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Abstract
Serum biomarkers related to the cascade of inflammatory, hemostatic, glial and neuronal
perturbations have been identifed to diagnose and characterize intracerebral hemorrhage and cerebral
ischemia. Interpretation of most markers is confounded by their latent rise, blood–brain barrier
effects, the heterogeneity of etiologies and the wide range of normal values, limiting their application
for early diagnosis, lesion size estimation and long-term outcome prediction. Certain hemostatic and
inflammatory constituents have been found to predict response to thrombolysis and worsening due
to infarct progression and secondary hemorrhage, offering a potential role for improved treatment
selection and individualization of therapy. Biomarkers will become increasingly relevant for
developing targets for neuroprotective therapies, monitoring response to treatment and as surrogate
end points for treatment trials.
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Stroke is a sudden loss of neurologic function resulting from focal disturbance of cerebral blood
flow due to ischemia or hemorrhage. Transient ischemic attacks (TIAs) are due to the same
physiological process but without acute infarction. Stroke is the third leading cause of death
in the USA, and 87% of strokes are ischemic [1]. The expanding use of biomarkers in the field
of stroke has made a substantial impact in our understanding of the pathophysiology of stroke
and the approach to treatment.

Types of biomarkers
A biomarker is any measurable physiological characteristic or substance that marks the risk
for or manifestation of a stroke-related process (Box 1). Several categories of biomarkers are
studied in stroke – physical markers, imaging markers, electrophysiological markers,
histological markers, genetic markers, systemic (serum) markers and neuronal markers. A
physical marker associated with stroke may be as simple as the discovery of hypertension.
Neuroimaging is widely used to aid in the diagnosis of stroke, to assist in determining a likely
etiology for the event, to estimate severity, and to predict functional outcome and risk of
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recurrence. Cardiac imaging is used to investigate risk factors and to search for a cardioembolic
mechanism. Histological markers can be especially useful in evaluating uncommon causes,
such as vasculitis and collagen vascular diseases. Genetic markers can identify heritable
cerebrovascular conditions that are associated with stroke and may be useful in individualizing
treatments. Serum markers are widely used to test for metabolic risk factors, such as diabetes
and dyslipidemia. New research is expanding our understanding of the systemic response to
stroke (e.g., inflammation) and demonstrates the potential for applying new serum biomarkers
to routine clinical use.

Various markers in nearly all of these listed categories have been evaluated for their association
with prospective risk for stroke, for diagnostic purposes and for their value in predicting long-
term outcome. Markers of risk factors and prevention strategies have been extensively
reviewed in treatment guidelines. The American Stroke Association guidelines for stroke
prevention contain a thorough review of the markers of prospective stroke risk for primary and
secondary prevention [2–4]. The use of biomarkers in diagnosing stroke and assessing
prognosis is an emerging and rapidly evolving field. In this article, we will focus on molecular
markers in the cerebrospinal fluid (CSF) and serum, and their use in diagnosing stroke,
characterizing severity, optimizing treatment and predicting outcome. This article will provide
a brief overview of key cellular mechanisms in cerebral ischemia and hemorrhage, will
summarize the important recognized molecular markers of those processes and will discuss
the application of these markers to assess a patient’s clinical status, and to guide therapy.

Relatively little biomarker research has been conducted with a focus on hemorrhagic stroke
compared with the extensive data on ischemic stroke markers. Relevant data are noted when
available, but insufficient data exist to draw broad conclusions regarding how to best translate
hemorrhagic stroke biomarkers into routine clinical use.

Box 1. Biomarker categories for stroke

Physical

• Neuroimaging

• Cardiac imaging

• Electrophysiological

• Histological

Genetic

• Serum/plasma/cerebrospinal fluid

– Systemic

– Neuronal

Applying molecular biomarkers
The CNS cellular response to stroke results in characteristic upregulation and release of
particular neuronal markers into the CSF and blood-stream. Increased levels of neuronal
isoenzymes and other molecules with CNS-specific expression signal damage to the brain
parenchyma. The primary focus of molecular biomarkers of stroke has been their application
to diagnosis. The model for a diagnostic marker is the cardiac isoenzyme test. Development
of high-sensitivity techniques to detect the cardiac isoenzymes of troponin I and troponin T –
products of myocardial degradation – led to the eventual revision of the clinical definition of
myocardial infarction to elevate the role of biomarkers in diagnosis [5]. The key property of
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the troponin test that led to its widespread incorporation into clinical care was a nearly absolute
specificity for myocardial tissue (unlike creatine kinase-MB), as well as high sensitivity.
Although a troponin-like diagnostic biomarker for stroke would be of interest, several other
biomarker applications are possible and more likely to be of clinical importance (Box 2).

Biomarkers in stroke provide insight into the pathophysiologic mechanisms of brain injury.
Studies of cytokine markers, for example, have enhanced our understanding of the role of
inflammation in the infarct core and ischemic penumbra. The observation that higher levels of
certain infammatory cytokines have been correlated to progression of infarct size and clinical
deterioration emphasizes this relationship. Certain biomarkers may be useful in differentiating
between stroke mechanisms, such as cardioembolism or atherothrombosis. Many of the
biomarkers reviewed in this paper correlate with the size and clinical severity of the stroke.
The only approved pharmacological therapy for acute stroke, thrombolysis, acts on the
hemostatic axis. The activity of the hemostatic system has been shown to predict response in
terms of likelihood of recanalization and probability for secondary hemorrhage. Finally,
selected serum markers have been shown to correlate with long-term outcome measures.

