Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1964 Jun;87(6):1287–1294. doi: 10.1128/jb.87.6.1287-1294.1964

TYROSINASE INHERITANCE IN STREPTOMYCES SCABIES II.

Induction of Tyrosinase Deficiency by Acridine Dyes

Kenneth F Gregory a, Jay C C Huang a,1
PMCID: PMC277201  PMID: 14188704

Abstract

Gregory, Kenneth F. (Ontario Agricultural College, Guelph, Ontario, Canada), and Jay C. C. Huang. Tyrosinase inheritance in Streptomyces scabies. II. Induction of tyrosinase deficiency by acridine dyes. J. Bacteriol. 87:1287–1294. 1964.—Growth in minimal medium containing 1 μg of acriflavine per ml resulted in a large increase (up to 62%) in the frequency of tyrosinase-deficient (tye) mutants in all of ten strains of Streptomyces scabies and eight unidentified streptomycetes studied. This increased frequency did not result from the selection of preformed mutants, since tye clones were usually inhibited by lower concentrations of acriflavine than were tyrosinase-producing (tye+) clones, and no significant difference in mycelial yields occurred between the two types growing in a 1 μg/ml concentration of the dye. The mutations induced by X rays and acriflavine were either allelic or closely linked. This tye phenotype was not caused by the production of an enzyme inhibitor, lack of a cofactor, or defect in the conversion of a protyrosinase to tyrosinase. Tye mutants formed no detectable tyrosinase under a variety of conditions, including the presence of possible inducers. Mutants were able to oxidize glucose and succinate. The S. scabies tyrosinase was heat-labile (half-life at 59 C = 1.6 min) and not particle-bound. We conclude that acriflavine induces the loss of, or alteration in, a structural gene for tyrosinase production present as an extrachromosomal factor.

Full text

PDF
1287

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander M., Wilson P. W. ENZYME LOCALIZATION IN Azotobacter Vinelandii. Proc Natl Acad Sci U S A. 1955 Nov 15;41(11):843–848. doi: 10.1073/pnas.41.11.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BERTANI L. E. The effect of the inhibition of protein synthesis on the establishment of lysogeny. Virology. 1957 Aug;4(1):53–71. doi: 10.1016/0042-6822(57)90043-0. [DOI] [PubMed] [Google Scholar]
  3. BRIGHT H. J., WOOD B. J., INGRAHAM L. L. Copper, tyrosinase, and the kinetic stability of oxygen. Ann N Y Acad Sci. 1963 Feb 15;100:965–976. doi: 10.1111/j.1749-6632.1963.tb42943.x. [DOI] [PubMed] [Google Scholar]
  4. CATCHESIDE D. G. Cytoplasmic inheritance. Nature. 1959 Oct 3;184:1012–1015. doi: 10.1038/1841012a0. [DOI] [PubMed] [Google Scholar]
  5. DRESSLER H., DAWSON C. R. On the nature and mode of action of the copperprotein, tyrosinase. I. Exchange experiments with radioactive copper and the resting enzyme. Biochim Biophys Acta. 1960 Dec 18;45:508–514. doi: 10.1016/0006-3002(60)91487-6. [DOI] [PubMed] [Google Scholar]
  6. GREGORY K. F., HUANG J. C. TYROSINASE INHERITANCE IN STREPTOMYCES SCABIES. I. GENETIC RECOMBINATION. J Bacteriol. 1964 Jun;87:1281–1286. doi: 10.1128/jb.87.6.1281-1286.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GREGORY K. F., SHYU W. J. Apparent cytoplasmic inheritance of tyrosinase competence in Streptomyces scabies. Nature. 1961 Jul 29;191:465–467. doi: 10.1038/191465a0. [DOI] [PubMed] [Google Scholar]
  8. GREGORY K. F., VAISEY E. B. Pathogenicity of tyrosinase-deficient mutants of Streptomyces scabies. Can J Microbiol. 1956 Apr;2(2):65–71. doi: 10.1139/m56-010. [DOI] [PubMed] [Google Scholar]
  9. HAWKINS S. E., COLE R. J., DANIELLI J. F. Preliminary studies on the basis of cytoplasmic inheritance in amoebae. Nature. 1962 Oct 27;196:396–396. doi: 10.1038/196396a0. [DOI] [PubMed] [Google Scholar]
  10. HOROWITZ N. H., SHEN S. C. Neurospora tyrosinase. J Biol Chem. 1952 May;197(2):513–520. [PubMed] [Google Scholar]
  11. Hirota Y. THE EFFECT OF ACRIDINE DYES ON MATING TYPE FACTORS IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1960 Jan;46(1):57–64. doi: 10.1073/pnas.46.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horowitz N. H., Fling M. Genetic Determination of Tyrosinase Thermostability in Neurospora. Genetics. 1953 Jul;38(4):360–374. doi: 10.1093/genetics/38.4.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. NAGAI S., YANAGISHIMA N., NAGAI H. Advances in the study of respiration-deficient (RD) mutation in yeast and other microorganisms. Bacteriol Rev. 1961 Dec;25:404–426. doi: 10.1128/br.25.4.404-426.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SEIJI M., SHIMAO K., BIRBECK M. S., FITZPATRICK T. B. Subcellular localization of melanin biosynthesis. Ann N Y Acad Sci. 1963 Feb 15;100:497–533. [PubMed] [Google Scholar]
  15. WATANABE T., FUKASAWA T. Episome-mediated transfer of drug resistance in Enterobacteriaceae. I. Transfer of resistance factors by conjugation. J Bacteriol. 1961 May;81:669–678. doi: 10.1128/jb.81.5.669-678.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. WATANABE T., FUKASAWA T. Episome-mediated transfer of drug resistance in Enterobacteriaceae. II. Elimination of resistance factors with acridine dyes. J Bacteriol. 1961 May;81:679–683. doi: 10.1128/jb.81.5.679-683.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. WATANABE T., FUKASAWA T. Episome-mediated transfer of drug resistance in Enterobacteriaceae. III. Transduotion of resistance factors. J Bacteriol. 1961 Aug;82:202–209. doi: 10.1128/jb.82.2.202-209.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES