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SUMMARY

Proof-of-concept in clinical trials has traditionally focused on identification of a maximum
tolerated dose with the assumption that the higher doses provide better efficacy. However adverse
events associated with a maximum tolerated dose may have a negative effect on efficacy. We
present an efficient adaptive dose-finding strategy which concentrates patient assignments at and
around the dose which has the best efficacy/tolerability profile based on a utility function. The
strategy is applied within the setting of a crossover design. While the strategy may also be applied
to parallel studies, a crossover design provides more power for a given sample size for
comparisons between the optimal dose versus placebo and/or active control when it is reasonable
to assume no carryover effects.
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1. Introduction

The goal of a phase Il dose-finding study is to find the best dose to investigate in subsequent
trials. Such a dose should have good efficacy, which is established by comparing response to
treatment with drug versus placebo and/or active control. Doses with superior efficacy might
also have higher rates of adverse events, hence both outcomes should be taken into
consideration for dose selection. A utility function which incorporates both positive benefit
for efficacy and negative benefit for intolerability may be constructed. If both outcomes are
binary, a natural way of combining these is to consider an outcome of success defined as the
therapeutic response without toxicity. Such strategy was considered by many in the context
of oncology trials [1-4]. The value of the utility function at each dose is then equal to a
success rate at that dose. Other ways of defining the utility function for binary outcomes
have been suggested [5,6]. When one or both outcomes are non-binary, there are various
ways of defining utility. Fedorov and Wu [7] for example, suggest defining utility using the
conditional mean of efficacy (conditional on no toxicity), or dichotomizing the efficacy
variable if binary outcomes are of primary interest to a regulatory agency. Utilities may also
be inferred from discussions with physicians. Thall and Cook [5] give an excellent
description of such a process in the context of two different clinical trial settings. Usually
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the utility function is specified in such a way that the doses with the most favorable response
and lowest rates of adverse events have higher values of the utility function. The goal of the
trial is then to identify the dose for which the maximum of the utility function is achieved.
We will refer to this dose as the optimal dose. An additional goal is to compare the mean
efficacy and tolerability at this optimal dose to active control and/or placebo.

This work was motivated by a proof-of-concept trial conducted by Merck Research
Laboratories. The goal of the trial is to identify an effective, tolerable dose of an
investigational drug in patients with the indication of interest and also to provide evidence of
non-inferiority to an active control. Because of confidentiality issues and for ease of
presentation some non-essential features of the trial description have been modified. The
efficacy of the new drug in the trial is measured by a continuous variable at the end of a two-
week treatment period, while the occurrence of selected adverse events is measured as a
binary variable over this same period.

This Merck trial used a 3-period, 6-sequence crossover Williams Latin square design to
enable evaluation of the key objectives related to efficacy and tolerability of the
experimental treatment compared to placebo and active control. Each patient was
randomized to one of the following 6 treatment sequences, which specifies the order of
treatments received by the patient: ABC, BCA, CAB, ACB, BAC, CBA, where
A=Experimental Treatment, B=Placebo and C=Active Control. For example, a patient
randomized to sequence BCA receives placebo in Period 1, active control in Period 2 and
one of five doses of experimental treatment in Period 3. The specific dose of the
experimental treatment received by the patient is determined by the adaptive procedure. The
design is balanced for first order carryover effect [8] at the treatment level (but not for dose).
Given the therapeutic area and pharmacokinetic properties of the experimental treatment, it
was reasonable to conduct this crossover study (with appropriate washout between periods)
and assume no carryover effect. Crossover designs are often used in first in man studies [9]
and in proof of concept or dose finding studies for a variety of therapeutic areas [10]. When
used appropriately, crossover designs have some advantages over parallel designs including:
higher power and independence to variability between investigative sites. In a crossover
study, patients act as their own control which allows the use of within-subject comparisons
and results in more power than a parallel study. Variability between investigative sites also
becomes irrelevant, which is important since this Merck study included about 20 sites.
Lastly, the dose associated with the experimental treatment period can be changed in real
time for subsequent allocation to new patients entering the trial; therefore, the crossover
design is also compatible with dose adaptation which is important since the best dose for
testing proof of concept was not known.