Box 2. Applications for serum biomarkers of stroke

• Clarify pathological mechanisms

• Facilitate diagnosis

• Identify stroke mechanism

• Characterize size and clinical severity

• Identify significant penumbra and estimate risk of progression/worsening

• Select appropriate treatment option and predict likelihood of response

• Monitor treatment efficacy

• Estimate long-term prognosis

Heterogeneity of stroke
In stroke, brain injury, ultimately due to necrosis, is a result of the deprivation of metabolic
substrates and apoptosis owing to the combined effects of inflammatory and oxidative damage.
In cerebral infarction, the inciting event in the ischemic process is obstruction of arterial flow.
This obstruction may occur as a result of a myriad of pathological processes. In addition, a
variety of pathological processes contribute to the occurrence of intracerebral hemorrhage
(ICH). In hemorrhagic stroke, the products of hemorrhage are inherently inflammatory and the
swelling is due to inflammation, and bulk interposition of blood into the neuropil raises local
pressure, inhibiting effective circulation and leading to secondary ischemia. Given the vast
array of pathological conditions that can lead to stroke, an exhaustive list of all markers for
each of these etiologies would be unhelpful. Although the triggering events are quite different
in ischemic and hemorrhagic stroke, the ultimate mechanisms of neuronal injury and death are
similar. Familiarity with the pathways of endothelial, glial and neuronal injury that occur in
stroke is crucial for understanding the relevance of identified biomarkers. Comprehensive
reviews of the cellular mechanisms of stroke injury are available elsewhere, but a brief
orientation will provide the context for discussing the relevance of individual biomarkers. The
following paragraph provides an abbreviated and simplified overview of the most studied
pathways involved in ischemic cellular damage.
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Neurons are heavily dependent on aerobic metabolism and have a disproportionately high
energy demand compared with other cell types. In circumstances of ischemia, oxygen and
glucose are rapidly depleted, oxidative phosphorylation in the mitochondria ceases within
minutes and cellular function becomes deranged. The onset of energy failure triggers a cascade
of events that exacerbate and perpetuate damage. Neuronal membranes depolarize owing to
failure of the Na+/K+-ATPase pumps, leading to influx of calcium and sodium, and
dysfunctional release of neurotransmitters. Excitatory neurotransmitters, such as glutamate,
which are released from depolarized cells overstimulate nearby cells, depolarizing them and,
thus, inciting an excitotoxic cycle. The cessation of mitochondrial activity increases oxidative
and nitrative stress, promoting apoptosis. An inflammatory response begins to develop in the
affected area [6–9]. Certain inflammatory cytokines, most importantly TNF, interact with
cellular messaging systems and promote apoptosis [10]. Cell membrane dysfunction leads to
a net passive movement of water into cells – cytotoxic edema. In response to cytokine signals
and oxidative stress, degradative enzymes, such as matrix metalloproteinases (MMPs), are
activated and begin to erode the integrity of the blood–brain barrier (BBB) and vascular
structures [11]. Within 24 h, the resulting increased permeability leads to vasogenic edema.
Ischemia causes autoregulatory mechanisms to fail and prompts upregulation and release of
prothrombotic molecules that lead to intravascular thrombosis [12,13]. The increasing local
pressure due to cytotoxic and vasogenic edema, and intravascular thrombosis impair the
regional microcirculation, and the decrease in cerebral blood flow leads to further ischemia in
regions at risk on the periphery of the infarct core. Damaged cells lose membrane integrity and
release their contents into the neuropil.

Summary of serum biomarker properties
Table 1 summarizes important properties of molecular markers derived from constituents of
damaged neurons and glia, elements of hemostasis, cytokines, inflammatory acute-phase
reactants, markers of tissue disruption and apoptosis, measurable alterations in oxidative stress
and other miscellaneous molecular signs associated with stroke.

Cellular constituents of neurons & glia as biomarkers
Glial biomarkers

S100-β—S100-β (S100B) is a calcium-binding peptide secreted by astrocytes in the context
of brain injury, neurodegenerative processes and psychiatric disorders. The interaction of
S100B with the cerebral immune system can lead to enhanced survival of developing neurons
at low concentrations, however, at higher concentrations S100B has been shown to stimulate
proinflamamtory cytokine production and apoptosis in vitro. Animal studies have
demonstrated a potential neuroprotective effect of S100B by activating expression of cellular
processes in neurons that block NMDA-induced excitotoxicity [14]. Increased serum levels of
S100B are found in association with ischemic stroke, but are also present in many other acute
and chronic conditions, such as traumatic brain injury (TBI), Alzheimer’s disease and
schizophrenia [15].

In ischemic stroke, the serum concentration of S100B reaches a maximum concentration
between day 2 and 4, and the peak concentration correlates with higher NIH Stroke Scale
(NIHSS) scores, infarct size and the clinical course in both infarcts and subarachnoid
hemorrhage [16–18]. Possibly owing to its correlation to infarct size, a higher S100B
concentration is also associated with higher risk for hemorrhagic transformation after treatment
[19]. S100B levels have also been found to be increased in primary hemorrhagic stroke,
associated with initial hematoma volume and predicting a worse clinical course with higher
morbidity [20]. S100B levels do not necessarily rise quickly. In one study, for example, serum
S100B elevation was only 32% sensitive for acute ischemic stroke on admission [21].
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The interpretation of serum S100B levels has been complicated by the fact that S100B was
thought to be detected in cell types other than astrocytes and Schwann cells, and high levels
were found in the context of a wide variety of other conditions [22,23]. Early attempts to clarify
the source by analyzing dimers was unfruitful [24]. Further investigation into the potential
extracerebral sources of S100B led to a more rigorous assessment of the immunoassay that
was being used, identifying extracerebral sources as false-positive contaminants [23].
Although S100B has now been clearly established as CNS specific, erroneous references to
results obtained by the tainted assay continue to appear in the literature [25]. There is evidence
from several studies that serum S100B levels are affected by BBB integrity owing to acute
disruption or the effect of chronic microvascular disease [26,27].

Glial fibrillary-associated protein—Glial fibrillary-associated protein (GFAP) is a
monomeric intermediate filament protein present in astrocytes and, to a lesser degree, in
ependymal cells of the brain, where it functions as a part of the cytoskeleton. GFAP is widely
used in neuropathology as an immunohistochemical marker of glial cell lineage, and increased
serum GFAP is specific for neurological injury [28].

In CSF, both S100B and GFAP levels increase early in proportion to size for medium–large-
sized strokes, peaking at day 1–2 and returning to baseline by 3 weeks [29]. The serum
concentration of GFAP correlates well with that of S100B, as well as to the volume of infarcted
brain and the neurological status at discharge from hospital [29,30]. Serum GFAP was found
to be more sensitive than S100B as a marker of brain injury in small lesions and minor strokes,
but the delayed rise in concentration limits its application as a diagnostic tool [30,31].

Myelin basic protein—Myelin basic protein (MBP) is a hydrophilic protein important for
the correct structure of myelin sheaths. Elevated levels of MBP are found in a variety of
neurological conditions. For example, MBP levels in CSF has been used as an index of disease
activity in multiple sclerosis [32]. MBP has also been found to be elevated in the CSF of patients
after stroke [33]. A more detailed study of CSF MBP in the context of acute ischemic stroke
found that concentrations were not significantly elevated until 1 week after the ictus, and
returned to low levels after 3 weeks [29]. One study sampling the serum levels in patients with
ischemic stroke on admission found that MBP was elevated in 39% of patients, and higher
peak levels correlated with higher admission NIHSS scores [21]. In a study using serum from
subjects who had enrolled in the National Institutes of Neurological Disease and Stroke
(NINDS) Recombinant Tissue Plasminogen Activator (tPA) Stroke Study, peak MBP
concentration was significantly associated with higher baseline NIHSS scores and larger lesion
volumes [18]. The latent increase in this marker is a limiting factor.

