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INTRODUCTION

Dengue virus (DENV) belongs to the family Flaviviridae,
genus Flavivirus, and is transmitted to humans by Aedes mos-
quitoes, mainly Aedes aegypti. Based on neutralization assay
data, four serotypes (DENV-1, DENV-2, DENV-3, and
DENV-4) can be distinguished. DENV infection is a major
cause of disease in tropical and subtropical areas, with an
estimated 50 million infections occurring each year and more
than 2.5 billion people being at risk of infection (75). Infection
with any of the DENV serotypes may be asymptomatic in the
majority of cases or may result in a wide spectrum of clinical
symptoms (87), ranging from a mild flu-like syndrome (known
as dengue fever [DF]) to the most severe forms of the disease,
which are characterized by coagulopathy, increased vascular
fragility, and permeability (dengue hemorrhagic fever [DHF]).
The latter may progress to hypovolemic shock (dengue shock
syndrome [DSS]). In Asia the risk of developing severe disease
is greater in DENV-infected children (�15 years) than in
adults (30, 80, 109, 172). In contrast, in the Americas mainly
the adult population is affected, resulting in mild disease (84,
186, 188), although an increasing trend of cases progressing
toward DHF/DSS has also been observed in adults there (75,
79, 87, 126, 186). DF is manifested as an incapacitating disease
in older children, adolescents, and adults. It is characterized by
the rapid onset of fever in combination with severe headache,
retro-orbital pain, myalgia, arthralgia, gastrointestinal discom-
fort, and usually rash. Minor hemorrhagic manifestations may
occur in the form of petechiae, epistaxis, and gingival bleeding.
Leukopenia is a common finding, whereas thrombocytopenia

may occasionally be observed in DF, especially in those with
hemorrhagic signs (76, 109). The World Health Organization
(WHO) classifies DHF in four grades (I to IV). DHF grades I
and II represent relatively mild cases without shock, whereas
grade III and IV cases are more severe and accompanied by
shock. DHF is characterized by all the symptoms of DF, in
combination with hemorrhagic manifestations (positive tour-
niquet test or spontaneous bleeding), thrombocytopenia, and
evidence of increased vascular permeability (increased hemocon-
centration or fluid effusion in chest or abdominal cavities). The
life-threatening DSS stage occurs at the time of or shortly after
defervescence, which is characterized by a rapid, weak pulse
(�20 mm Hg) or hypotension with cold, clammy skin in the
early stage of shock (grade III). If patients do not receive
prompt and appropriate treatment, a stage of profound shock
may set in, in which pulse and blood pressure become unde-
tectable (grade IV), resulting in death within 12 to 36 h after
onset of shock (262a). It is important to realize that the WHO
case definition was originally proposed as a tool for clinical
diagnosis using the results of repeated clinical tests. The WHO
classification system poses a problem for everyday clinical
practice, because it may be not sufficiently accurate in correctly
classifying disease severity and may lack good agreement with
clinical practice (213). Consequently, the WHO classification
system is currently being reconsidered, and a new classification
system is to be expected soon. The stage of prolonged shock
may trigger or accelerate the development of disseminated
intravascular coagulation (DIC) (228). Data that support or
refute the occurrence of DIC in severe dengue are inconclu-
sive, so better studies using prospective cohorts are needed to
show the frequency of DIC in DHF/DSS patients and its as-
sociation with clinical outcome (30, 152, 262). Massive loss of
blood is rare in DHF and DSS and if present it is largely
restricted to the gastrointestinal tract. This is usually due to
prolonged shock resulting in blood being shunted away from
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the gastrointestinal tract, leading to anoxia, cell death, and
gastrointestinal bleeding. In contrast, the mild forms of hem-
orrhages seen early in infection, such as petechiae, result from
different mechanisms related to virus infection in combination
with the release of vasculogenic cytokines. Understanding the
mechanism underlying the development of shock is crucial for
the development of novel strategies to improve patient man-
agement. It is worth noting that patients classified as having
DHF and DSS have no generalized edema; rather, a selective
plasma leakage tends to occur in the pleural and abdominal
cavities (12, 230, 246, 252, 256), which is detectable by means
of radiology or sonography. Ultrasonographic examinations
have revealed that plasma leakage occurs before defervescence
or changes in hemoconcentration become apparent (12, 230,
252). Attempts to explain the pathogenesis of dengue in all its
complexity must consider all the clinical, immunological,
pathological, and epidemiological features of DENV infection.
The aim of this review is to outline the current views of DHF/
DSS pathogenesis and to identify the gaps in our knowledge
that represent critical challenges for the future.

