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Abstract

Background: Cytoplasmic dynein complex is a large multi-subunit microtubule (MT)-associated molecular motor involved
in various cellular functions including organelle positioning, vesicle transport and cell division. However, regulatory
mechanism of the cell-cycle dependent distribution of dynein has not fully been understood.

Methodology/Principal Findings: Here we report live-cell imaging of cytoplasmic dynein in HeLa cells, by expressing
multifunctional green fluorescent protein (mfGFP)-tagged 74-kDa intermediate chain (IC74). IC74-mfGFP was successfully
incorporated into functional dynein complex. In interphase, dynein moved bi-directionally along with MTs, which might
carry cargos such as transport vesicles. A substantial fraction of dynein moved toward cell periphery together with EB1, a
member of MT plus end-tracking proteins (+TIPs), suggesting +TIPs-mediated transport of dynein. In late-interphase and
prophase, dynein was localized at the centrosomes and the radial MT array. In prometaphase and metaphase, dynein was
localized at spindle MTs where it frequently moved from spindle poles toward chromosomes or cell cortex. +TIPs may be
involved in the transport of spindle dyneins. Possible kinetochore and cortical dyneins were also observed.

Conclusions and Significance: These findings suggest that cytoplasmic dynein is transported to the site of action in
preparation for the following cellular events, primarily by the MT-based transport. The MT-based transport may have greater
advantage than simple diffusion of soluble dynein in rapid and efficient transport of the limited concentration of the
protein.
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Introduction

Cytoplasmic dynein is a microtubule (MT) minus end-directed

molecular motor and plays an important role in many cellular

functions including organelle positioning, vesicle transport, and

cell division [1]. Cytoplasmic dynein forms a huge multisubunit

protein complex (,1.5 MDa) composed of two identical heavy

chains, two 74-kDa intermediate chains (IC74), four light

intermediate chains (LICs), and up to three light chain dimers

(LC8, TcTex-1, and Roadblock) [2,3]. The heavy chain which is a

member of the AAA ATPase protein superfamily carries a motor

activity [4], and the other subunits comprising the cargo binding

domain may play a regulatory role for intracellular transport [1].

In interphase cells, dynein transports vesicles, organelles, and

other types of cargos from the cell periphery toward the cell center

(to the minus end of MTs). This is opposite direction of transport

by kinesin, a MT plus end-directed motor (from the cell center to

the cell periphery). During mitosis, cytoplasmic dynein plays

various roles, such as spindle organization, chromosome capture

and congression, spindle assembly checkpoint (SAC) protein

removal, and anaphase chromosome motility [5,6,7,8,9]. In

accordance with these various roles, dynein is found at various

sites, i.e., mitotic spindles, spindle poles, kinetochores, and cell

cortex [10,11,12,13]. Kinetochore dynein may be important in

chromosome capture and congression and SAC protein removal.

The polar and cortical locations of dynein are consistent with roles

in spindle assembly and positioning.

Cytoplasmic dynein heavy chain is encoded by a single gene

and is expressed stably and constitutively during the cell cycle [1].

This is in marked contrast to kinesins, which include a number of

isoforms having different functions and are expressed in cell cycle-

dependent manner [14]. To accomplish multiple functions, dynein

interacts with various proteins which include dynactin [15],

kinases [16], and endosomal proteins [17]. Dynactin is a large

protein complex necessary for cargo binding of dynein and

interact with various proteins, thus linking them with dynein

[18,19]. These interactive partners might affect not only binding of

the transport cargo, but also motor activity of dynein. Interaction

with specific partners must be critically important in cell cycle-

dependent roles of dynein.

Although much information has accumulated about roles and

regulations of cytoplasmic dynein as described above, it has not

fully been understood about regulatory mechanism of cell cycle-

dependent distribution of dynein in living cells. Direct visualization

of dynein by live-cell imaging technique would greatly help

understand this issue. It has recently been shown that IC74 is a
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useful probe for functional dynein complex in living cells [20,21].

IC74 tightly binds heavy chains and provides binding sites for

three light chains [22,23,24,25,26] and p150Glued, a subunit of

dynactin [15,27]. Thus, IC74 is an important ‘scaffold’ protein for

dynein complex formation.

To know behavior of cytoplasmic dynein in living cells, we

generated a stable HeLa cell line expressing green fluorescence

protein (GFP)-tagged IC74. We demonstrate that GFP-tagged

IC74 is incorporated into functional dynein complex and monitors

a cell cycle-dependent dynamic behavior of cytoplasmic dynein.

Our findings suggest that dynein is transported to the site of action

in preparation for the following cellular events primarily by the

MT-based transport.

