins (Rbm3, Rbm13, Rbm17) are also consistent with an
interpretation of increased transcription activity. Figure 3 shows a network of genes involved
in calcium signaling, oxidative stress response, and transcription. In the calcium-signaling
network, there were 4 genes (Actal, Ep300, Hdac5, Tpm3), and, in the oxidative stress network,
there were 4 genes (Actal, Bex1, Ep300, Pik3c3) that were up regulated in the CA group. In
the transcription network, there were 12 genes that were different between the CA and W
groups with 10 genes higher (Cbx3, Dr1, Ep300, Hdac2, Hdac5, Mbdl, Med4, Rbbp6, Rnf2,
Tceb3) and only 2 genes lower (Irf3, Mxil) in the CA group; these results are consistent with
the findings for the oncogenes (Fig. 2) and also support an interpretation of increased
transcription.

A number of the genes in Figure 3 have been implicated in alcohol abuse, such as (a) Actal
gene expression differences are found between iP and iNP rats (Kimpel et al., 2007); (b) Irf3
gene expression differences are found between iP and iNP rats (Kimpel et al., 2007); (c)
Tceb3 gene expression is increased in the frontal cortex of cirrhotic alcoholics vs. controls
(Liu et al., 2007); and (d) Tpm3 gene expression is decreased in the ACB of iP rats operantly
self-administering ethanol (Rodd et al., 2008), with Tpm3 protein expression levels decreased
in the amygdala of chronic ethanol-drinking iP rats, but increased in the ACB of iP rats given
multiple scheduled-access sessions of ethanol per day as well (Bell et al., 2006a).

Although not identified by the GO or Ingenuity® analyses, Crh gene expression was increased
in the chronic ethanol drinking P rats of the present study and has been implicated in substance
abuse (c.f., Heilig and Koob, 2007; Koob and Le Moal, 2008). For example, (a) Crh knockout
mice display greater ethanol preference and limited access ethanol intake than their wild-type
counterparts (Olive et al., 2003); (b) Crh over-expressing mice display lower ethanol
preference and reduced 24-hr ethanol intake than their wild-type counterparts (Palmer et al.,
2004); (c) chronic ethanol drinking increases preproCrh mRNA in the CNS of Sprague-Dawley
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rats (Lack etal., 2005); and (d) Crh levels predict intensity of craving and probability of relapse
to drug use after acute detoxification (Kiefer and Wiedemann, 2004; see also Goeders,
2002a, 2002b).

In summary, the results of the present study suggest that, under intermittent ethanol drinking
conditions, gene expression levels may reach a near normal steady state level, which may be
sufficient to maintain altered protein levels in the ACB. Because gene expression was
determined 15 hr after removal of ethanol in the CA group, these changes may also reflect
withdrawal-responsive genes rather than purely ethanol-responsive genes. Nevertheless,
because a number of the genes identified as significant in the present study have also been
described in the literature on drug and/or alcohol abuse, these genes may serve as candidates
for continued research into the neurobiology of drug and/or alcohol abuse.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

The upper panel depicts the 5-day average ethanol intake values (+ SEM of the total daily
intake indicated in the parentheses) for the first and subsequent 23 hours of the continuous
access (CA) P rats and the 5-day average ethanol intake values for the three 1-hour access
periods of the multiple scheduled access (MSA) P rats. The box plot in the lower panel indicates
that the distributions (CA versus MSA) of drinking scores, for the most part, did not overlap,
which includes the most extreme scores. Note: the 5-day averages represent the days that
ethanol (15% and 30% concurrent with water) was available to both CA and MSA P rats.
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Fig. 2.

Abridged Ingenuity® network analysis revealed up-regulation of Fos-related transcription
factors. Red indicates up-regulation and green down-regulation of the associated genes. Genes
not colored indicate no change in expression but they are highly linked to genes that did change.
Solid lines indicate a direct interaction between genes, whereas dashed lines indicate an indirect
interaction between the genes. [For interpretation of the references to color in this figure, the
reader is referred to the web version of the article] Abbreviations used: Ctgf — connective tissue
growth factor; Fos — FBJ osteosarcoma oncogene; Fgf — fibroblast growth factor; Jun — Jun
oncogene; Junb -Jun B oncogene; Mmp — matrix metallopeptidase; Plagll — pleiomorphic
adenoma gene-like 1; Rdbp — RD RNA-binding protein; Rb - retinoblastoma; Spry2 — sprouty
homolog 2; Sdcl - syndecan 1; Tgfa — transforming growth factor alpha.
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Fig. 3.