THE PATHOGENESIS OF DENV INFECTIONS:
CURRENT HYPOTHESES

DENV Tropism

Cell and tissue tropism of DENV may have a major impact
on the outcome of DENV infections. The absence of an ap-
propriate animal disease model largely hampers our under-
standing of the role played by DENV tropism. In vitro data and
autopsy studies suggest that three organ systems play an im-
portant role in the pathogenesis of DHF/DSS: the immune
system, the liver, and endothelial cell (EC) linings of blood
vessels. The tropism of DENV for cells of the respective sys-
tems, the corresponding pathological effects of DENV infec-
tion of these systems, and the relevance of these events for the
overall pathogenesis of DENV infection will be described.

Cells of the immune system. During the feeding of mosqui-
toes on humans, DENV is presumably injected into the blood-
stream, with spillover in the epidermis and dermis, resulting in
infection of immature Langerhans cells (epidermal dendritic
cells [DC]) (136, 263), and keratinocytes (136). Infected cells
then migrate from site of infection to lymph nodes, where
monocytes and macrophages are recruited, which become tar-
gets of infection. Consequently, infection is amplified and virus
is disseminated through the lymphatic system. As a result of
this primary viremia, several cells of the mononuclear lineage,
including blood-derived monocytes (59), myeloid DC (20, 91,
92, 123, 133), and splenic and liver macrophages (18, 54d, 96,
101, 117) are infected. DENV has also been shown to have
tropism for circulating mononuclear cells in blood and for cells
residing in the spleen, lymph nodes, and bone marrow of in-
fected AG129 mice (124). Leukocytes also have been shown to
be infected with DENV in experimentally infected nonhumans
primates (156). It should be noted that during secondary in-
fections with heterologous DENV, high concentrations of
DENV-specific immunoglobulin G (IgG) will complex newly
produced virus that adheres to and is taken up by mononuclear
cells. Following infection, mononuclear cells predominantly
die by apoptosis (61, 182), while abortively infected or by-

stander DC are stimulated to produce the bulk of mediators
that are involved in inflammatory (22, 47, 91, 133, 145) and
hemostatic (48, 60, 97, 120, 236) responses of the host. In this
regard, factors that influence the amount of target cells in-
fected, and consequently the levels of viremia, may determine
the ratio of different proinflammatory and anti-inflammatory
cytokines, chemokines, and other mediators, as well as the way
in which the inflammatory response affects the hemostatic sys-
tem (35, 59). Bone marrow stromal cells have also been shown
to be susceptible to infection with DENV (124, 171, 202).

Organ pathology. Although thousands of patients with con-
firmed dengue have been recognized in Southeast Asia and the
Americas in the past 60 years, autopsies have been performed
on only a small number of these patients, and whether those
cases are representative in reflecting the viral tropism in the
acute phase of infection is unclear. Histopathological research
is difficult to perform because fatal cases of DHF/DSS are rare
and occur mainly in remote parts of the world where appro-
priate laboratory technology is largely lacking and thus fresh or
frozen patient materials are rare. In addition, due to cultural
and religious practices, autopsy is not conducted on the ma-
jority of fatal cases, and usually families opt for rapid burial or
cremation. The interpretation of the pathological findings in
fatal cases of DHF/DSS in relation to viral tropism described
in the literature is complicated by a skewed age distribution,
different times of sample collection, and the range of different
techniques used to confirm the presence of virus in affected
tissues. DENV cell tropism can be inferred from studies that
had used in situ hybridization, immunohistochemistry, or a
combination of PCR and virus isolation techniques. A review
of the literature describing findings on autopsy samples from a
total of 160 fatal cases, mostly children or young adolescents (4
to 18 years old) who died within 36 h of developing shock,
revealed, in order of frequency, the presence of DENV in cells
in the skin (104), liver (13, 14, 53, 54d, 69, 96, 101, 104, 137,
164, 173, 199, 208), spleen (13, 14, 101, 164, 199, 208), lymph
node (13, 14, 101, 104, 173, 199, 208), kidney (14, 78, 101),
bone marrow (13, 78, 101, 173), lung (13, 78, 101, 137, 164,
173), thymus (106), and brain (164). The presence of infectious
virus in these samples was not always investigated, but in gen-
eral virus could be isolated only from liver and peripheral
blood mononuclear cells. The failure to isolate virus from most
organ samples may indicate that those tissues contained pri-
marily degraded virus or virus complexed with antibodies that
prevent infection of cells in vitro. In general, the presence of
DENV in several organs was not associated with gross or
microscopic evidence of severe organ pathology (17), which is
in agreement with the pathogenesis of DHF/DSS. Similar or-
gan tropism has been observed in the primate model, with high
concentrations of virus isolated from the skin and gastrointes-
tinal tract whereas low concentrations of virus were recovered
from the spleen, thymus, and several peripheral lymph nodes
(157). DENV has been recovered from the spleen, liver, pe-
ripheral lymph nodes, and central nervous system in alpha/beta
interferon (IFN-�/�)-deficient mice (13, 267). One notable
difference between humans and the mouse model is the tro-
pism of DENV for neuronal cells.