Results

Characterization of HeLa cells stably expressing
fluorescent IC74

We generated a HeLa cell line stably expressing fluorescent IC74

using a fusion protein of IC74 and multifunctional GFP (mfGFP).

mfGFP is a GFP mutant in which multiple affinity tags are inserted

in tandem into an internal loop, and thus a useful tool both for live-

cell imaging and biochemical characterization of protein complex

[28]. mfGFP was fused at the C-terminus of IC74, near the WD40

repeat that is involved in binding to the heavy chain (Fig. 1A). HeLa

cells expressing IC74-mfGFP showed no apparent abnormality in

morphology and growth (data not shown). Sucrose density gradient

sedimentation of the HeLa cell lysate demonstrated that the

expressed IC74-mfGFP was ,5% of endogenous IC74, and that

about half of IC74-mfGFP was sedimented to heavy sucrose

fractions, suggesting incorporation of IC74-mfGFP into dynein

complex (Fig. 1B). Correspondingly, the purified IC74-mfGFP

fraction by StrepTrap column chromatography contained a high

molecular mass polypeptide (.250 kDa) probably of dynein heavy

chain, in addition to IC74-mfGFP (,110 kDa) (Fig. 1C). Several

polypeptides were also seen at 50–60 kDa range which could be

LICs. The purified fraction also contained endogenous IC74,

suggesting heterodimer formation of IC74-mfGFP with endogenous

IC74. In in vitro MT-gliding assay, the purified IC74-mfGFP fraction

exhibited a minus end-directed motor activity with an averaged

velocity of 11146148 nm/sec (mean6SD, n = 80) (Fig. 1D). Taken

together, these findings indicate that the expressed IC74-mfGFP is

successfully incorporated into functional dynein complex.

Behavior of cytoplasmic dynein in interphase cells
Live-cell imaging of IC74-mfGFP HeLa cells was carried out by

high-speed laser scanning confocal microscopy (see Materials and

Methods). In interphase cell, IC74-mfGFP distributed as discrete

foci which moved in the cytosol in addition to cytosolic

nonstructural fluorescence (Fig. 2A and Movie S1). Labeling of

MTs with mCherry-a-tubulin revealed that these foci moved along

with MTs (Fig. 2B and Movie S2). We referred to the direction

of moving foci as ‘centripetal’ and ‘centrifugal’ in which foci move

toward the nucleus and the cell periphery, respectively. Based on

their shape and behavior, we classified the discrete foci into two

groups: ‘spot-like’ foci and ‘comet-like’ foci. The spot-like foci are

round-shaped, seen throughout the cytosol, and exhibit rapid

movement at both centripetal and centrifugal directions (Fig. 2C),

whereas the comet-like foci are comet-shaped, seen mostly at the

cell periphery, and slowly move centrifugally (Fig. 2D, see also

Movie S1).

The spot-like foci moved bi-directionally (Fig. 3A) and some

foci reversed the direction during observation (Fig. 3B). Turning

direction was frequently observed, probably due to crossing the

Figure 1. Incorporation of IC74-mfGFP into functional cyto-
plasmic dynein complex. A. Schematic diagram of IC74-mfGFP.
mfGFP was fused at the C-terminus of IC74. B. Sucrose density gradient
sedimentation of lysate from IC74-mfGFP HeLa cells. Lysate was
sedimented into 5–20% sucrose gradient. Fractions were analyzed by
Western blotting with antibody specific to IC74 (74.1). IC74-mfGFP was
,5% of endogenous IC74. About half of IC74-mfGFP was sedimented to
heavy sucrose fractions, indicating incorporation into dynein complex.
C. SDS-PAGE and Western blotting of the purified IC74-mfGFP fraction.
IC74-mfGFP was purified by StrepTrap column chromatography. The
purified fraction contained a high molecular mass polypeptide
(.250 kDa) probably of heavy chain (HC) in addition to IC74-mfGFP
(,110 kDa). Polypeptides at 50–60 kDa range could be LICs. Endoge-
nous IC74 was also detected, indicating heterodimer formation of
IC74-mfGFP and IC74. IC74-mfGFP was detected by antibody specific to
tetrahistidine which reacts with 86His tag in mfGFP. D. Histograms of
velocity distribution of minus end-directed MTs in in vitro MT-gliding
assay with the purified IC74-mfGFP fraction.
doi:10.1371/journal.pone.0007827.g001
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intersecting MTs. In addition, some foci exhibited jiggling motion

with no net motility (Movie S1). The velocity measurement by

frame-to-frame tracking of the sequential images revealed that

velocities of the spot-like foci at centripetal and centrifugal

direction were 6916233 nm/sec (n = 43) and 6766214 nm/sec

(n = 65), respectively (Figs. 3C and 3D). Some foci changed their

velocity during movement (green squares in Fig. 3A). The

properties of the spot-like foci are similar to those determined by

fluorescent ligands for plasma membrane receptors that represent

some endosomes [29,30]. The spot-like foci might be a population

of dynein which carries cargos such as transport vesicles.