Disadvantages of a crossover design include longer trial duration and potential carryover
effects. A three-period crossover study is more than three times longer than a parallel study
because it includes two sufficiently long washout periods between the three treatment
periods. Therefore, crossover studies are advantageous in therapeutic areas where
enrollment rates are slow (a requirement for an adaptive design) and patient retention is
high.

Adaptive designs require adequate time to “search” for the best dose. In a parallel design
setting, this means being able to observe the response relatively quickly with respect to
enrollment rate. In a crossover setting, one can exploit the long trial duration to benefit the
adaptive design by determining the dose of the experimental treatment “just-in-time” or
immediately prior to the appropriate treatment periods. Adaptive dose-finding designs are
widely used in oncology. In non-oncology setting, adaptive designs have been shown to be
beneficial in various dose-finding problems [6,11]. We developed an adaptive design to use
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in dose-finding trials with the goal of maximizing the utility function. The new adaptive
design improves the quality of estimation of the optimal dose and increases the power of its
comparison with placebo and/or active control as compared to equal allocation. Though
adaptive designs create logistical challenges in the execution of a trial, especially for multi-
center trials like the one in the motivating example, improved precision and efficiency
brought by adaptive designs may outweigh the logistical challenges.

2. Model for the data and specification of the utility function

Denote a fixed ordered set of dose levels chosen for the trial by {ds, ..., dx}, with dy
denoting placebo. For ease of notation we will refer to active control as treatment K+1. In
this three-period, six sequence crossover design each subject receives placebo, control and
one of five doses of the drug according to the order prescribed by the sequence to which the
subject was randomized. Let Yij be the efficacy outcome of subject i in period j, j = 1,2,3,
receiving treatment k, k = 1,..., K+1. Then

E(Y,‘J'/;) =Ui+Tj, (2.1)

where y is a treatment effect, k = 1,..., K+1, and z; is a period effect, j = 1,2,3. The
outcomes Yijy are assumed to be normally distributed with Var (Yjjx) = o2 and corr(Yijk,
Yijk) = p, for j # j*. That is, efficacy outcomes are correlated within each subject and
observations from different subjects are independent.

Tolerability outcome Vjji of subject i in period j, j = 1,2,3, receiving treatment k, k= 1,..., K
+1, is binary indicating the occurrence of an adverse event. Tolerability outcomes were
correlated within each patient corr(Vijk, Vij«k) = 7. No period effect is assumed for
tolerability outcome with E (Vjjx) = p;.

Efficacy and tolerability were modeled separately but considered jointly through the utility
function. To determine the utility function, we received extensive input from physicians
over a plausible efficacy and tolerability region. We also studied utility functions appearing
in the literature on dose-finding [1-5]. A “base case” was identified that provided an
acceptable balance of efficacy and tolerability; this was defined as the experimental
treatment with adverse event rate 0.1 and efficacy of 20. To consider tolerability from the
“base case” physicians decided that a dose with efficacy of 21 and adverse event rate of 0.2
is as good as the “base case”. That is, 1 unit increase in efficacy is balanced by 0.1 increase
in adverse event rate. Similarly, it was decided that 1 unit decrease in efficacy is balanced by
0.1 decrease in adverse event rate, that is, a dose with efficacy of 19 and adverse event rate
of 0 is as good as the “base case” Therefore, the utility function can be written as

U (di) =ptx — 10px. (2.2)
Based upon previous studies conducted with the experimental treatment it was assumed that
the mean efficacy response was increasing with dose with the possibly of a downturn at
higher doses. Therefore, it was assumed that the mean response followed the model
M1 < oo SUpe1 S g 2 Ml 2. 2y, (2.3)

where the response at dose h is called the peak of the dose-response function. If the peak is
at the highest dose, dk, the function is non-decreasing, if the peak is at the lowest dose, the
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function is non-increasing. Mild to moderate severity adverse events were expected. The
adverse event rate of interest was assumed to be non-decreasing with dose

P1= ... Sy (2.4)

Unlike the natural utility for binary outcomes (e.g., success), which is unimodal under broad
conditions [12], the utility defined in (2.2) is not necessarily unimodal. We investigated
plausible scenarios for mean efficacy and adverse events rates in the planned trial and
concluded that the assumption of a unimodal utility (2.2) was viable.