Fatty acid-binding proteins—Fatty acid-binding proteins (FABPs) are a class of
intracellular molecules involved in buffering and transporting long-chain fatty acids. There are
nine types of FABPs that are variably expressed in different tissues. These proteins are rapidly
released from damaged cells into circulation. Four FABPs are associated with the nervous
system, but only two are found in the adult CNS: brain-type (B-FABP) in glia and heart-type
(H-FABP) in neurons, with H-FABPs present at more than tenfold higher concentration [34–
36]. H-FABP is present in multiple tissue types and has found application as a biomarker for
acute myocardial infarction [37]. B-FABP is thought to be present only in central nervous tissue
and is undetectable in the serum of healthy individuals [36,38].

Heart-type and brain-type FABPs peak within 2–3 h of stroke onset. The rapid and early peak
is attributable to the small molecular size that allows quick passage through the BBB and the
short serum half-life of 20 min, owing to renal clearance. B-FABP was found to be most
sensitive to small subcortical and lacunar infarcts, but did not correlate to the degree of
neurological injury. By contrast, elevation in H-FABP levels was proportionate to infarct size

Maas and Furie Page 5

Biomark Med. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and severity of neurological deficits [35]. A pilot study using H-FABP along with troponin I
to exclude a cardiac source found no false positives and 68% sensitivity when sampled on
admission, which was a better performance than neuron-specific enolase (NSE) and S100B
[39]. Elevated B-FABP concentrations in serum is not specific for stroke, having been detected
in a variety of brain injury conditions, including mild TBI and electroconvulsive therapy
[36].

Neuronal biomarkers
Neuron-specific enolase—Neuron-specific enolase is one of three recognized forms of
enolase, an enzyme in the glycolysis pathway. Although relatively specific for neurons, NSE
is also found in neuroendocrine cell lines and their associated cancers. Similar to S100B, NSE
concentration rises in the CSF following ischemic stroke as well as other brain tissue injuries,
such as subarachnoid hemorrhage, ICH and head injury. Peak concentration after ischemic
stroke correlates with baseline NIHSS scores, but not the volume of infarcted tissue [18]. NSE
first becomes detectable between 4 and 8 h after the onset of stroke. Although CSF levels of
NSE increase in proportion to brain injury with high sensitivity, serum NSE levels are less
sensitive and a greater extent of injury is required to produce a consistently measurable change
[40–42]. Serum and CSF levels of NSE vary widely across the normal population and no clear
relationship has been shown between serum and CSF levels [43]. Although significant trends
are detected in various studies, values rise slowly and rarely exceed the reference range of
normals (13% within first 24 h, as reported by one study) [40,42,44,45].

Tau protein—Tau protein (TP) is a structural microtubule-associated protein that is well
known for its association with a variety of neurodegenerative disorders, including Alzheimer’s
disease. The six isoforms of tau are abundant in the brain, facilitating the formation of
microtubules by interaction with tubulin [46]. Aside from its pathological aggregation in
neurodegenerative disorders, TP has been explored as a biomarker in acute ischemic stroke.
Although TP levels sampled at late time points correlate with infarct size and clinical severity,
levels rise slowly and only 27% of TP concentrations were elevated over the normal range
within the first 24 h [44]. TP levels in CSF have also been studied in the context of acute stroke,
showing the same poststroke increase that also correlated to infarct size [47,48]. Further
exploration of neurodegenerative-associated biomarkers applied to stroke has been less fruitful.
CSF levels of β-amyloid, Apo E and clusterin were not impacted by stroke [47,49].

Neurofilament light protein—Neurofilament is a triplet protein that forms part of the
structural scaffold of neurons. Neurofilament light protein (NFL) is the subunit that forms the
core of the filament. Increased levels of NFL have been observed in a variety of
neurodegenerative diseases. Increased CSF concentration of NFL has also been shown in a
small series of patients following ischemic stroke [50].

N-acetylaspartate—N-acetylaspartate (NAA) is a free amino acid representing
approximately 1% of the dry weight of the brain. It is synthesized in neurons and functions as
a molecular water pump, drawing water out of neurons and through the overlying myelinating
oligodendrocytes where NAA is recycled. Owing to the neuron’s high metabolic rate compared
with other tissue types, metabolic water must be removed at approximately 12-times the rate
of that removed in the rest of the body. Therefore, brain NAA is heavily utilized, completely
replenishing every 16.7 h [51]. Perturbations in NAA can be identified by magnetic resonance
spectroscopy and are useful in characterizing brain lesions. A study investigating NAA in acute
ischemic stroke found that serum concentrations were significantly higher in all patients on
admission and all points sampled until 48 h. NAA concentration was maximal at time 0 and
declined after-ward [45]. This is consistent with prior findings that NAA levels decrease rapidly
after damage because the rate of efflux from brain exceeds that of metabolism [52–54].
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Combining information about NAA levels with traditional MRI sequences can predict the
outcome in patients, where those with lower NAA levels in ischemic tissue do more poorly
[55]. Magnetic resonance spectroscopy shows that NAA levels in ischemic injury continues
to fall gradually for more than 1 week postinfarction, although any NAA detected beyond 24
h may simply be trapped in cellular debris [54,56,57]. Early reperfusion has been shown to
cause a quick, transient increase in serum NAA concentration [58]. This may be due to resumed
synthesis from restored metabolic function during a time of persistent BBB dysfunction, or
simply from efficient clearance of NAA from the interstitium by restored regional blood flow.

NMDA autoantibodies—The NMDA glutamine receptor is implicated in mediating the
excitotoxic response in cerebral ischemia. Autoantibodies (aAbs) to the NR2 subtype of the
NMDA receptor have been demonstrated to be associated with neurotoxicity. A pilot study to
examine serum levels of the neurotoxic biomarkers, glutamate, homocysteine and NMDA NR2
aAbs, found that subjects presenting with TIA had significantly elevated levels of NMDA NR2
aAbs compared with controls, and those with ischemic stroke had even higher concentrations
[59]. Interestingly, in the pilot study and a follow-up larger trial, patients with ICH
demonstrated no significant elevation of NMDA NR2 aAbs whereas patients with both TIA
and ischemic stroke demonstrated markedly elevated levels that correlated with the NIHSS
score and diffusion-weighted imaging (DWI) lesion volume [60]. In addition to showing high
sensitivity, the NMDA NR2 aAb assay may be one of the only biomarkers of stroke that can
reliably differentiate between hemorrhagic and ischemic stroke, along with DNA and Apo CI
and CIII levels [25,61].

Visinin-like protein-1—Visinin-like protein (VLP)-1 is the human homolog of a protein
that was identified by screening mice with gene-array analyses for biomarkers that are
preferentially and abundantly produced in brain. VLP-1 was then detected in CSF using a rat
model of ischemic stroke, and in the serum of humans after stroke. VLP-1 is a neuronal
Ca2+ sensor protein expressed primarily in brain but also found in other tissues [62]. VLP-1
was detected in 8% of controls with no stroke and in 44% of subjects with stroke in samples
taken within the first 24 h after onset of stroke [63]. Although the approach to screening
potential brain biomarkers is novel, these early results are not compelling.