Ingenuity® network analysis revealed primarily up-regulation of interacting pathways
involved in transcription, calcium signaling, oxidative stress response and glucocorticoid
receptor signaling. Red indicates up-regulation and green down-regulation of the associated
genes. Genes not colored indicate no change in expression but they are highly linked to genes
that did change. Solid lines indicate a direct interaction between genes, whereas dashed lines
indicate an indirect interaction between the genes. [For interpretation of the references to color
in this figure, the reader is referred to the web version of the article] Abbreviations used: Actal
—actin alpha 1 skeletal muscle; Actl6a — actin-like 6A; Adam17 — a disintegrin and
metallopeptidase domain 17; Adamtsl — a disintegrin-like and metallopeptidase; Apex1 —a
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purinic/pyrimidinic endonuclease 1; Cdc3711 — cell division cycle 37 homolog-like 1; Cbx3 -
chromobox homolog 3; Cbp/p300 — CREB binding protein; Drl — down-regulator of
transcription 1; Ep300 — E1A binding protein p300; Gtf2a2 — general transcription factor 1A
2; Hsp70 — heat shock protein 70; Hnrpk — heterogeneous nuclear ribonucleoprotein K; Hdac2
— histone deacetylase 2; Hdac5 — histone deacetylase 5; Irf3 — interferon regulatory factor 3;
Kcng3 - potassium voltage-gated channel subfamily Q member 3; MxI1 — Max interacting
protein 1; Med4 — mediator of RNA polymerase Il transcription subunit 4 homolog; Mbd1 —
methyl-CpG binding domain protein 1; Mtusl — mitochondrial tumor suppressor 1; Pi3k —
phosphatidylinositol 3-kinase; Pik3c3 — phosphoinositide-3-kinase class 3; Ppp2ca — protein
phosphatase 2 catalytic subunit alpha isoform; Rbbp6 — retinoblastoma binding protein 6; Rnf2
—ring finger protein 2; Rom3 — RNA binding motif protein 3; Tceb3 — transcription elongation
factor B polypeptide 3; Tpm3 — tropomyosin 3 gamma.
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Gene Ontology (GO) categories, with names and identification numbers, displaying significant over-