It is interesting to note that a generally used argument in the
literature is that when shock sets in, virus is no longer detect-
able in blood and therefore the host response should play a key
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role in pathogenesis (134, 166). Most autopsy data did not
specifically compare the presence of viral antigens or nucleic
acid in blood and autopsy samples, but the limited evidence
suggests that DENV replication may occur in some organs,
while viremia is no longer detectable (199). In agreement with
these findings it was shown in the rhesus macaque model that
DENV could be recovered from some autopsy samples but not
from blood.

The liver is commonly involved in DENV infections in hu-
mans and mouse models (181, 212), with some reports suggest-
ing an association between elevated liver enzyme levels and
spontaneous bleeding tendencies (54e, 124, 261). Cases of den-
gue-associated hepatitis have been described, which were char-
acterized by moderate midzonal hepatocyte necrosis, microve-
sicular steatosis, and councilman bodies (63, 78, 124, 181, 254).
Although DENV was found in a significant proportion of hu-
man hepatocytes and Kupffer cells, little inflammation was
seen within the liver, indicating that much of the observed
apoptosis and necrosis was virally induced. The higher preva-
lence of apoptosis over necrosis could explain the limited in-
flammation seen in the liver, a picture similar to what is ob-
served in the early phase of yellow fever or Rift Valley fever
(57, 190, 191). It has been proposed that the severe hepatic
damage seen, for instance, in yellow fever, Rift Valley fever,
and late Ebola virus infections results in decreased liver func-
tion, which could account for the decreased synthesis of coag-
ulation factors and development of coagulopathy (43, 269).
Although severe hepatic damage is not common in DENV
infections, elevated liver enzymes suggest that the liver is af-
fected, but the role of hepatic damage in coagulopathy and
disease severity remains to be established.

EC. EC play an important role in the coagulation response
upon severe systemic inflammation. The integrity of the EC
bed is physiologically regulated by many factors. The tropism
of DENV for EC in vivo remains controversial. Early studies of
skin biopsy specimens indicated that the microvasculature lo-
cated in the dermal papillae is the main site affected, although
DENV antigen was not detected in EC but was detected in
cells surrounding the microvasculature (21, 203). In contrast,
there is evidence for the presence of DENV antigen in the
pulmonary vascular endothelium (101). It is important to re-
alize, however, that the mere presence of viral RNA or antigen
in EC is no proof for viral replication. In contrast to mononu-
clear cells, EC do not carry Fc receptors and thus will not take
up immune-complexed virus. Therefore, the presence of viral
RNA in these cells would more likely be explained by a mech-
anism of pinocytosis (101). In vitro studies have shown that all
DENV serotypes can actively replicate in EC (7, 19, 95), and
infection results in functional rather than morphological dam-
age. It is not clear whether EC of different vascular-bed sys-
tems have different susceptibilities to DENV infection. In this
regard, it has been proposed that the coagulation responses
upon severe systemic inflammation by EC in different parts of
the vascular-bed system are not the same (200, 201). Similarly,
DENV infection patterns in microvascular cells in vitro suggest
that EC from different tissues have different activation patterns
(184). Although increased peripheral microvascular perme-
ability has been shown to occur in both DHF and DSS patients
(16), it is conceivable that EC from the pulmonary and abdom-
inal territories react in a specific way to either infection with or

the response to DENV infection (28, 39), resulting in the
selective vascular leakage syndrome characteristic of DHF/
DSS. Several studies suggest that vascular damage or dysfunc-
tion is central in the pathogenesis of DHF/DSS (26, 29, 39, 115,
168). It is interesting to note that selective apoptosis of the
microvascular EC in pulmonary and intestinal tissues has been
detected in fatal cases of DHF/DSS (137), providing a possible
explanation for the profound plasma leakage seen in pleural
and peritoneal cavities. In this regard, it is worth mentioning
that the major nonstructural protein 1 (NS1) of DENV has
been shown to bind preferentially to EC of lung and liver
tissues (9). It has been hypothesized that recognition of NS1 by
anti-NS1 antibodies could then contribute to the selective pul-
monary vascular leakage.