3. Allocation procedure

3.1. Allocation design

The goals of the trial were 1) to identify the optimal dose and 2) to compare this dose with
active control and placebo. To improve the power of comparisons with active control and
placebo one needs as many patients as possible on the optimal dose. Therefore the goal of
our adaptive strategy is to assign as many subjects as possible in the neighborhood of the
optimal dose. The proposed allocation procedure is not specific to a crossover study and
may be used in other types of designs.

Kpamegan and Flournoy [13] suggested an up-and-down design for maximizing a function
over a fixed set of doses with binary outcomes. Their sequential procedure estimates the
difference between the two most recent observations and then determines the direction in
which to locate the next pair of observations. Our sequential procedure, though similar in
spirit, utilizes all outcome data available so far and can be used with any type of outcome.
We refer to our procedure as the maximizing procedure and describe it below.

Maximizing procedure

A new subject is randomized to one of two designated adjacent doses with equal
probabilities, with an exception listed below in (iv). Suppose the most recent designated pair

of doses was (d;, dj+1), JE{2,...,K—1}. Let §,- be the estimated difference in the utility
function between dj and dj+;. Then

. if §_,~<0, the next designated pair of designated doses is (dj-1, dj);

if §j>0, the next designated pair of doses is (dj+1, dj+2);

if §j=0, the next designated pair of doses is (dj+1, dj+2) with probability ¢ = (K — 1
= J)/(K = 3) and doses (dj-1, dj) with probability 1 — ¢.

iv. The following adjustments are implemented at the highest and lowest doses. If the
current pair is (dy,dp) and 57, <0, the randomization to (dy,dy) is with the
randomization ratio of 2:1. If the current pair is (dg—1,dk) and E\H >0, the
randomization is to (dx—1,dk) the randomization ratio of 1:2.

If the optimal dose is dose dj, 2 < h <K, as the design zooms-in onto the maximum, the
allocation starts oscillating between (dy—1,d) and (dn,dn+1), yielding the allocation to
(dh=1,dh,dn+1) in proportions 1:2:1. Provision (iii) allows the design to move from the spot
where the utility function is flat to explore other areas. Provision (iv) facilitates the
assignment of 2:1 to the maximum, if the maximum is at d, or dk.
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The difference Sj was estimated by modeling utility as a quadratic function of dose. The goal
was to fit a local quadratic model around the current dose that uses some information from
the doses that are further away. It is noted that a recursive search of the mode of a function
based on quadratic approximation might be more efficient, especially in a non-adaptive
setting. Another possibility is to estimate the utility function (2.2) by computing maximum
likelihood estimates (MLEs) of mean efficacy under restriction (2.3) and of tolerability
means under restriction (2.4) (see Section 3.2 for more details). The observations at doses
(dh—1,dh.dr+1) Where given weight 1, while the observations at the remaining doses were
assigned weight 0.5 and placebo was given a weight of 0.2. When the designated current
pair of doses was (dy,d3), placebo was given weight 1. The model included a period effect
and was fitted using generalized estimating equations [14].

3.2. Estimating the optimal dose at the end of the trial

In this section we describe how to identify the optimal dose at the end of the adaptive trial
and also for a non-adaptive trial with equal allocation to the same doses for comparison. Let
(n4, ..., Nk+1) be the vector of sample sizes at {dy, ..., dx+1} after the adaptive crossover
trial. For a non-adaptive crossover trial with equal allocation each subject receives placebo,
active control and one of the {dy, ..., dx} with equal number of subjects allocated to each of
these doses, ny = ... = nk.