Table 2

representation of genes, and the respective gene names and their symbols
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GO Category/GOBPID Genes Symbol
blood vessel development/GO:0001568 angiopoietin-like 4 Angptl4
B-cell translocation gene 1, anti-proliferative Btgl
connective tissue growth factor Ctgf
endothelial-specific receptor tyrosine kinase Tek
forkhead box O1A Foxola
gap junction membrane channel protein alpha 1 Gjal
neurotrophic tyrosine kinase, receptor, type 2 Ntrk2
phosphatidic acid phosphatase type 2B Ppap2b
protein O-fucosyltransferase 1 Pofutl
secretogranin 2 Scg2
small inducible cytokine subfamily E, member 1 Scyel
transforming growth factor alpha Tgfa
tyrosine kinase with immunoglobulin-like and EGF-like domains 1 Tiel
regionalization/G0:0003002 activity regulated cytoskeleton-associated protein Arc
B-cell translocation gene 2, anti-proliferative Btg2
E1A binding protein p300 Ep300
Huntington disease gene homolog Hdh
lymphoid enhancer binding factor 1 Lefl
protein O-fucosyltransferase 1 Pofutl
ring finger protein 2 Rnf2
negative regulation of protein kinase activity/GO:0006469 caveolin Cav
dual specificity phosphatase 6 Dusp6
protein kinase inhibitor beta, cCAMP dependent, catalytic Pkib
regulator of G-protein signalling 3 Rgs3
sprouty homolog 2 Spry2
isoprenoid metabolic process/GO:0006720 3-hydroxy-3-methylglutaryl-coenzyme A reductase Hmgcer
dehydrogenase/reductase (SDR family) member 3 Dhrs3
isopentenyl-diphosphate delta isomerase notchl-induced protein  1dil
phytn-dehydro and Pyr-redox domain containing protein
one-carbon compound metabolic process/GO:0006730 B-cell translocation gene 1, anti-proliferative Btgl
carbonic anhydrase 11 Carll
FBJ murine osteosarcoma viral oncogene homolog Fos
isoprenylcysteine carboxyl methyltransferase lemt
methionine adenosyltransferase Il, alpha Mat2a
methyl-CpG binding domain protein 1 Mbd1
protein tyrosine phosphatase, receptor type, G Ptprg
anti-apoptosis/G0:0006916 a disintegrin and metalloproteinase domain 17 Adam17
FGF receptor activating protein 1 Fragl
Forkhead box O1A Foxola
heat shock 70kDa protein 5 (glucose-regulated protein) Hspa5
hormone-regulated proliferation associated protein 20 Hrpap20
Huntington disease gene homolog Hdh
superoxide dismutase 2, mitochondrial Sod2
transforming growth factor alpha Tgfa
TSC22 domain family 3 Tsc22d3
zinc finger protein 91 Zfp9l
microtubule-based movement/G0O:0007018 actin-related protein 10 homolog Actrl0
Huntington disease gene homolog Hdh
kinesin family member 1B Kiflb
kinesin family member 6 Kif6
kinesin family member 11 Kifll
kinesin heavy chain family, member 2 Kif2
kinesin light chain 1 Klcl
tubulin, beta 2b Tubb2b
gamete generation/G0:0007276 3-hydroxy-3-methylglutaryl-coenzyme A reductase Hmgcr
a disintegrin-like and metallopeptidse with thrombospondin type 1 Adamtsl
motif, 1
B-cell translocation gene 1, anti-proliferative Btgl
carnitine deficiency-associated gene expressed in ventricle 1 Cdvl
dead end homolog 1 Dnd1
heat shock factor 2 Hsf2
hydroxyacyl glutathione hydrolase Hagh
kinesin family member 6 Kif6
McKusick-Kaufman syndrome protein Mkks
nitric oxide synthase 3, endothelial cell Nos3
seven in absentia 1A Siahla
zinc finger protein 403 Zfp403
gastrulation/GO:0007369 camello-like 3 Cmi3
Huntington disease gene homolog Hdh
nuclear receptor subfamily 4, group A, member 3 Nr4a3

Pharmacol Biochem Behav. Author manuscript; available in PMC 2010 November 1.



1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duosnue Joyiny vd-HIN

Bell et al.

Page 30

GO Category/GOBPID Genes Symbol
phosphatidic acid phosphatase type 2B Ppap2b
ring finger protein 2 Rnf2

heart development/G0O:0007507 E1A binding protein p300 Ep300
endothelial-specific receptor tyrosine kinase Tek
gap junction membrane channel protein alpha 1 Gjal
histone deacetylase 5 Hdac5
McKusick-Kaufman syndrome protein Mkks
plakophilin 2 Pkp2
protein O-fucosyltransferase 1 Pofutl
transforming growth factor, beta receptor 3 Tgfbr3

regulation of G-protein coupled receptor protein signaling/ endothelin converting enzyme 1 Ecel

G0:0008277 phospholipase C, epsilon 1 Plcel
RAS guanyl releasing protein 4 Rasgrp4
receptor (calcitonin) activity modifying protein 2 Ramp2
regulator of G-protein signaling 3 Rgs3
regulator of G-protein signaling 9 Rgs9

protein catabolic process/G0:0030163 calpastatin Cast
gap junction membrane channel protein alpha 1 Gjal
prenylcysteine oxidase 1 Pcyox1
proteasome (prosome, macropain) 26S subunit, ATPase, 6 Psmc6
proteasome (prosome, macropain) 26S subunit, non-ATPase, 12 Psmd12
proteasome (prosome, macropain) subunit, alpha type 4 Psma4
seven in absentia 1A Siahla
seven in absentia 2 Siah2
ubiquitin associated domain containing 1 Ubadcl
ubiquitin carboxyl-terminal hydrolase L5 Uchl5
ubiquitin-conjugating enzyme E2D 3 Ube2d3

protein modification by small protein conjugation/GO: calcyclin binding protein Cacybp