Nonspecific markers
Hemostatic biomarkers

Thrombomodulin—Thrombomodulin (TM) is an endothelial membrane protein that plays
an important role in hemostasis by binding thrombin and activating protein C, thereby exerting
an antithrombotic mechanism. TM expression in the brain is controlled through astrocyte
regulation of TM mRNA expression [64]. TM is present in serum and urine in a soluble form.
Various TM gene polymorphisms have been associated with coronary events and stroke,
although serum TM levels are not correlated [65]. A study investigating 492 stroke patients
and matched controls found that serum TM did not correlate to stroke exposure, however,
among case subjects, high TM levels were associated with a higher death rate [66].

A small pilot study found that TM was elevated on admission in 43% of patients, and peak
levels correlated with discharge modified Rankin scale scores but was contradicted by a larger
study that found no significant difference between subjects with stroke and controls on
admission or at 1 month [21,67]. Both this study and another by the same group found elevated
serum levels of TM only in the subacute phase [67,68]. Likewise, serum TM concentration
from NINDS recombinant tPA Stroke Study subjects did not correlate to NIHSS score or stroke
lesion volume at any time point or functional outcome [18]. Soluble TM in serum does not
appear to be a product of endothelial degradation, but rather a regulated component in the
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body’s complex hemostasis axis. At present, the significance of serum TM concentration is
not clear.

Nonspecifc markers of coagulation—Abnormalities in the hemostasis axis are an
uncommon cause of ischemic stroke [69–71], nevertheless, perturbations are seen following
stroke onset that may aid in diagnosis, be informative about the severity of the event and predict
response to therapies. Some coagulation markers have been used extensively for diagnostic
purposes for other conditions. The D-dimer test in cases of suspected pulmonary embolism is
a classic example [72]. The limitation to the use of coagulation markers is that they are
nonspecifc in nature.

An increase in fibrinogen levels is seen after ischemic stroke and is associated with infarct size
and outcome [73–75]. High levels of D-dimer, a small protein fragment produced by fibrin
degradation, predicts progression in ischemic stroke and poor outcome in ICH [76–79]. The
case is similar for other bio-markers of hemostasis: higher concentrations of fibrinopeptide A,
b-thromboglobulin, prothrombin fragments 1 and 2, thrombin–anti-thrombin complexes,
platelet factor 4 and von Willebrand factor have all been associated with a worse clinical course
in ischemic stroke and increased mortality [76,80,81]. Fibrinopeptide A, thrombin–
antithrombin complexes, D-dimer and, possibly, β-thromboglobulin and platelet factor 4, are
elevated in patients presenting with TIA compared with matched controls, suggesting a
dysfunction in coagulation and platelet activation [82–84]. Several studies that have looked
concurrently at multiple hemostatic biomarkers have concluded that the D-dimer level is very
sensitive to stroke, it may help differentiate between stroke etiologies and is the strongest
prognostic indicator for worsening or recurrence within the subacute period [79,85,86].

Constituents of the hemostasis axis may provide information beyond identifying stroke
occurrence and severity. The activity of many agents in the coagulation and fibrinolysis cascade
increase in the context of stroke. Measuring the activity of various components may be useful
in predicting response to therapies or for individualizing treatments. Patients presenting with
ischemic stroke whose international normalized ratio from warfarin treatment is therapeutic
have smaller infarcts and perfusion deficits, lower NIHSS score on admission and lower
modified Rankin score at discharge [87]. Plasma levels of thrombin-activable fibrinolysis
inhibitor (TAFI) are elevated in the acute phase of ischemic stroke, and plasminogen activator
inhibitor (PAI)-1 is elevated in patients that show progression of intracranial atherosclerosis,
along with other proinflamamtory markers [88,89]. Patients with high levels of PAI-1 are less
likely to achieve recanalization after receiving tPA and experience poorer outcomes [90].
Baseline levels of TAFI and PAI-1 also predict symptomatic hemorrhage after tPA treatment
[91]. Similarly, polymorphisms of both the TAFI and PAI-1 genes influence the probability of
recanalization after tPA treatment [92]. A point-of-care assay to measure the activity of these
fibrinolysis inhibitors could allow for adjustments to thrombolytic dosing, which may increase
efficacy in patients with high inhibitor levels and reduce the likelihood of hemorrhagic
transformation in patients with a concerning profile.

Inflammatory markers
Proinflammatory & anti-inflammatory cytokines—Cytokines are extracellular proteins
and glyco-proteins that function as short-range molecular messages, exerting a paracrine or
autocrine effect on local tissue. Triggered by a variety of stimuli, cytokines are critical
mediators of the tissue inflammatory and immune responses [10]. Inflammatory reactions are
intricately mediated by proinflamamtory and anti-inflammatory pathways that often operate
in tandem to regulate the extent and intensity of the response. There has been significant interest
in delineating the role of proinflamamtory cytokines in the perpetuation and propagation of
damage postinfarction. Since inflammation generates the formation of edema and can promote
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apoptosis, inflammatory biomarkers are potentially useful for prognosis and as prospective
targets for neuroprotective therapies. Although none of the cytokines that activate in the brain
following stroke are CNS specific, careful investigation has confirmed that the elevation in
plasma levels of these signaling molecules is owing to their production in the CNS and not
from peripheral blood cells [93].

Serum sampling of patients presenting with ischemic stroke has shown elevation in many
cytokine markers, including IL-1, IL-6, IL-8, IL-10, IL-13, TGF-β, ICAM-1, VCAM-1, E-
selectin, L-selectin, P-selectin, TNF-α, chitotriosidase and monocyte chemoattractant
protein-1 [73,89,94–101]. Levels of soluble selectin proteins are increased following stroke,
indicating the activation of leukocyte trafficking [68]. Elevated levels of proinflamamtory
cytokines and low levels of anti-inflammatory markers are associated with severity, infarct
volume, clinical worsening and long-term outcome [102–104]. Elevated levels anti-
inflammatory mediators, such as IL-6, IL-10 and IL-1-receptor antagonist, concurrent with
elevated proinflamamtory markers suggest a complex interaction of pro-and anti-inflammatory
mechanisms at work in the hours and days following ischemic and hemorrhagic stroke [73,
96,100]. The appearance of TNF-α and IL-6 has also been correlated to the volume of
perfusion-impaired tissue, suggesting the role of inflammation in the ischemic penumbra
[97]. Although systemic anti-inflammatory medications, such as corticosteroids, have not
proven to be effective treatments for stroke, inflammatory biomarkers have been used as
surrogate markers of efficacy for neuroprotective medications [98,105].