The comet-like foci became clearly visible by methanol fixation

of cells, which removes the spot-like foci (Fig. 2E). It completely

disappeared by treatment of 10 mM paclitaxel that stabilizes MTs

(data not shown). The velocity of the comet-like foci was

237652 nm/sec (n = 48), which was about one third of the

velocity of the spot-like foci (Fig. 3E). These properties are very

similar to those of the MT plus end-tracking proteins (+TIPs)

[31,32]. Expression of the GFP-tagged EB1 in HeLa cells

demonstrated similar behavior and velocity (235658 nm/sec,

n = 51) to the comet-like foci (Figs. 3F and Movie S3).

To further investigate relationships between dynein and EB1,

we observed these proteins simultaneously by multicolor imaging.

Expression of mCherry-tagged EB1 in IC74-mfGFP HeLa cells

revealed that the comet-like foci were colocalized with EB1 near

the cell periphery (Figs. 4A and 4B, and Movie S4). In contrast,

no colocalization was seen between the spot-like foci and EB1

(Fig. 4C). Interestingly, colocalization of IC74 and EB1 was

clearly observed at the cell periphery but not near the cell center

where the comet-like foci was hardly seen (Fig. 4D). Taken

together, these findings suggest that cytoplasmic dynein may be

transported to the cell periphery by interacting with +TIPs in

interphase cells.

Behavior of cytoplasmic dynein during mitosis
We next determined behavior changes of cytoplasmic dynein

during mitosis. IC74-mfGFP HeLa cells were synchronized at the

G1/S boundary using double thymidine treatment. In late-

interphase cells, the centrosome and the radial MT array became

clearly visible by dynein fluorescence (Fig. 5B and Movie S5).

This is in marked contrast to interphase cells in which the

centrosome and the radial MT array were undetectable (Fig. 5A).

This difference is unlikely to be due to changes in cell shape and

centrosome position, because the centrosome and the radial MT

array can be clearly seen by tubulin staining (see Fig. 2B). Dynein

fluorescence on the radial MT array appeared to be relatively

homogeneous and immotile. In addition, the spot-like foci moved

on the radial MT array (Movie S5). Thus, dynein fluorescence on

the radial MT array might be different from the moving foci. In

late-interphase cells, centripetal movement of the spot-like foci

appeared to be more frequent than in interphase. In prophase

when the daughter centrosomes start to separate, dynein

fluorescence on the daughter centrosomes and the radial MT

array became more remarkable (Fig. 5C). The spot-like foci

moved along with MTs as in interphase and late-interphase,

whereas the comet-like foci were rarely detectable in prophase.

In prometaphase and metaphase cells, dynein was localized at

spindle MTs and spindle poles (Figs. 5D and 6A, and Movie S6).

This fluorescence was primarily due to a number of fluorescent foci

moving from spindle poles toward chromosomes. The velocity of

moving foci was 97619 nm/sec 2 (n = 11) (Figs. 6D and 6E). The

fluorescence remained unchanged after fixation with methanol

(Fig. 6B). Treatment of cells with 10 mM paclitaxel caused a

dramatic reduction in the number of moving foci (Fig. 6C and

Movie S7). Correspondingly, the moving foci were colocalized with

EB1 (Fig. 6F and Movie S8). These findings suggest that the

moving foci on the spindle MTs may represent +TIPs-mediated

transport of dynein. We also observed that some foci are moving on

the spindle MTs at both directions even in the presence of paclitaxel

(Movie S7). This suggests the presence of some motor-driven

transports by kinesins or dynein on the spindle MTs.

In addition to the moving foci, we observed some foci staying

close to the chromosomes which are most prominent in

prometaphase (Movies S6 and S8). These foci were still visible

after paclitaxel treatment (Fig. 6C and Movie S7) and not

colocalized with EB1 (Fig. 6F and Movie S8), suggesting no

interactions with +TIPs. They might be kinetochore dynein

[10,33]. Dynein was also localized as several ‘island-like’ foci near

the cortical sites (Figs. 5D and 6A). Live-cell imaging at higher

magnification revealed that these island-like foci are clusters of

small distinct foci which seem to be weakly connected to each

other (Movie S6). They were localized primarily parallel to the

equatorial plane in prometaphase (Fig. 6A) and more widely

distributed along with cortex in metaphase (Fig. 5D). These

properties seem to be consistent with those of cortical dynein [12].