Virus Virulence

According to the virus virulence hypothesis, certain DENV
strains are responsible for more severe disease. DENV sero-
types can be further classified into different genotypes on the
basis of nucleotide variations. Viral genetic differences have
been associated with differences in virulence (51, 131, 206,
248). Remarkably, the first outbreak of DHF in the Americas
occurred in 1981, which coincided with the introduction of the
possibly more virulent DENV-2 Southeast Asian genotype,
while the less virulent indigenous DENV-2 genotype was al-
ready circulating in the region (118, 195–197). It has also been
proposed that intraepidemic evolution of the circulating
DENV might be responsible for increased severity of disease.
During the 1981 DENV-2 epidemic in Cuba, it was noted that
severity of disease manifestations and case-fatality rates were
increased toward the end of the epidemic (118, 119), suggest-
ing that the circulating DENV-2 might have become more
virulent through passage in hosts during the epidemic. A sim-
ilar situation was observed in the 1992 DENV epidemic in
Townsville, Australia (234), and again in Cuba during the 1997
epidemic (81). Analysis of DENV genomes has shown that
DENV indeed evolves during an epidemic (42, 198); however,
more data are needed to establish an association between
intraepidemic virus evolution and increased disease severity.
Epidemiological observations in the Americas and in Singa-
pore suggested that the sequence of infection with particular
serotypes and the time interval between primary infection and
secondary infection may play an important role in the devel-
opment of DHF. Epidemics with high incidences of DHF have
been linked to primary infection with DENV-1 followed by
infection with DENV-2 or DENV-3 (79, 83, 178). Further-
more, these studies indicated that the longer the interval be-
tween primary and secondary infections, the higher the risk of
developing severe disease. In addition, age has been shown to
influence the outcome of disease following a secondary infec-
tion with heterologous DENV (80). In Asia, the risk of severe
disease is greater in children than in adults, in contrast to the
Americas, where the adult population is mainly affected and
infection results in milder disease. This difference in disease
severity caused by Asian and American genotypes correlated
with structural differences in the two strains of DENV (51,
131). It has also been shown that different geographical DENV
strains or different serotypes may vary in their ability to infect
different cell types or cause severe disease (56, 251). However,
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the observation that DHF/DSS is seen primarily in a relative
small percentage of secondary DENV infections and to a much
lesser extent in primary infections even with allegedly virulent
strains suggests that host factors must be crucial determinants
of severe disease development. It is important to realize that
virulence has traditionally been considered a microbial prop-
erty, evaluated independently of the host or only in vitro or in
often inbred animals. However, an increasing body of evidence
incriminates the host immune response in the pathogenesis of
many microbial infections (31). Therefore, in studying DENV
virulence, both host and viral factors should be considered.

Activation of the Complement System

The complement system is one of the main humoral com-
ponents of the innate immunity and interacts closely with the
hemostatic system to provide the first line of defense against
pathogens. These innate immune mechanisms provide the host
with the time needed to maximally induce the more slowly
developing adaptive immunity. With regard to DENV, inves-
tigators noticed that around the time of defervescence, when
plasma leakage may become apparent, high levels of the acti-
vation products C3a and C5a are measured in the plasma,
followed by an accelerated consumption and a marked reduc-
tion of the complement components in patients with DSS (50,
174, 214). Therefore, it was hypothesized that complement
activation plays an important role in the pathogenesis of den-
gue. Comparison of global gene expression profiles in periph-
eral blood mononuclear cells of DF and DHF/DSS patients
also suggests the involvement of the complement system in
disease severity (249). However, many aspects of complement
activation and its role in DENV pathogenesis remain to be
investigated.

It has been proposed that NS1 is an important trigger for
complement activation (122). Binding of heterotypic antibod-
ies to NS1 expressed on infected cells may result in comple-
ment activation (8, 142). In addition, it is believed that NS1
released from infected cells can directly activate complement
factors present in the fluid phase (122). Production of the
C5b-C9 complex could then trigger cellular reactions and stim-
ulate the production of inflammatory cytokines that are asso-
ciated with development of DHF/DSS (8). Alternatively, the
C5b-C9 complex could independently trigger other local and
systemic effects (158), which may be implicated in intravascular
coagulation. It is important to realize that coagulation enzymes
can also activate the complement system, illustrating the ex-
tensive interaction that exists between the complement and the
coagulation system.

Several groups have shown that both IgG1 and IgG3 were
the predominant subclasses involved in the specific antibody
response in human DENV infections (116, 242). Both IgG
subclasses can fix and activate the complement system effec-
tively, whereas IgG2 and IgG4 are less effective in this respect
(90). Although IgG1, IgG2, and IgG4 are able to activate the
classical complement pathway, they require the unlikely event
of two IgG molecules binding close to the antigen in order to
promote C1q binding (90). IgG3, on the other hand, has the
capacity to self-associate into multivalent complexes, thereby
increasing functional affinity and the likelihood of C1q binding.
The presence of sialic acid in the glycans of IgG subclasses

could also affect their complement-fixing properties (100) and
possibly their infection-enhancing activity (65, 163, 266). It is
important to understand what determines the threshold of
activation needed and how activation participates in develop-
ment of DHF/DSS.