We will describe two approaches for estimating the optimal dose. The first approach can be
used with any design and is based on computing MLEs of efficacy means under restriction
(2.3) and MLEs for tolerability proportions under restriction (2.4) and plugging them into
the utility function. Such an approach is a middle ground between using a parsimonious
model in estimation and not using any assumptions, and generally yields better estimates.
The second estimation procedure is used with the data obtained in an adaptive fashion and is
based on selecting the dose with the highest utility from the two adjacent doses with the
highest numbers of patients allocated. This approach is preferred for the adaptive design
since it insures that the optimal dose will be selected from doses with an adequate sample
size.

In the first estimation approach we computed MLEs of efficacy means under restriction
(2.3) and of tolerability means under restriction (2.4). The quadratic model we used in
Section 3.1 works well to estimate the difference in utility function between doses locally,
but such a parsimonious model is not flexible enough to summarize all available data after
the trial. This is in agreement with the previous finding that, in the case of a simple order,
isotonic methods were shown to be superior to fitting parsimonious models such as a two-
parameter logistic regression [15, 16]. For a given vector X = (Xy, ..., Xk and positive
weights W = (wj,..., Wk), an isotonic function Z is said to be an isotonic regression of X

K 2
under restriction (2.3) with weights w and peak h if it minimizes ijl“'f(*"j - Zj) forz
satisfying the ordering (2.3). Since the location of the peak h is unknown, isotonic estimates
under restriction (2.3) are computed for every h = 1, ..., K. The estimated location of the
peak is the one that maximizes the likelihood.

The mean efficacy at each dose in {dy,..., dx+1} was estimated by fitting a linear model to
all available efficacy data as a function of treatment (2.1). The model was fitted using
generalized estimating equations (GEE) to take into account the exchangeable correlation
structure of the outcome and a period effect for the crossover design. To compute estimates
of the efficacy outcome under restriction (2.3) the algorithm described in Shi [17] and Geng
and Shi [18] was applied to the fitted means of the efficacy outcome from the GEE model
for {dq,..., dg} with weights (n4, ..., ng). Such computation does not necessarily yield the
estimates that maximize the likelihood under restriction, but each does provide a good
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approximation. Restricted MLEs of the tolerability outcome on {dy,..., dg} were computed
using a pooled adjacent violator algorithm [19]. Then the estimates of the utility function
were computed using formula (2.2). The estimated optimal dose was the dose with the
highest value of the estimated utility.

This adaptive design increases the allocation around the optimal dose, hence sample size
itself is very informative for determining the location of the optimal dose. To estimate the
optimal dose after the adaptive trial (second estimation approach), a best set of two doses
was determined and then the estimated optimal dose was chosen from that set. To determine
the best set of two, first, the smallest dose among those with the most assignments was
chosen: d; = min{arg maxi=p .k ni}. If d. was d; or d, then the best set was defined as
{d,,d3} and {dx-1,dk}, respectively. If 2 <z < K, the second dose in the best set was the
dose d,» = max{arg max (n,—1,n+1)}. Of the two doses in the best set of two, the one with
the larger estimated utility was selected as the estimated optimal dose. To avoid ties, we
used fitted means of the efficacy outcome to estimate the utility.

3.3. Comparison with placebo and active control

An important goal of the trial was to compare the mean response with active control and
placebo. When the optimal dose is selected based on the value of response, the estimated
mean response at that dose is most likely biased upward [20] and therefore type one error
rate might be inflated. Each of the two tests was performed at 0.05 level. The critical values
were adjusted by setting the critical values equal to the 95th percentile of the distribution of
the test statistic under the null hypothesis.