We found that a number of foci were moving from the spindle

poles toward the cortical sites (Movie S6), suggesting possible

transport of dynein along with the astral MTs to the cortex.

In anaphase to telophase, dynein fluorescence increased in the

cytosol (Fig. 5E). The moving foci were rarely observed on the

Figure 2. Live cell imaging of cytoplasmic dynein in IC74-mfGFP
HeLa cells. A. Dynein is observed as moving fluorescent foci in the
cytosol (see Movie S1). B. IC74-mfGFP HeLa cells were transfected with the
mCherry-a-tubulin expression vector. Green and red represent dynein and
MTs, respectively. Fluorescent foci are moving along with MTs (see
Movie S2). C, D. Boxed areas in A are shown at higher magnification
representing two classes of moving foci: spot-like foci (C, yellow box in A)
and comet-like foci (D, white box in A). E. Distribution of dynein foci in
methanol-fixed cells. The comet-like foci became clearly visible by
disappearance of the spot-like foci. Scale bars: A, B, D, 10 mm; D, E, 5 mm.
doi:10.1371/journal.pone.0007827.g002
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spindle MTs. In the end of cytokinesis, dynein fluorescence and

moving foci were hardly seen in the spindle MTs (Fig. 5F). No

dynein fluorescence was detected at the mid body.

Behavior of cytoplasmic dynein visualized by fluorescent
LIC1

The important issue using IC74-mfGFP as a functional probe

for cytoplasmic dynein is whether the moving foci represent

dynein complex containing the heavy chain. The fact that a part of

the expressed IC74-mfGFP is not incorporated into dynein

complex (see Fig. 1B) would raise a possibility that some or all

of the moving foci might represent IC74 lacking dynein heavy

chain. To check this possibility, we tried to visualize dynein by

fluorescent LIC which is an essential component of dynein

complex [1]. Recent study has demonstrated that IC74 and LIC

bind to the heavy chain but not to each other [34]. Therefore,

colocalization of IC74 and LIC would strongly support the

presence of the heavy chain.

We made expression constructs of human LIC1 which was

tagged with mfGFP or mCherry at the C-terminus. The purified

LIC1-mfGFP fraction from the HEK cell lysate contained three

bands: a high molecular mass polypeptide (.250 kDa) probably of

the heavy chain, LIC1-mfGFP (,90 kDa), and IC74 (,75 kDa)

(Fig. 7A, right). Thus, LIC1-mfGFP is successfully incorporated

into dynein complex, as true of IC74-mfGFP (Fig. 7A, left). The

LIC1-mfGFP fraction did not contain 50–60 kDa polypeptides

seen in the IC74-mfGFP fraction. This seems to be consistent with

an idea that these polypeptides are endogenous LICs which can be

displaced by LIC1-mfGFP.

Localization and behavior of LIC1 was examined by transiently

expressing LIC1-mCherry in IC74-mfGFP HeLa cells. In

interphase cells, LIC1 exhibited good colocalization with IC74

in both the spot-like and the comet-like foci (Fig. 7B and Movie
S9). Colocalization was also confirmed at the moving foci on

mitotic spindle MTs (Fig. 7C). These findings strongly support

that the moving foci both in interphase and during mitosis

probably represent dynein complex containing the heavy chain.

Figure 3. Movement analysis of fluorescent foci in interphase cells. A. Time-dependent displacements of six spot-like foci in the cytosol.
Centrifugal movement (toward cell periphery) was recorded as positive and centripetal movement (toward nucleus) as negative displacement. B.
Examples of dynein fluorescent foci which reversed the direction during observation. C, D. Histograms of velocity distributions of the spot-like foci
toward the centripetal (C) and centrifugal (D) directions. The continuous lines correspond to a Gaussian fitting with the best-fitting velocity indicated
in each figure. E. Histogram of velocity distribution of the comet-like foci. F. Histogram of velocity distribution of EB1-GFP in interphase HeLa cells.
doi:10.1371/journal.pone.0007827.g003
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Discussion

In this study, we have visualized cytoplasmic dynein with

mfGFP-tagged IC74 in living HeLa cells. We found that behavior

of cytoplasmic dynein dramatically changes in a cell-cycle

dependent manner (Fig. 8). In interphase, dynein distributes as

spot-like foci which might carry the cargos or as comet-like foci

which are colocalized with EB1 on the growing MTs. In late-

interphase, dynein is concentrated in the centrosome and the

radial MT array. In prophase, localization at the daughter

centrosomes and radial MT arrays is remarkable. In prometa-

phase to metaphase, dynein is localized at spindle MTs where it

frequently moves from spindle poles toward chromosomes and

cortex. Possible kinetochore and cortical dyneins are also seen. In

anaphase to telophase, spindle-associated dynein decreases,

whereas cytosolic dynein increases. These findings correspond to

the previous reports of localization of dynein by immunostaining

of dynein subunits with fixed cells [10,11,12,33,35,36,37].