Transient Autoimmunity

Antibodies produced during a DENV infection have been
shown to cross-react with some self-antigens, but it is not clear
if production of these antibodies is associated with secondary
DENV infections. For instance, antibodies recognizing a linear
epitope in the E protein have been shown to bind human
plasminogen and inhibit plasmin activity (49, 64, 94, 159). The
presence of serum antibodies specific to NS1 also has been
shown to correlate with disease severity (134, 218). Cross-
reaction of anti-NS1 with cells of the liver, EC, and platelets
(33, 140, 177, 237) could be at the basis of this observation.
Anti-NS1 antibodies cross-reactive with EC could trigger these
cells to express nitric oxide (NO) and undergo apoptosis (141).
Although NO has been shown to inhibit DENV replication
(239), its overproduction could also lead to cell damage (141,
215). It is worth reiterating that morphological damage is not
a common observation in lethal cases of DHF/DSS. Anti-NS1
antibodies have also been shown to enhance expression of
interleukin-6 (IL-6), IL-8, and intracellular adhesion molecule
1 (ICAM-1) (138). Further studies are needed to see if cross-
reactivity of anti-NS1 with EC could lead to the increased
permeability that is characteristic of DSS. In addition, anti-
NS1 antibodies were also shown to cross-react with human and
mouse platelets and were able to cause transient thrombocy-
topenia and hemorrhage in mice (142, 237), indicating that
such cross-reactive antiplatelet antibodies are pathogenic. This
observation may have implications for vaccine development,
especially for live-attenuated vaccines. Therefore, it is impor-
tant to understand why the autoimmune phenomenon ob-
served in some DENV-infected patients does not persist. Since
the kinetics of anti-NS1 antibodies is difficult to reconcile with
the short duration of the sudden hyperpermeabilty event that
leads to shock, the autoimmune hypothesis has remained con-
troversial. Although it is likely that the cross-reactive antibod-
ies to self-antigens are of the short-lived IgM isotype (139,
204), vaccination strategies should not result in memory IgG
responses to such antigens. Clearly, more efforts should be
deployed in identifying the putative self-antigens that are rec-
ognized by anti-DENV antibodies and in understanding their
role, if any, in dengue pathogenesis.

Host Genetic Factors

Differences in disease severity can be seen at both the indi-
vidual and population levels. Several epidemiological studies
indicated that genetic factors constitute important components
in disease susceptibility. Several human HLA class I and II
alleles are associated with development of DHF (Table 1).
Polymorphism in the tumor necrosis factor alpha (TNF-�),
Fc� receptor, vitamin D receptor, CTLA-4, and transforming
growth factor � (TGF-�) genes has been associated with de-
velopment of DHF/DSS. Certain host factors, such as glucose-
6-phosphate dehydrogenase (G6PD) deficiency, may also con-
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tribute to increased replication of DENV in monocytes.
Deficiency in G6PD, a ubiquitous X-linked enzyme, is the most
common enzyme deficiency worldwide, with high prevalence
seen in the African population (175). G6PD deficiency causes
abnormal cellular redox, thereby affecting production of nitric
oxide, superoxide, and hydrogen peroxide. Oxidative stress is
known to affect viral proliferation and virulence by increasing
viral receptors on target cells or increasing production of viral
particles (264). Although, it is possible that G6PD deficiency
provides a more suitable milieu for viral replication, it is worth
noting that a low incidence of severe disease was reported in
populations of African origin in studies conducted in Cuba and
Haiti (54b, 54c). Polymorphism in the mannose-binding lectin
2 (MBL2) gene was shown to be associated with thrombocy-
topenia and an increased risk for developing DHF. MBL is a
member of the collectin family and is assumed to play an
important role in pattern recognition and innate immune de-
fense. Mutation in the promoter region of MBL results in low
serum levels of MBL, resulting in a common immunodefi-
ciency syndrome present in up to 10% of the U.S. population
(243). Polymorphism in transporters associated with antigen
presentation and human platelet antigen has also been associ-
ated with increased risk for developing DHF (224). The risk to
develop DHF and DSS following infection with DENV is likely
to be determined by a combination of multiple common ge-
netic traits, each with mild to moderate effects, predisposing to
a more severe form of disease. It remains to be determined
whether single gene defects that confer profound susceptibility
to DENV infection exist, as has been identified for a number
of common pathogens, such as pneumococci and mycobacteria
(185). In this respect, individuals who develop DHF or DSS
but are otherwise healthy may serve as a pool to identify
polymorphism and single-gene defects predisposing to the de-
velopment of the most severe forms of DENV infection.