0032446 LIM domain only protein 7 Lmo7
retinoblastoma binding protein 6 Rbbp6
ring finger protein 2 Rnf2
seven in absentia 1A Siahla
seven in absentia 2 Siah2
ubiquitin associated domain containing 1 Ubadcl

negative regulation of programmed cell death/G0O:0043069a disintegrin and metalloproteinase domain 17 Adam17
angiopoietin-like 4 Angptl4
B-cell translocation gene 2, anti-proliferative Btg2
FGF receptor activating protein 1 Fragl
Forkhead box O1A Foxola
heat shock 70kDa protein 5 (glucose-regulated protein) Hspa5
hormone-regulated proliferation associated protein 20 Hrpap20
Huntington disease gene homolog Hdh
secretogranin 2 Scg2
superoxide dismutase 2, mitochondrial Sod2
transforming growth factor alpha Tgfa
TSC22 domain family 3 Tsc22d3
zinc finger protein 91 Zfpol

regulation of MAPK activity/G0:0043405 caveolin Cav
cholinergic receptor, nicotinic, alpha polypeptide 7 Chrna7
dual specificity phosphatase 6 Dusp6
phospholipase C, epsilon 1 Plcel
regulator of G-protein signaling 3 Rgs3
sprouty homolog 2 Spry2
transforming growth factor alpha Tgfa
biopolymer methylation/G0:0043414 B-cell translocation gene 1, anti-proliferative Btgl
B-cell translocation gene 2, anti-proliferative Btg2
FBJ murine osteosarcoma viral oncogene homolog Fos
isoprenylcysteine carboxyl methyltransferase lemt
methyl-CpG binding domain protein 1 Mbd1
regulation of kinase activity/G0:0043549 caveolin Cav
cell division cycle 42 homolog Cdc42
cholinergic receptor, nicotinic, alpha polypeptide 7 Chrna7
diacylglycerol kinase, alpha Dgka
dual specificity phosphatase 6 Dusp6
phospholipase C, epsilon 1 Plcel
protein kinase inhibitor beta, CAMP dependent, catalytic Pkib
regulator of G-protein signaling 3 Rgs3
speedy homolog 1 Spdyl
sprouty homolog 2 Spry2
transforming growth factor alpha Tgfa
cell maturation/G0O:0048469 actin, alpha 1, skeletal muscle Actal
calpastatin Cast
gap junction membrane channel protein alpha 1 Gjal
growth differentiation factor 11 Gdfll
hairy and enhancer of split 1 Hesl
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GO Category/GOBPID Genes Symbol
parathyroid hormone receptor 1 Pthrl

anatomical structure formation/G0:0051603 angiopoietin-like 4 Angptl4
B-cell translocation gene 1, anti-proliferative Btgl
connective tissue growth factor Ctgf
endothelial-specific receptor tyrosine kinase Tek
Huntington disease gene homolog Hdh
nuclear receptor subfamily 4, group A, member 3 Nr4a3
protein O-fucosyltransferase 1 Pofutl
secretogranin 2 Scg2
small inducible cytokine subfamily E, member 1 Scyel
transforming growth factor alpha Tgfa

tyrosine kinase with immunoglobulin-like and EGF-like domains 1 Tiel
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Table 3
Quantitative RT-PCR confirmation of microarray results for respective genes

Gene Symbol CA Expression W Expression qRT-PCR Fold A Microarray Fold A
Fos 2.02 1.46 138" 1.72
Homerl 3.60 213 169" 1.71
Nrdal 2.62 1.27 207" 1.62
Duspl 1.16 0.78 1.49° 1.42
Junb 3.31 1.80 184" 1.27
Mobp 1.23 1.50 1227 -1.22
Jun 1.01 0.93 1.09° 1.23
Ntrk2 3.18 6.09 192" -1.67

CA = Continuous access group; W = Water control group;

indicates qRT-PCR probability value < 0.001.
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