GFP-tagged IC74 as a functional probe for cytoplasmic
dynein

Use of IC74 as a functional probe for cytoplasmic dynein has

initially been demonstrated with PC12 cells, in which all the stably

expressed GFP-tagged IC74 is successfully incorporated into

dynein complex [20]. A recent report, however, has claimed no

incorporation of the transiently expressed GFP-tagged IC74 in

dynein complex in COS-7 cells [38]. In the present study, we

demonstrate that about half of the stably expressed IC74-mfGFP is

incorporated into functional dynein complex. Because GFP tag is

fused at the C-terminus of IC74 in all three studies, position of the

GFP tag seems unlikely to be the reason for the difference. Cell

type (PC12 and HeLa vs. COS-7) or expression system (stable

expression vs. transient expression) could be possible cause.

In our IC74-mfGFP HeLa cells, about half of IC74-mfGFP is not

incorporated into dynein complex. One might assume that such

unincorporated IC74-mfGFP affects the fluorescence measurements

in live-cell imaging. Nevertheless, we believe that the moving foci in

interphase (spot-like and comet-like foci) and those during mitosis (on

the spindle MTs) represent dynein complex containing the heavy

chain, because these foci were also labeled by LIC1, a component of

dynein complex which is reported to bind to the heavy chain

independently of IC74 [34]. Although cellular distribution of the

unincorporated IC74-mfGFP remains unclear, it could partly be

responsible for cytosolic nonstructural fluorescence.

+TIPs-mediated transport of cytoplasmic dynein in
interphase

+TIPs are highly diverse group of the MT-associated proteins

and thought to be involved in regulation of dynamic properties of

MTs [31,32]. The MT plus-end accumulation of cytoplasmic

dynein has been visualized in the fungus Aspergillus nidulans using

GFP-tagged heavy chain nudA [39]. In mammalian cells, however,

no live-cell imaging of dynein at the MT plus ends has so far been

reported, although colocalization of endogenous IC74 with CLIP-

170 was shown in fixed COS-7 cells [35]. We here clearly

demonstrated that cytoplasmic dynein complex is moving on MTs

toward the cell periphery together with EB1. This supports the

hypothesis of +TIPs-mediated transport of cytoplasmic dynein

Figure 4. Simultaneous observations of IC74 and EB1 in interphase cells. A. EB1-mCherry was expressed in IC74-mfGFP HeLa cells and
behaviors of IC74 and EB1 were simultaneously observed using W-view system. B, C, D. Boxed areas in A are shown at higher magnification.
Colocalization of the comet-like and EB1 are clearly observed at cell periphery (B, white box in A). The spot-like foci were not colocalized with EB1 (C,
yellow box in A). The comet-like foci are hardly seen near cell center where EB1 is present (D, cyan box in A). Because focal plane was set close to
bottom of the cell, microtubule networks under the nucleus are seen which cross the nucleus. Scale bars: A, 10 mm; B, C, 5 mm.
doi:10.1371/journal.pone.0007827.g004
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[35]. Interestingly, the comet-like foci of dynein were hardly seen

near cell center where EB1 is present. Interaction of dynein and

+TIPs is thought to be mediated by dynactin [35,40]. It is possible

that dynein-dynactin and/or dynactin-+TIPs interactions may be

temporally and spatially regulated. Visualization of dynactin or

other +TIPs components would address the underlying mecha-

nism of this regulation.

Cytoplasmic dynein in late-interphase and prophase
Cytoplasmic dynein is localized at centrosome in late-inter-

phase. This localization is more profound in prophase. Cell cycle-

dependent centrosome localization of dynein is consistent with

the previous report by immunostaining of IC74 in COS-7 cells

[37]. Dynactin is localized at centrosomes throughout the cell

cycle [37]. Thus, centrosome localization of dynein might be

regulated via interactions of dynein with dynactin and centrosomal

components. In late-interphase and prophase, dynein fluorescence

was also observed on the radial MT array which seems to be

relatively homogeneous and immotile. This might suggest direct or

indirect interaction of dynein with MTs. Because such localization

does not occur in interphase, some cycle-dependent changes might

be involved in the interaction of dynein with MTs.