4. Simulation study

A simulation study was conducted to compare the adaptive crossover design with a non-
adaptive crossover trial with equal allocation to the doses under study. In collaboration with
physicians, several plausible scenarios for the true underlying response means were
designed (Figure 1). Scenarios included both monotonic and unimodal shapes of dose-
response curve and various resulting locations of the optimal dose. The utility functions for
six scenarios are shown in Figure 1. Scaled doses levels were {0, 0.25, 0.42, 0.67, 0.83, 1}.
In all scenarios the efficacy at the optimal dose was equal to 20 and the intolerability rate at
the optimal dose was 0.1. At the end of the trial the efficacy at the estimated optimal dose,
dn, was compared to active control efficacy that was set to equal to 20 (non-inferiority) as
well as compared to placebo (superiority). Alternatively, one can combine the data from the
best set of two and compare mean response of the combined sample with placebo and active
control. The primary efficacy null hypothesis compared to placebo, u = uq, was tested
against a one-sided alternative, uy > 11, at the 0.025 significance level. The secondary
efficacy hypothesis compared the active control with placebo. The null hypothesis, un =
Hk+1 + Ay, Was tested against a one-sided alternative, un > ug+1 — A, at the 0.025
significance level with A, = 3. Another secondary hypothesis was tolerability comparison
with placebo. The null hypothesis, pp = p1 + Ap, was tested against a one-sided alternative,
Ph < p1 + Ap, at the 0.025 significance level with A, = 0.2. The joint hypothesis involved the
combination of the latter two secondary hypotheses.

Table I displays simulation results for o = 7, p = 0.5, period effect 73 = 27, = 1, and the total
sample size of 200. Table I displays results where tolerability outcomes are independent
within a patient. In the actual trial the potential for carryover effects was deemed low,
therefore we present simulations assuming no carryover effect. The length of each treatment
was two weeks with results on both efficacy and tolerability being available on day 14 after
the start of the treatment. The accrual rate was 3 patients per week for the first four weeks
and 5 patients per week after that. The adaptation was performed once every two weeks.
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Based on results of prior studies, all doses were expected to be generally well tolerated, and
d4 and ds were considered to be the most promising; therefore, the starting pair of doses was
{d4,ds}. Simulations were repeated for other pairs of starting doses and the results were very
similar (simulation results are available from the authors). The first adaptation was
performed when at least two observations were available on each of placebo, d4 and ds. The
period effect was fitted as linear. Simulation results are based on 3000 runs.

The primary goal was to estimate the optimal dose well. Column 1 of Table | displays the
proportion of runs where the optimal dose was identified correctly. We illustrate the
performance of the adaptive design based upon the two estimators: isotonic (Adaptive 1) and
using the best set of two doses (Adaptive 2). In the set-up and scenarios considered, the ‘best
set of two doses’ yields slightly better estimates than does isotonic. When equal allocation is
used isotonic estimation is considerably better than using just the fitted means in estimation
of the utility function (results are available from the authors). Identification of the optimal
dose is generally better for the adaptive design as compared to the equal allocation crossover
design.

The second goal of the trial was hypothesis testing regarding efficacy and tolerability at the
optimal dose. Column 3 of Table I displays the power to compare efficacy at the estimated
optimal dose with active control, while Columns 4 and 5 display the power to compare
adverse event rates and the power for efficacy comparison at the estimated optimal dose
with placebo. The adaptive design has higher power than equal allocation for nearly every
scenario evaluated (columns 3, 4 and 5) primarily due to increased allocation at the optimal
dose compared to equal allocation. Since an increase in power for efficacy (columns 3 and
5) can be achieved by selecting a dose with a very high mean response, and an increase in
power for tolerability (column 4) can be achieved by selecting a dose with a low adverse
event rate, we computed the power for the joint hypothesis of both efficacy and tolerability
to illustrate the performance of the new design. The power of the joint hypothesis is
displayed in column 2 and is the proportion of trials where both tolerability (compared to
placebo) and efficacy (compared to active control) null hypotheses were rejected. Doses
other than optimal have either worse tolerability or lower efficacy, therefore column 2
reflects not only the sample size at the estimated optimal dose but also the precision of
estimation. The larger the number of subjects at the estimated optimal dose and the better
the precision, the higher is the value in column 2. The adaptive design substantially
increases the joint power compared to the equal allocation design with absolute increase in
power varying from 15% to 29%. The joint power for the adaptive design is higher than the
equal allocation design for all scenarios considered.