Antibody-Dependent Enhancement

In most acute virus infection models, the presence of anti-
bodies, both neutralizing and nonneutralizing, correlates with
control, elimination, and eventually protection. However, a
possible detrimental role of virus-specific antibodies has been
described for several viruses as measured by in vitro enhance-
ment of infection of cells (72, 73, 93, 98, 189, 235, 238, 240,

255), a phenomenon that is not restricted to viral pathogens
only (150). This in vitro phenomenon was also described for
DENV infection (86), and epidemiological studies have shown
an increased risk of developing DHF/DSS after a secondary
DENV infection (74, 111, 207, 245). Halstead and colleagues
observed that the incidence of DHF and DSS peaked in two
populations of young children. One peak occurred in infants
(at the age of 6 to 9 months) who were infected with a DENV
serotype different from that which had infected their mothers.
The key observation there was that severe disease occurred in
infants for whom maternal antibodies had declined to low,
subneutralizing levels. The other peak was observed in young
children who had experienced an earlier, usually mild or sub-
clinical, infection and were later infected with a different
DENV serotype. These observations led to the conclusion that
subsequent infection of preimmune individuals with a different
DENV serotype could exacerbate rather than mitigate disease,
a phenomenon that was claimed to be caused by antibodies
and termed antibody-dependent enhancement (ADE) of dis-
ease (85). Several subsequent epidemiological studies provided
further circumstantial evidence for the role of preimmunity in
the pathogenesis of DHF (25, 80, 82, 112). ADE could result in
infection of a higher number of target cells, which could lead to
the high viral load observed in many studies (132, 221, 245, 251,
258, 259). Despite several clinical studies, evidence for the role
of ADE in human disease, such as in DENV infections, re-
mains circumstantial. Although some studies have shown a
correlation between enhancing activity of serum, high levels of
viremia, and an increased risk for DHF/DSS (38), not all cases
of severe disease are associated with ADE or preceded by
infection with a heterologous serotype or by high viral loads. In
some cases, when DHF/DSS is seen, the presence of viral RNA
became undetectable (132). In general, however, a high viral
load and the presence of virus on the day of defervescence are
important risk factors for the development of severe disease.
As stated above, it is not completely clear whether the absence
of viremia always correlates with clearance of virus from in-
fected tissues (155, 199).

An alternative or complementary hypothesis is that Fc�R-
mediated entry suppresses the antiviral immune response. For
instance, a study with Ross River virus showed that viral entry
via the Fc�R pathway could suppress antiviral genes and en-
hance IL-10 production in murine macrophages, while entry
via the normal cellular receptor did not change the antiviral
environment (135, 151). Furthermore, it was shown that virus
replication was necessary in order to promote IL-10 expres-
sion. Unfortunately, the Fc receptor that was involved in ADE
was not identified. It was also shown that DENV infection of
THP-1 cells via FcR suppressed the transcription and produc-
tion of IL-12, IFN-�, TNF-�, and NO but enhanced expression
of the anti-inflammatory cytokines IL-6 and IL-10 (36), indi-
cating that ADE of DENV infection also resulted in a milieu
that promoted viral replication. These results must be inter-
preted with caution, however, since the effect of ADE of in-
fection on gene expression may be cell dependent (20). This
effect of Fc�R-mediated entry on the antiviral state is not
unique to viral pathogens. For instance, Fc�R-mediated infec-
tion of murine macrophages with Leishmania amastigotes was
required to sustain persistent infection (108, 180, 244). Infec-
tion of humans and mice with Leishmania major in the pres-

TABLE 1. Summary of non-HLA and HLA-associated genetic
factors involved in the development of DHF/DSS

Genetic factor Reference(s)

Vitamin D receptor polymorphism ....................................143
Fc�RIIa polymorphism........................................................143
G6PD .....................................................................................35
MBL2 .....................................................................................1
TGF-� ....................................................................................45
TNF-�308A polymorphism .................................................66
CTLA-4..................................................................................45
Transporters associated with antigen

presentation and human platelet antigen......................224, 225
DC-SIGN polymorphism .....................................................205
HLA class I alleles A*01, A*0207, A*24,

B*07, B*46, B*51 .............................................................144, 232, 270
HLA class II alleles DQ*1, DR*1, DR*4.........................125, 187
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ence of antibodies resulted in development of chronic infec-
tion. In this regard, increased levels of IL-10 have been
associated with visceral and cutaneous leishmaniases, and
IL-10 has been flagged as having an important role in the
regulation of the immune response to this parasite, thereby
linking ADE to Th2 immune responses. This immunosuppres-
sive effect of Fc�R-mediated infection is in agreement with the
decrease in the proliferative responses to mitogen and recall
antigens that can be measured during acute DENV infection,
which is associated with both quantitative and qualitative de-
fects in the antigen-presenting cell (APC) population (148,
161).

The role of preimmunity conferred by vaccination against
DENV or other flaviviruses in the pathogenesis of DENV
infections has been studied in limited numbers of subjects.
Most clinical trials with candidate DENV vaccines were con-
ducted in areas where the disease is not endemic and the
chance of acquiring a natural infection is limited. One study
conducted in Thailand reported no differences in the incidence
of DHF in children who had received a live-attenuated DENV
vaccine and unvaccinated controls at 6 to 8 years after vacci-
nation (34). Experimental infection of monkeys with DENV-1
or DENV-4 followed by a secondary infection with DENV-3 a
year later did not result in increased viremia or disease (113).
The efficacy of DENV candidate vaccines was also not influ-
enced by preimmunity to DENV or other flaviviruses (77, 114).
The results from these experimental studies should be inter-
preted with caution, however, since the interval between pri-
mary and secondary infection may have been too short.