Cytoplasmic dynein in prometaphase and metaphase
We have demonstrated that cytoplasmic dynein is localized at

three different sites in prometaphase and metaphase: on the

spindle MTs, at kinetochores, and near cortex. These findings are

well consistent with immunohistochemical localization of dynein

with fixed cells: spindle dynein [10,11], kinetochore dynein

[33,36], and cortical dynein [12]. Several novel findings have

been obtained by live-cell imaging of these dyneins. On spindle

MTs, majority of dynein is transported by +TIPs on the growing

MTs. +TIPs-mediated transport of dynein also occurs on the astral

MTs. Thus, +TIPs-mediated transport of dynein may be

important for supply of dynein during mitosis. Kinetochore

dynein is thought to be involved in attachment, orientation, and

alignment of kinetochores to MTs [41]. We observed that

kinetochore dynein is resistant to paclitaxel treatment and not

colocalized with EB1, suggesting that kinetochore dynein may not

be interacted with +TIPs. An interesting question is how

kinetochore dynein is transported to the kinetochores. Cortical

dynein is thought to be involved in proper spindle positioning

during mitosis [42]. We found that several ‘island-like’ foci are

localized near the cortical sites, which are linked with spindle poles

by astral MTs, suggesting that they may be cortical dynein.

Cortical dynein has been demonstrated by immunocytochemistry

in MDCK cells, which is localized as spots at the cortex during late

prometaphase and metaphase [12]. The island-like foci in our

study, however, seem to be larger in size than the spots of cortical

dynein observed with MDCK cells [12]. Difference in cell type

could be one of possible reasons, because MDCK is a highly

polarized cell line.

Dynamic behavior of cytoplasmic dynein in cell cycle
Based on the findings in the present study, we would like to

propose that cytosolic dynein may be effectively transported to the

site of action in preparation for the following cellular events. In

interphase, dynein is transported to the cell periphery by +TIPs.

This seems to be supply for the minus end-directed transport of

various cargos. Dyneins at the centrosome and radial MT array in

late-interphase and prophase may be prepared for formation of

spindle poles and spindle MTs in prometaphase and metaphase.

Dynein at the spindle poles, in turn, may be used for supply for the

kinetochore and the cortical dyneins. It should be noted that dynein

is transported primarily by the MT-based transport systems, i.e.,

+TIPs (as comet-like foci in interphase and moving foci on the

spindle MTs) and MT binding (on the radial MT array in late-

interphase). The distribution of dynein by MT-based transport may

have greater advantage than simple diffusion of soluble dynein in

rapid and efficient transport of the limited concentration of the

protein. It should also be noted that use of +TIPs and MT binding

may be ‘cost effective’ compared with motor-driven transport in

which no additional energies are required. Elucidation of the

regulatory mechanisms of dynein transport will greatly help

understand the MT-based intracellular transport system.

Materials and Methods

Generation of cDNA constructs
cDNA encoding 74-kDa dynein intermediate chain (IC74) 1B

isoform was amplified from HEK cells by RT-PCR using a pair of

Figure 5. Behavior of cytoplasmic dynein in mitosis. A.
Interphase. Dynein is distributed in the cytosol as the discrete foci.
No fluorescence is detected in the centrosome and MTs. B. Late-
interphase. Dynein is localized at the centrosome and radial MT array in
addition to the moving foci. C. Prophase. Localization of dynein in the
daughter centrosomes and radial MT arrays are remarkable. D.
Metaphase. Spindle MTs are heavily stained by dynein fluorescence.
Island-like foci are also observed near the cell cortex, which might be
cortical dynein. E. Telophase. Dynein fluorescence increased in the
cytosol with decrease on the spindle MTs. F. Cytokinesis. No apparent
dynein fluorescence is detected on the spindle MTs nor mid body. Scale
bars: A–F, 10 mm.
doi:10.1371/journal.pone.0007827.g005
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primers: 59-GGGGAGCTCATGTCTGACAAAAGTGACTTA-

AAA-39 and 59-GGGGGTACCGGCAGATAACTCAACAGT-

39, and subcloned into pIREShyg2 vector. mfGFP [28] was fused

to the C terminus of IC74. cDNAs encoding a-tubulin, EB1,

and LIC1 were amplified from HEK cells and subcloned into

pcDNA5/FRT/TO vector. mCherry [43] was fused to either

N-terminus (a-tubulin) or C terminus (EB1 and LIC1).