Column 6 of Table I displays quantiles of the number of subjects at the estimated optimal
dose. On average, the adaptive design assigns substantially more subjects to the estimated
optimal dose. This translates into the increase in power of rejecting the hypotheses regarding
the efficacy and tolerability parameters. The minimum number of subjects at the optimal
dose for the best set of two estimation procedure varied from 32 to 42. At the same time, the
minimum number of subjects at the optimal dose using the isotonic estimation procedure can
be as low as 1 or 2. This happens very rarely and does not affect the performance of the
procedure on average (Table 1), however it is a concern if this procedure is used in the trial.
We recommend using the “‘best set of two’ estimation procedure.

The average allocation of patients to doses is displayed in Table Il. The adaptive design
assigns more subjects on average to and around the optimal dose as compared to equal
allocation. By assigning more patients to the doses with more favorable efficacy/tolerability
profiles the adaptive design assigns fewer patients to doses with higher rates of adverse
events compared to allocating equally to all doses (Table Il, scenarios 3-6).
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In crossover studies missing data are likely. We performed simulations with missing data
assuming that the data were missing at random. Trials with missing data were simulated to
ensure that the upcoming trial would have an adequate precision and power. As far as
comparison with the equal allocation crossover design the results were very similar to the
case of no missing data. In simulations with various values of o and p adaptive design was
always superior to the equal allocation. All results are available from the authors.

If more rapid accrual is expected in the beginning of the trial, a lead-in phase before
reverting to the adaptive design may be employed. Subjects are assigned equally to doses
{dy,..., dk} in the lead-in phase. The starting dose for an adaptive design is then estimated
from the lead-in phase data using the isotonic method. Our investigation shows that the lead-
in phase with up to 25% of the total sample size improves the likelihood of selecting the
correct optimal dose at the end of the trial.

5. Discussion

There has been a recent increase in interest in adaptive designs in hope of improving the
efficiency of drug development [21]. One promising area of application is in dose-finding
studies. One of the reasons is because the focus of dose-finding designs is estimation where
adaptive designs can be quite helpful. Adaptive trials are logistically feasible [6,22] and can
be quite beneficial in phase | studies in healthy volunteers [22] and dose ranging studies
[11]. In this paper we described an adaptive design for maximizing the allocation of patients
to an optimal dose on the basis of a utility function which incorporates information on
efficacy and safety. This approach provides increased power for assessing superiority of the
optimal dose to placebo or non-inferiority of the optimal dose to an active control. We
demonstrated the advantages of using this adaptive design in such trials compared to equal
allocation. Simulations suggest that correct identification of the optimal dose is generally
better than an equal allocation design and that this adaptive design provides considerably
higher power for the treatment comparisons of interest. Applied to the Merck study in
conjunction with crossover allocation, this adaptive design used approximately 1/5 the
sample size of a traditional design and maintained similar power for the primary comparison
to placebo. The savings were due to both adaptive and crossover design components. While
the maximizing procedure provides information for evaluating dose-response, it may be
more limited than that provided by equal allocation to all doses because the adaptive design
zooms-in on the ‘best” dose.

A key decision in preparing for the trial was to define the utility function. If both outcomes
are binary, a natural way to define utility is the success rate where success is an event of
observing therapeutic response without toxicity. If the efficacy variable is independent of the
tolerability variable, such utility can be written as U1(dk) = w(1—pk) = ux — tkPk, Where s
and pg are mean efficacy and tolerability correspondingly. Utility U, resembles the one we
used in the trial, U(dy) = x¢ — 10 py ; in fact, in all 6 scenarios we considered, U; and U have
the same maximum. We also considered various forms of utility functions, and the
investigational team felt that the utility U, where tolerability is equally weighted rather than
weighing it by the value of mean response y, reflected the objectives of the trial in the best
way. The utility U is similar to the one in reference [5]. The utility function should be
carefully considered and constructed for each new study; U and U, are only provided as
examples. The adaptive crossover trial was conducted at Merck Research Laboratories in
2008-20009.
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Six efficacy-tolerability scenarios showing the values for utility (Utl), efficacy (Eff) and
tolerability (AE). Utility is computed as Efficacy — 10xTolerability.
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