Cross-Reactive T-Cell Response

Although memory T cells cross-reactive with a heterologous
virus can provide partial protective immunity, they can also
cause substantial immunopathology (210). The role of CD8� T
cells during DENV infection is not entirely clear, but they may
play a role in clearing infection as well as in immunopathogen-
esis (3, 166). It is worth noting that a consistent finding in all
examples of T-cell-mediated pathology during acute or persis-
tent viral infections is morphological tissue damage as a result
of cytolysis or inflammation induced by the high numbers of
effector T cells. The efficiency of activated T cells in clearing
virus-infected cells is dependent on the avidity of the T-cell
receptor (TCR) for the HLA-peptide complex (222), and it is
assumed that cross-reactive T cells of low avidity for heterol-
ogous virus are not protective (110). Yet, there are only a
handful of virus-animal models where heterologous immunity
has been shown to cause pathology. These include the combi-
nations of infections with lymphocytic choriomeningitis virus
(LCMV) and vaccinia virus (VV), as well as influenza A virus
(IAV) and murine cytomegalovirus (MCMV) (209). In one
study, peripheral VV infection of LCMV-immune mice re-
sulted in immune-mediated panniculitis (211), whereas respi-
ratory VV challenge of LCMV-immune mice resulted in re-
cruitment of LCMV-specific CD8� T cells into the lung,
causing bronchiolitis obliterans (40). In the IAV-MCMV
model it was shown that IAV-immune mice challenged with
MCMV developed severe consolidating mononuclear pneu-
monia as a result of increased viral replication in the lungs (41,
209). One example of cross-reactivity leading to disease in

humans has also been described (250, 260). The authors of
those studies reported two cases of fulminant hepatitis C virus
infection associated with an unusually high frequency of CD8�

T cells. These T cells were shown to recognize a single epitope
within the hepatitis C virus NS3 that also cross-reacted with an
epitope in the IAV neuraminidase protein. These findings sug-
gest that cross-reactive memory T cells can modify the primary
immune response and modulate the immunopathologic re-
sponse to subsequent infection with other pathogens.

During the acute phase of a secondary infection of humans
with heterologous DENV, highly cross-reactive CD8� T cells
with high avidity for the infecting virus are preferentially acti-
vated (58, 99). The majority of these cross-reactive T cells
produce high concentrations of pro- and anti-inflammatory
cytokines such as IFN-�, TNF-�, and IL-13 but somewhat
lower levels of IL-10. These high-avidity cross-reactive CD8�

T cells die through apoptosis, but it is not clear whether cells
die as a result of activation-induced cell death or whether
apoptosis is selectively induced by cross-reactive epitopes.
Other studies have also suggested that epitopes can regulate
the level of proinflammatory cytokines produced by T cells
(146, 147). Alternatively, low-avidity cross-reactive CD8� T
cells would be preferentially expanded (165, 166). These cross-
reactive T cells react differently to the heterologous epitopes
than to homologous epitopes by producing high levels of proin-
flammatory cytokines, but they lose their cytolytic activity. De-
layed virus clearance would prolong activation of such cross-
reactive CD8� T cells, which then results in the production of
high levels of cytokines such as TNF-�, IL-6, or other soluble
factors that affect vascular permeability. The phenomenon
where cross-reactive memory T cells for the primary infecting
virus are more efficiently activated, due to the increased fre-
quency and higher activation state of memory cells, has been
called original antigenic sin (OAS). This phenomenon has also
been described for LCMV in mice (110). During a secondary
infection with a heterologous serotype, cross-reactive epitopes
preferentially reactivate the larger number of memory T cells
against the priming virus more effectively than they activate
naïve T cells. However, in accordance to what has been de-
scribed for several other systems, it is possible that during a
heterologous DENV infection, only a very small subset of
cross-reactive memory T cells will be stimulated to expand
because of a narrowing TCR repertoire. This narrowing of the
TCR repertoire in combination with the fact that each indi-
vidual has a unique TCR specificity (private TCR [52, 107])
would result in dominant responses that are unique for indi-
viduals. This could explain the variability seen in disease out-
come upon secondary infection with heterologous DENV.
Much less is known about the CD4� T-cell response during
DENV infection. However, evidence exists that sequential in-
fection with different DENV serotypes may also alter the cy-
tokine response of cross-reactive CD4� T cells, resulting in
production of proinflammatory cytokines (154) that may con-
tribute, together with the CD8� T-cell response, to a detri-
mental cytokine release.