Cell culture and transfection
HeLa cells were cultured in Dulbecco’s Modified Eagle Medium

(Invitrogen) supplemented with 10% fetal calf serum and 2 mM

L-glutamine. For generation of stable transfectants of IC74-

mfGFP, the expression vector was transfected to HeLa cells using

Lipofectamine LTX reagent (Invitrogen). The transfected cells were

screened by hygromycin (400 mg/ml) for 2–3 weeks. Hygromycin-

resistant colonies were further screened by fluorescence microscopy

and GFP-positive colonies were selected. Transient expression of

mCherry-tagged proteins was carried out using Lipofectamine LTX

and assayed 24 h after transfection.

Live cell imaging
Live cell imaging was carried out with a high-speed confocal

laser scanning microscope system. HeLa cells were grown on

collagen-coated glass bottom dishes. Before observation, culture

medium was changed to Krebs-Ringer Hepes (KRH) solution

containing 140 mM NaCl, 3.6 mM KCl, 0.5 mM NaH2PO4,

2 mM NaHCO3, 0.5 mM MgSO4, 1 mM CaCl2, 10 mM glucose,

and 10 mM Hepes, pH 7.4. The dish was placed on the stage of an

inverted microscope with a Nipkow disc confocal laser scanning unit

(CSU22, Yokogawa, Japan) equipped with an Argon Krypton Ion

Laser (488 and 568 nm excitation). Cells were observed with a

1006objective lens (Plan Apo, N.A. = 1.40, Nikon, Japan) at room

temperature, and images were acquired with an EM-CCD camera

(C9100, Hamamatsu Photonics, Japan) at a rate of 310 msec/image

Figure 6. Behavior of dynein in prometaphase and metaphase. A. Many fluorescent foci are moving on the spindle MTs in prometaphase. B.
Methanol-fixed cell. These fluorescent foci are resistant to methanol fixation. C. Treatment with paclitaxel markedly reduced the moving foci, and
visualized dynein at spindle poles and close to chromosomes (possibly kinetochores). D. Time-dependent displacements of the fluorescent foci on
the spindles MTs. Movement from spindle poles toward chromosomes is recorded as positive displacement. E. Histogram of velocity distributions of
the fluorescent foci on the spindle MTs. F. Simultaneous observations of IC74 and EB1 at the mitotic spindles in prometaphase. mCherry-EB1 was
expressed in IC74-mfGFP HeLa cells. Fluorescent foci at the spindle MTs are colocalized with EB1. Some foci near chromosomes exhibit no
colocalization with EB1, which might be kinetochore dynein.
doi:10.1371/journal.pone.0007827.g006
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(for interphase cells) or 1570 msec/image (for mitotic cells). The

images were analyzed by Aquacosmos software (Hamamatsu

Photonics, Japan). For movement analysis, the positions of the

moving foci were determined by a two-dimensional Gaussian fitting

algorithm with a custom program ‘Mark2’ [44]. The velocity of

each foci was measured from displacements of .5 successive frames

by a least-squares curve-fitting procedure.

For paclitaxel treatment, cells were incubated for 10 min in KRH

solution containing 10 mM paclitaxel. For methanol fixation, cells

were washed twice with KRH solution, incubated for 15 min in ice-

cold methanol, and rinsed with PBS before observations. Double

thymidine treatment for synchronization of the HeLa cells at the

G1/S boundary was carried out as described [45]. For multicolor

observations, cells were observed using W-view system (Model

8509, Hamamatsu Photonics, Japan).

Sucrose density gradient sedimentation
Sucrose density gradient sedimentation of dynein complex was

carried out as described [20] with some modifications. Briefly,

lysate from IC74-mfGFP HeLa cells was prepared by homoge-

nizing in a buffer A (0.1 M NaCl, 25 mM Tris-HCl, pH 7.5,

1 mM MgCl2, 0.1 mM ATP, 0.5 mM dithiothreitol) containing

0.05% Triton X-100 and complete mini protease inhibitor cocktail

(Roche). After centrifugation at 100,0006g for 30 min, the

supernatant was applied onto top of a 5–20% sucrose gradient

in buffer A. The gradient was ultracentrifuged for 24 h at

100,0006g. The resultant fractions of the gradient were processed

to SDS-PAGE and Western blotting for detection of IC74.

Purification of dynein complex with IC74-mfGFP
Dynein complex was purified with SBP-tag in mfGFP [28].

Briefly, HeLa cells expressing IC74-mfGFP (ten 150 mm culture

dishes) were collected and rinsed twice with phosphate buffered

saline. The cell lysate was prepared by homogenizing the cells in

buffer B (0.2 M NaCl, 50 mM Tris-HCl, pH 7.5, 10% sucrose,

5 mM MgCl2, 0.1 mM ATP, 0.5 mM dithiothreitol) containing

0.05% Triton X-100 and complete mini protease inhibitor cocktail

(Roche). After centrifugation and filtration, the lysate was app-

lied onto a StrepTrap HP column (GE healthcare) that had

been equilibrated with buffer B. After washing with buffer A,

bound proteins were eluted with buffer B containing 2.5 mM

desthiobiotin.