C-reactive protein & other acute-phase reactants—C-reactive protein (CRP) is an
acute-phase protein associated with inflammation. Produced in the liver in response to IL-6,
CRP binds and aggregates a variety of soluble ligands and activates the classical complement
pathway [106]. More recent research has also advanced a hypothesis that CRP may directly
cause disruption of the BBB [107]. Owing to the inflammatory nature of atherosclerosis,
modest elevations in CRP levels have been correlated to increased risk for stroke in large
population studies, independent of other traditional cardiovascular risk factors [108]. CRP and
fibrinogen levels rapidly increase as a result of stroke, and CRP on admission has been shown
to predict mortality in tPA-treated patients [73,99,109]. As in the case of many other
inflammatory biomarkers, levels of CRP are correlated with infarct volume, stroke severity
and long-term outcome [104]. Levels of CRP and other acute-phase markers, such as the
erythrocyte sedimentation rate, remain elevated up to 3 months following stroke [99]. Higher
CRP levels measured within the first day of TIA or stroke onset and 3 months later are both
associated with an increased risk for recurrent stroke following the initial event [110,111].

Markers of tissue destruction
Matrix metalloproteinases—Astrocytes and microglia that are involved in an
inflammatory response are stimulated to release extracellular matrix degrading proteases. The
most well recognized of these proteolytic enzymes are serine proteases and MMPs. MMPs are
a family of 14 enzymes, a subset of which have been found to be active in brain tissue. The
various MMPs function as stromelysines, gelatinases, colagenases, a membrane-type
proteinase and a matrilysin. Serine proteases include elastase and plasminogen activators.
Owing to their toxic potential, these enzymes are produced in latent form and require activation.
Once active, MMPs are implicated in opening the BBB, damaging capillaries, perpetuating
inflammation and, thereby, promoting secondary progression of ischemia and hemorrhagic
transformation [11]. Inflammation and associated alteration of the vascular wall structures due
to MMP activity have been implicated in the chronic, progressive damage of intracranial
atherosclerosis, as well as acute-phase injury [89]. Various cytokines act on astrocytes and
microglia in order to promote the production of MMPs and serine protease. The activity of

Maas and Furie Page 9

Biomark Med. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



these matrix-degrading systems are regulated by the opposing effects of tissue inhibitors of
metalloproteinases (TIMPs).

Matrix metalloproteinase levels are elevated after both ischemic and hemorrhagic stroke, and
serial measurements of MMP-2 and MMP-9 levels demonstrate a correlation with
proinflamamtory cytokine expression [95,112,113]. In ischemic stroke, serum concentration
of MMP-9 correlates to NIHSS scores and initial and final DWI infarct volumes [97,100,
114], whilst peak concentration is associated with late hemorrhagic transformation and post-
tPA hemorrhage [115–118]. MMP-9 and MMP-13 are correlated with DWI expansion [119].
In hemorrhagic stroke, higher MMP-9 is associated with perihematomal edema, this is probably
owing to its role in opening the BBB. The MMP inhibitor TIMP-1 is negatively correlated to
the extent of edema. MMP-2, MMP-3 and TIMP-2 all show characteristic rises after ICH
[120].

Apoptosis pathway markers—TNF is an inflammatory cytokine with a myriad of effects.
It can be expressed by endothelial cells, microglia and astrocytes in response to injury, where
it exerts a local proinflamamtory and procoagulant effect. There is also animal-based
experimental evidence implicating TNF in the pathophysiologic processes that trigger stroke.
Once a stroke has occurred, TNF activates MMP and, thereby, increases vascular permeability,
promoting edema formation and entrance of proinflamamtory plasma constituents through the
impaired BBB. Importantly, TNF stimulates the production of reactive oxygen species (ROS),
potentiates glutamate-mediated excitotoxicity and directly signals cells to induce apoptosis
[10,100]. The combined effects on the microvasculature impairing local microcirculation,
promoting excitotoxicity, facilitating edema formation, inflammation and apoptosis
stimulation all contribute to expand the zone of ischemic tissue from the infarct core out into
the penumbra.

Neuronal apoptosis is the pathway by which damage extends in a delayed fashion beyond the
infarct core that undergoes necrosis. The importance of apoptosis pathways in stroke has been
demonstrated in multiple studies, including neuroprotective trials in which blockade of
important components of the apoptosis cascade substantially reduced infarct volumes in animal
models [121]. Caspases are a family of cysteine proteases that constitute the main molecular
cascade in the apoptosis pathway. Initiator caspases activate precursor forms of effector
caspases, and those effector caspases, in turn, degrade specific molecular targets within the
cell. Caspase-3 is an effector that functions as the final step in the chain of reactions that results
in DNA fragmentation, and has been explored as a potential biomarker that would estimate the
degree of active apoptosis [122–124]. The basis for interest in caspase-3 is due in part to animal
studies demonstrating a potential therapeutic role in decreasing the activity of this enzyme. In
a study investigating human stroke patients, plasma levels of caspase-3 were elevated in acute
stroke, and correlated to infarct growth and short- and long-term neurological outcome [125].
The Fas system is a parallel pathway that induces apoptosis through a receptor in the TNF-
receptor family [124]. Decreased levels of soluble Fas-variant molecules in the serum that act
as apoptosis inhibitors, along with increased stimulatory Fas ligands in the perihematomal
region measured in deceased patients with ICH shows a correlation between perihematomal
edema growth and these markers of active apoptosis [126].

DNA—Circulating levels of DNA measured in plasma increase in response to a variety of
injurious conditions, including stroke. Plasma concentration of DNA is elevated within 3 h of
ischemic and hemorrhagic stroke onset, and patients who experience a poor outcome or die as
a result of their stroke have higher levels than those who do not. The level of DNA also
correlates to the volume of hematoma in ICH [127]. DNA concentration is significantly higher
among patients with hemorrhagic versus ischemic stroke, and the combination of DNA and
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S100B levels has been proposed as a way to differentiate those conditions using molecular
biomarkers [25].

Indicators of oxidative stress & other nonspecific markers
Indicators of oxidative stress—Metabolic perturbations caused by ischemia lead to an
increased production of ROS, such as free radicals, superoxide radical anions and hydrogen
peroxide. At the same time, mitochondrial function fails and the brain’s limited stores of
antioxidant substances are rapidly exhausted. Reperfusion may actually exacerbate the degree
of oxidative stress by repleting oxygen in ischemic tissue. ROS activate MMPs, whose function
in broadening the zone of ischemic damage was described previously. In addition to the
secondary ischemia that occurs in hemorrhagic strokes, iron released from hemoglobin
degradation also catalyzes hydrogen peroxide formation. As many ROS are inherently
unstable, biomarkers are necessary as a surrogate method of measuring oxidative stress load.
Candidate molecules are those whose chemical structure is altered by oxidation into a new
stable entity in a predictable pattern. Oxidative damage occurs via lipid peroxidation, DNA
oxidation and protein oxidation. Each of these processes produce markers that can be measured
in the serum, along with circulating levels of antioxidants [8,128–130].