SDS-PAGE and Western blotting
Proteins were separated by SDS-PAGE using standard

Laemmli’s buffer system with 3–12% gradient gels and stained

with Coomassie Brilliant Blue. For Western blotting, separated

proteins were transferred onto PVDF membranes. Monoclonal

antibodies against IC74 (74.1, Abcam, ab23905) and tetrahistidine

(Qiagen, 34670) were used at 1:1,000 and 1:2,000 dilutions,

respectively. Positive bands were detected by chemiluminescence

using HRP-labeled anti-mouse IgG (KPL).

In vitro MT gliding assay
The MT gliding on the purified dynein-coated coverslips was

observed under a dark-field microscope as described [44].

Supporting Information

Movie S1 Cytoplasmic dynein in interphase. Many moving foci

are observed. These foci are classified into two groups: spot-like

foci and comet-like foci.

Found at: doi:10.1371/journal.pone.0007827.s001 (3.35 MB

MOV)

Movie S2 Simultaneous observations of cytoplasmic dynein

(green) and microtubules (red) in interphase. The discrete foci are

moving along with the MTs.

Found at: doi:10.1371/journal.pone.0007827.s002 (1.66 MB

MOV)

Movie S3 Behavior of dynein and EB1 at the cell periphery.

Left, IC74-mfGFP; Right, EB1-GFP.

Found at: doi:10.1371/journal.pone.0007827.s003 (1.79 MB

MOV)

Figure 7. Fluorescent LIC1 as a probe for cytoplasmic dynein. A. LIC1-mfGFP was purified from lysate of the LIC1-mfGFP expressing cells by
StrepTrap chromatography and the protein composition was compared with that of the purified IC74-mfGFP fraction. Both heavy chain and IC74
were co-purified with LIC1-mfGFP. Polypeptides at 50–60 kDa range seen in the IC74-mfGFP fraction are undetectable in the purified LIC1-mfGFP
fraction. B, C. IC74-mfGFP HeLa cells were transfected with LIC1-mCherry. Both the spot-like and the comet-like foci were labeled by LIC1-mCherry in
interphase cells (B). Colocalization of IC74-mfGFP and LIC1-mCherry is also observed at mitotic spindle in metaphase cells (C). Scale bars: B, C, 10 mm.
doi:10.1371/journal.pone.0007827.g007
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Movie S4 Simultaneous observations of IC74-mfGFP (left, green

in right) and EB1-mCherry (middle, red in right). The comet-like

foci are colocalized wiht EB1, whereas the spot-like foci are not.

The comet-like foci are hardly seen near the cell center, where

EB1 is clearly observed.

Found at: doi:10.1371/journal.pone.0007827.s004 (5.19 MB

MOV)

Movie S5 Centrosome and radial MT array localization of

cytoplasmic dynein in late interphase cells.

Found at: doi:10.1371/journal.pone.0007827.s005 (3.41 MB

MOV)

Movie S6 Cytoplasmic dynein in prometaphase. Many fluores-

cent foci are moving from the spindle poles toward chromosomes.

Possible astral MTs are also seen on which dynein is moving

toward to the cortex. Island-like foci close to the cell cortex might

be cortical dyneins. Note that fluorescent foci near the center

which move back and forth might be kinetochore dynein.

Found at: doi:10.1371/journal.pone.0007827.s006 (0.74 MB

MOV)

Movie S7 Cytoplasmic dynein in metaphase after treatment

with paclitaxel. Paclitaxel (10 mM) caused a dramatic reduction in

the spindle-associated dynein, and visualized dyneins at the spindle

poles and kinetochores.

Found at: doi:10.1371/journal.pone.0007827.s007 (1.10 MB

MOV)

Movie S8 Simultaneous observations of IC74-mfGFP (green)

and EB1-mCherry (red) at mitotic spindles in prometaphase.

Moving foci on the spindle MTs are colocalized with EB1,

whereas foci staying near chromosomes (possible kinetochore

dynein) is not.

Found at: doi:10.1371/journal.pone.0007827.s008 (0.37 MB

MOV)

Movie S9 Simultaneous observations of IC74-mfGFP (left, green

in right) and LIC1-mCherry (middle, red in right) in interphase

cells. Both the spot-like and comet-like foci are colocalized with

LIC1.

Found at: doi:10.1371/journal.pone.0007827.s009 (5.47 MB

MOV)
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