Measuring the plasma concentration of various antioxidants is confounded by a few factors.
First, an increase in oxidative stress can upregulate the production of antioxidant enzymes,
such as members of the superoxide dysmutase family. Second, delivery of peripheral
antioxidant molecules is limited owing to impaired circulation and, therefore, the depletion of
body stores is unpredictable. Finally, there is wide individual variation in baseline levels of
antioxidant activity that may obscure the effects of oxidative stress in an individual case. Stroke
patients have been found to have lower levels of retinol, ascorbic acid, uric acid, a-tocopherol
and carotenoids, but many studies have demonstrated inconsistent or negative results. Markers
of lipid peroxidation include malondialdehyde, thiobarbituric acid-reactive substances and F2-
isoprostanes. Of these three groups, F2-isoprostanes have the most favorable chemical
characteristics for use as a reliable marker, but clinical studies thus far have not produced
definitive results [131]. For DNA oxidation, the measurement of 8-hydroxy-2-deoxy-
guanosine demonstrates promise [132]. There is limited literature on biomarkers of protein
oxidation, but measuring the carbonyl content of IgG has been proposed as feasible [128].

Ischemia-modified albumin—Albumin is the most abundant protein found in plasma,
functioning as a nonspecific carrier molecule and maintaining oncotic pressure. In the context
of ischemia, structural changes occur at the N-terminus of the protein, possibly as a result of
exposure to ROS. This change in the albumin protein is detected by a cobalt-binding test. Over
the last decade, increased ischemia-modified albumin concentration has been linked to acute
myocardial ischemia, limb ischemia, mesenteric ischemia and deep venous thrombosis [133–
136]. Serum levels of ischemia-modified albumin are increased in subjects with both ischemic
and hemorrhagic stroke compared with controls at baseline [137].

Nucleoside diphosphate kinase A & PARK7—Nucleoside diphosphate kinase A
(NDKA) and PARK7 (also called DJ-1) were selected as potential biomarkers of stroke by
screening samples of postmortem CSF for markers that are not found in the CSF of healthy
controls. PARK7 is a redox-sensitive molecular chaperone activated in the context of oxidative
stress. NDKA is a kinase that catalyzes the transfer of the terminal phosphate from ATP to
nucleotides. Using plasma samples from several cohorts, one team of investigators
demonstrated that concentrations of NDKA and PARK7 were both increased within 3 h of
stroke, with higher sensitivities and specificities than those typically observed using other
individual stroke biomarkers [138]. These findings await validation. Furthermore, neither of

Maas and Furie Page 11

Biomark Med. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



these markers are specific to the CNS and both have been implicated in the pathogenesis of
neurodegenerative disorders, which may complicate their application.

Polyamine metabolites—Polyamines complex with RNA and facilitate translation. The
polyamine spermine has been evaluated in acute stroke, together with spermine oxidase (SMO)
and acetylpolyamine oxidase (AcPAO), enzymes that catalyze its degradation, and protein-
conjugated acrolein, one of its metabolites. Following acute stroke, plasma levels of spermine
decrease in tandem with an increase in SMO, AcPAO and acrolein. Researchers have
hypothesized that SMO and AcPAO are released from CNS tissue following stroke and
catalyze the degradation of spermine into acrolein in the periphery. Unfortunately, the
sensitivity and specificity of all these markers is poor compared with controls, and levels of
these markers are altered by other conditions, such as renal dysfunction [139].

Ubiquitin fusion degradation protein & glutathione S-transferase P—Ubiquitin
fusion degradation protein (UFDP) is an enzyme in the ubiquitin degradation pathway that is
expressed in many body tissue types. UFDP has been tested as a stroke biomarker in several
cohorts along with glutathione S-transferase P, a molecule involved in detoxifying ROS. The
sensitivity of UFDP ranged from 62 to 95%, but only when the cutoff levels were adjusted by
a factor of 8 to optimize the outcome [140,141]. Tested in a single cohort, glutathione S-
transferase P1 was 72% sensitive [141].

Limitations & applications
The introduction of a new biomarker has the potential to profoundly revolutionize the field of
stroke if it targets an appropriate need. The use of the neuroimaging biomarkers applied in TIA
is a case in point. The purpose of defining TIA was to identify cases of cerebral ischemia that
do not involve tissue infarction. The early definition of TIA included cases whose deficits
persisted up to 24 h [142]. Over the last several decades, work using imaging biomarkers
identified DWI evidence suggestive of infarction in up to half of patients who were clinically
diagnosed with TIA, mostly those with deficits lasting from 1 to 24 h [143,144]. These
biomarker data led to a widespread reconsideration of the definition of TIA with a move to
employ neuro-imaging evidence for infarction as indicative of stroke, regardless of the
resolution of clinical symptoms [145].

Limitations
First, nearly all of the serum biomarkers research that has been reported thus far in the field of
stroke is exploratory in nature. As previously noted, some markers have been explored because
of their association with known mechanisms of stroke, and others have been selected
empirically by screening postmortem CSF or performing comparative proteomic analysis
[61,140,146]. A consortium is in place (the Human Brain Proteome Project) to facilitate the
identification of potential brain markers with proteomic techniques [63]. At present, serum
biomarkers have performed poorly when tested prospectively for use in acute diagnosis [21].
There are several reasons. Although a difference in mean concentration of these markers can
be demonstrated between a group of stroke patients versus controls, most demonstrate
considerable overlap in their distribution. Significant heterogeneity exists in the reference
cutoffs used and between the populations that these markers are tested in, even between
different cohorts evaluated by the same research group [41,140,141]. In some studies, a cutoff
was selected to set specificity at 100% based on a small set of controls since the normal
distribution of the marker had not yet been established [39]. When a marker is used as a
diagnostic test, a diagnosis is made only when the level is less than or greater than the range
that encompasses 95% of normal individuals. Therefore, a clear statistical difference does not
translate into a high sensitivity test when the mean levels of the exposed and unexposed
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populations both lie within the normal range [147]. Many biomarkers of stroke rise slowly
after the event. Owing to the delayed change, they are not useful in detecting a stroke in an
emergency department setting, and furthermore, only subacute levels correlate well with other
outcome measures [18,21].

The heterogeneity of the causes of stroke further complicates interpretation. As with the
diagnosis of stroke, other correlations between biomarker levels and severity of outcomes are
generated by demonstrating a difference in mean levels between groups with differing clinical
status. What is true for a population may not be accurate on an individual level. A patient with
infectious endocarditis may have very high elevations in inflammatory and cytokine markers
despite having a small infarction, for instance, which would confound the normal correlation
with infarct size. Further confounding evidence exists owing to the many other comorbid
processes that can alter CNS biomarker levels, including migraine, seizures, neurometabolic
disorders, TBI, chronic microvascular white matter disease and, possibly, dementia – a list that
encompasses many of the important stroke mimics to be excluded by a diagnostic test [27,
148–150].

The biomarker characteristics of the molecules reviewed here cannot be interpreted without
recognizing the complex role they play in their highly regulated systems. The biology of IL-6
is a good example. Elevated levels of IL-6 have been correlated with both an increased and
decreased risk for worse outcome in various studies [91,92,94–96]. This is because the
signaling outcome of IL-6 depends on the milieu of other cytokines and the cellular state,
exerting either a proinflamamtory or anti-inflammatory effect. Changes that take place in the
acute to subacute period can also affect biomarker levels but otherwise may not be apparent,
making it difficiult to impossible to control for those effects. NAA levels, for example, can
quickly spike owing to reperfusion, but it is frequently not possible to know whether, or at
what point, reperfusion has occurred with respect to when a sample was drawn. Perhaps the
most critical confounder of biomarker concentrations is the effect on the BBB.

The blood–brain barrier effect
Biomarker concentration shifts are generally more pronounced in the CSF, which receives
cellular degradation products directly, than the serum. CSF sampling avoids the confounding
effect of the BBB, but is not practical for routine use when reliable clinical and imaging markers
exist for diagnosis and prognosis. Even in the CSF, many of the described biomarkers
demonstrate age dependency for the range of normal reference values [150,151]. The BBB
plays an important role in mediating the release of neuronal and glial cellular constituents to
the systemic circulation. In tissues outside the CNS, products of cellular degradation are either
swept directly into circulation or are spilt into the interstitium and pass into circulation via
lymphatic channels. By contrast, the unique interaction of astrocytic foot processes (or glia
limitans) and endothelial cells seal the CNS from systemic circulation exposure by a series of
tight junctions. This prevents the passive movement of cellular constituents from the CNS into
circulation. A similar barrier exists between the CSF and circulation in the choroid plexus
[152]. Alterations in the integrity of the BBB can alter the ability of CNS molecules to enter
circulation. In instances such as stroke, the same pathological processes that damage neurons
and glia disrupt the BBB, causing release of cellular constituents and their passage into systemic
circulation. A recent study of BBB function after stroke demonstrated that lacunar stroke
patients had widespread BBB disruption, indicating that the relationship between BBB and
infarct size is not proportional [153]. The BBB dysfunction may be due to the stroke or may
be baseline dysfunction, as patients with white matter disease (leukoaraiosis) are known to
have disrupted BBB function [27]. Since the extent of BBB integrity and extent of brain tissue
damage are not strictly correlated, serum concentrations of CNS biomarkers may not correlate
well to the rate of biomarker release within the CSF or the absolute CSF concentration [43].
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The dependency of serum biomarker levels on BBB function was directly demonstrated in a
study of patients who underwent BBB disruption with intra-arterial mannitol [154]. A
mathematical model to account for potential BBB effects has been proposed for S100B, but
the model was based on one sample set of patients and is not applicable to other markers
[26]. Biomarkers can pass into circulation even when the BBB is fully intact. All neuronal
biomarkers except B-FABP have been detected in the serum of normal individuals. The ability
of various molecules to pass through an uncompromised BBB may be mediated, in part, by
molecular weight and solubility, and the movement of some markers into serum appears to be
unrelated to BBB function [155,156]. Interpreting serum biomarker concentrations is
challenging as perturbations may represent BBB dysfunction alone, concurrent BBB and tissue
damage or substantial tissue damage with good preservation of BBB integrity.

Attempts at using molecular markers to estimate the integrity of the BBB have typically
required the sampling of the CSF, although the serum level of the monomeric form of
transthyretin, a protein produced by cells in the choroid plexus, may be useful [155,156]. The
benefit of transthyretin is that it is not expressed in neurons or astrocytes and, therefore, may
be independent of parenchymal brain damage.

Application of biomarkers for diagnosis & prognosis
To consider the potential applications of biomarkers to stroke, refer to the various potential
biomarker applications that are summarized in Box 2. Several well-studied biomarkers are
nonspecifc CNS constituents and others, such as NDKA and PARK7, have been selected
without regard to pathways of ischemic damage. By contrast, some of the markers that have
been studied were selected from knowledge of their cellular function. Research that has clearly
demonstrated associations between these molecules and the occurrence of stroke has clarified
and validated hypotheses regarding the pathways of cellular damage in stroke. Monitoring the
activity of molecules known or suspected to be involved in cellular injury has been shown to
be a valid method of exploring pathological mechanisms. The utility of biomarkers in
delineating and confirming pathological molecular pathways will ensure they continue to be a
resource in stroke research.

Several potential clinical applications have been considered – facilitating diagnosis, identifying
stroke mechanisms, characterizing size and clinical severity, identifying an ischemic penumbra
and estimating risk of progression or worsening. Many molecular markers have been associated
with brain ischemia, but at present they offer little additional information on an individual basis
beyond that gained from standard clinical evaluation and neuroimaging. From a diagnostic
perspective, a major current challenge is to identify a way in which these markers can add value
to existing routinely obtained data. Some neuroimaging markers in stroke face similar obstacles
in gaining widespread application. Many correlations have been drawn between imaging
parameters (e.g., diffusion- and perfusion-weighted imaging volumes, degree of leukoaraiosis
and location) and outcomes (e.g., length of hospital stay, long-term disability, odds of infarct
progression and clinical severity) [157–162]. Despite these many detailed associations, the
clinical evaluation of the patient is still more informative [163–165]. There have been several
attempts to address these limitations by developing more complex models that measure up to
50 markers simultaneously. Sets of four to five of the most predictive markers from these
multimarker studies have achieved sensitivity and specificity up to just over 90% [166–168].
The addition of a few basic demographic data (age, sex and presence of atrial fibrillation) or
initial computed tomography results slightly improves performance [168]. The strategy in these
studies was to combine sensitive, but nontissue-specific, markers with at least one marker
specific to the CNS. The use of nonspecific biomarkers may be necessary to achieve useful
sensitivity. Furthermore, biomarker testing in one of the studies was performed on a point-of-
care platform that is feasible in an emergency department setting [168].
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It is unlikely that a single biomarker or panel of markers will supplant the current method of
diagnosing stroke by a clinical and radiographic approach. Established imaging techniques
also continue to be superior at characterizing infarct and penumbra size. MRI equipment is
increasingly available at community hospitals. The most promising application for stroke
biomarkers is in realms where current clinical capabilities are limited – in accurately
determining stroke etiology, in predicting response to treatment, in individualizing treatment
and in monitoring treatment effects. One study utilizing a combination of inflammatory,
hemostatic, neural and apoptotic biomarkers (CRP, D-dimer, soluble receptor for advanced
glycation end products, MMP-9, S100B, brain natriuretic peptide, neurotrophin-3, caspase-3,
chimerin and secretagogin) found that it was useful in differentiating cardioembolic from other
types of strokes [169]. Given the correlation between the serum levels and genetic
polymorphisms of hemostatic modulators, such as TAFI and PAI-1, and tPA recanalization,
including the association between several biomarkers (NSE, TAFI, PAI-1, D-dimer and
MMP-9) and the risk for secondary hemorrhagic transformation, better selection of
thrombolysis candidates and individualization of thrombolytic doses may be possible [170,
171].

Finally, if the correlations between serum biomarkers of stroke and patient outcome become
more firmly established, those markers should be used as surrogate outcome measures. Serum
stroke biomarkers have already been used to monitor efficacy in acute several stroke drug trials.
Two trials studying the effects of simvastatin in acute ischemic stroke and vasospasm in
aneurysmal subarachnoid hemorrhage used panels of biomarkers as surrogate markers of
ischemic injury, and a trial of arundic acid, a modulator of astrocyte activation, used the
astrocyte-associated marker S100B as a surrogate marker of neurological deficit [98,172,
173]. New US FDA rules allow for drug approval based on one large Phase III trial with
supportive evidence from a Phase IIB trial demonstrating an effect on a relevant biomarker
[174]. As a result of the enormous expense and complexity of conducting a clinical trial in
acute stroke, the use of well-established biomarkers could have a significant impact in drug
development and approval. Aside from the need for more firmly established correlations
between biomarkers and outcomes, the crucial impediment to using biomarkers in clinical trials
is adjusting for the effects of the confounders, as discussed in the limitations section previously
– systemic inflammation, natural variability in levels and comorbid processes that activate glia
or damage the CNS. Furthermore, biomarker levels generally correlate to the volume of CNS
damage, whereas stroke-related disability is a function of many factors – volume, localization,
age, comorbidities and psychosocial determinants. To date, since most biomarker research has
been exploratory in nature, the lack of rigor in study designs has impeded the development of
biomarkers as outcome measures.

Conclusion
In a recent commentary on the use of biomarkers in stroke, Hill posed two “key clinical
questions in the acute phase:

• Is this a stroke or not?

• If this is a stroke, is this ischemia or hemorrhage?” [146].

Perhaps more important is the question, what value does this test add beyond the clinical
examination and neuroimaging? Serum biomarkers related to the cascade of inflammatory,
hemostatic, glial and neuronal perturbations have been identified to diagnose and characterize
ICH and cerebral ischemia. Interpretation of most markers is confounded by their latent rise,
BBB effects, the heterogeneity of conditions that cause stroke and the wide range of normal
values. In the realm of stroke diagnosis, no serum biomarker or panel of markers has been
proven to add to the data obtained through the history, physical examination and imaging.
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Associations have been identified between biomarker concentrations and lesion size, clinical
severity, worsening due to infarct progression and secondary hemorrhage and long-term
outcomes. Animal-based research and human trials that have used biomarkers of stroke to
identify therapeutic targets and monitor response to treatment demonstrate promising potential
applications.

Future perspective
Given the widespread availability of advanced neuroimaging technology and the many factors
that confound interpretation of serum biomarker levels, stroke diagnosis may not be the most
relevant application for molecular markers at present. Intriguing correlations between
hemostatic and inflammatory markers and clinical outcomes, such as response to thrombolysis,
infarct progression and secondary hemorrhage, offer an opportunity to use biomarkers in the
acute setting to individualize treatment selection and dosing. Biomarkers of inflammation and
tissue disruption have become useful in developing a more complete understanding of the
pathophysiology of stroke. New therapies have already been tested in animals to modulate the
tissue response to injury. Relevant markers will continue to play an important role in developing
targets for neuroprotective therapies. Finally, biomarkers may play an important role in
monitoring response to treatment and as surrogate end points for treatment trials. A transition
from the current exploratory phase to achieve further integration of biomarkers into clinical
care will require large-scale, well-designed, prospective research to yield well-controlled
outcome associations.

Executive summary

Stroke etiologies & the range of biomarkers

• Stroke is a heterogeneous condition, the end result of many diverse pathological
conditions that can lead to intracerebral hemorrhage or obstruction of arterial blood
flow.

• Many forms of biomarkers have been established for stroke: physical findings,
neuroimaging, cardiac imaging, electrophysiological, histological, genetic and
neuronal and systemic molecules found in serum or cerebrospinal fluid.

• Potential applications of stroke biomarkers include clarifying pathological
mechanisms, facilitating diagnosis, identifying stroke mechanisms, characterizing
size and clinical severity, identifying significant penumbra, estimating risk of
progression/worsening, selecting appropriate treatment options, predicting the
likelihood of response, monitoring treatment efficacy and estimating long-term
prognosis.

Specific biomarkers & their correlations

• Cellular constituents from neurons and glia enter the systemic circulation after
brain injury. Many markers have been correlated to infarct size, clinical severity
and long-term outcomes.

• The hemostatic axis is altered in the context of stroke. Levels of particular
constituents predict likelihood of recanalization after thrombolysis.

• Inflammatory cytokines are implicated in propagating damage and causing
apoptosis in cells on the periphery of ischemic and hemorrhagic lesions. High
levels of proinflamamtory cytokines and low levels of anti-inflammatory cytokines
are associated with infarct progression and clinical worsening.
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• Enzymes involved in tissue destruction after stroke are measurable in serum, along
with their metabolites. Elevated levels are linked to greater risk for clinical
deterioration and secondary hemorrhage.

• Multiple nonspecific and acute-phase reactant molecules have been identified as
markers of acute stroke. Inclusion of these nonspecific, yet sensitive, markers in
a panel of serum tests can increase the sensitivity of the test when biomarkers are
used for the diagnosis of stroke.

Limitations

• Virtually all biomarkers of stroke, whether CNS-specific or nonspecific, are
present in the serum of normal individuals over a wide range of concentrations.
Although mean levels among individuals with stroke are different than in normals,
there is considerable overlap in the distribution of values.

• The blood–brain barrier plays a role in modulating serum levels of stroke
biomarkers in an unpredictable way.

• Significant latency exists in between the onset of stroke and changes in serum
biomarkers.

Applications & future perspective

• In the realms of early diagnosis, lesion-size estimation and long-term outcome
prediction, no serum biomarker or panel of markers has been proven to add to the
data obtained through history, physical examination and imaging.

• Correlations between hemostatic and inflammatory biomarkers and response to
thrombolysis, infarct progression and secondary hemorrhage demonstrate a role
for biomarkers in treatment selection and individualization of therapy.

• Animal studies and clinical trials have begun using biomarkers. Biomarkers will
become increasingly relevant for developing targets for neuroprotective therapies,
monitoring response to treatment and as surrogate end points for treatment trials.

• Further well-designed trials are required to delineate the associations between
these markers and clinical outcomes.
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