Soluble Factors

It is strongly believed by many scientists studying dengue
pathogenesis that a high viral load and activation of high num-
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bers of nonprotective T cells result in a “storm” of inflamma-
tory cytokines and other mediators, leading to the increased
plasma leakage characteristic of DHF/DSS. One of the most
daunting challenges in DENV research is the identification of
soluble factors that can mediate, either alone or in combina-
tion, the functional changes induced in EC that are associated
with the increased plasma leakage. Several studies have shown
that concentrations of multiple cytokines and other mediators,
as well as soluble receptors, are significantly increased during
severe dengue infections (reviewed in reference 15). Higher
plasma levels of IL-1�, IL-2, IL-4, IL-6, IL-7, IL-8, IL-10,
IL-13, IL-18, TGF-1�, TNF-�, and IFN-� have been found in
patients with severe DENV infections, in particular in patients
with DSS (10, 23, 32, 103, 128, 169, 172, 183, 192, 194, 236).
These studies analyzed samples from infants, children, and
adults infected with different DENV serotypes. It is reasonable
to assume that synergistic interactions between these cytokines
will occur. Other mediators and soluble factors found to be
increased in severe disease include vascular endothelial growth
factor (VEGF), granulocyte-macrophage colony-stimulating
factor, monocyte chemoattractant protein 1 (MCP-1), macro-
phage migration inhibitory factor, thrombopoietin, soluble vas-
cular cell adhesion molecule 1 (VCAM-1), soluble ICAM-1,
von Willebrand factor antigen, thrombomodulin, E-selectin,
tissue factor (TF), plasminogen activator inhibitor 1 (PAI-1),
and tissue plasminogen activator (23, 26, 27, 29, 44, 46, 115,
130, 153, 223, 229). Analyses of several studies reveal conflict-
ing results, as some studies report increased levels of plasma
cytokines while others do not. These discrepancies are attrib-
uted mainly to the study design and experimental setup, the
laboratory tests used to measure cytokines, and the statistical
tests applied for the analyses of the results. Furthermore, the
time of sampling during infection is difficult to standardize, and
this may explain some of the discrepant results. The observa-
tion that plasma leakage occurs mainly in the pulmonary and
peritoneal cavities justifies the question whether levels of cy-
tokines and mediators in plasma indeed reflect concentrations
in different compartments. Infection of humans and animals
with seasonal IAV (H1N1 or H3N2) indicated that levels of
cytokines and chemokines were much higher locally, at the site
of infection, than in plasma or serum (68, 71, 88). In contrast,
H5N1 causes fulminant disease in humans, characterized by
diffuse alveolar damage and progression to multiorgan dys-
function. In this case disease severity correlates strongly with
cytokine levels, both locally and systemically (54a, 129). For
instance, hemophagocytic syndrome has been proposed as a
cause of the multiorgan dysfunction observed in patients with
confirmed H5N1 fatal infections (247, 268). Notably, hemo-
phagocytic syndrome in fulminant virus infections or autoim-
mune diseases as well as macrophage activation syndrome in
hematopoietic cell transplantation has been associated with
excessive cytokine production (127, 193, 227). The production
and actions of cytokines are thus critically dependent on the
context in which they occur. More specifically designed studies
are needed to dissect the relationships between levels of sev-
eral cytokines in the pulmonary (pleural fluid) and peritoneal
(ascites) regions compared to plasma or serum in severe
DENV infections. It is conceivable that differences in viral
replication and damage to selective EC in vivo may account for

a differential cytokine profile, resulting in different vascular
permeability patterns.

Some evidence to support a role for cytokines comes from
animal models of increased vascular permeability and hemor-
rhage during DENV infections (39, 217). TNF-�, IL-1�, IL-6,
and IL-10 levels have been shown to be high in sera of DENV-
infected mice (6). In addition, several in vitro experiments have
demonstrated high levels of cytokines in culture supernatants
of DENV-infected (primary) DC (20), monocytic cells (47,
162), and EC (11). In the presence of anti-NS1 antibodies, EC
produce MCP-1, IL-6, and IL-8 in vitro (138). T cells interact-
ing with DENV-infected cells may also produce TNF-�, IFN-�,
IL-4, and/or IL-10 (91).

The biological roles of some cytokines and soluble factors
and the implication in the development of hemorrhage have
been inferred and are summarized in Table 2. The cytokines
TNF-� and IL-10 are of particular interest. For instance, in
one study a positive correlation between soluble TNF-� con-
centrations and thrombocytopenia was found (23). Further-
more, the TNF-�308A allele, which leads to overproduction of
the cytokine, is more commonly found in DHF patients (66).
These observations, together with experiments showing that
TNF-� is capable of increasing EC permeability in vitro (55),
suggest its possible role in pathogenesis of DHF. In a mouse
model of DENV-induced hemorrhage, high levels of TNF-� in
tissues correlated with EC apoptosis and hemorrhage (39). It is
worth noting that in most models of immunopathology, pathol-
ogy is mediated via direct lysis of infected cells by TNF-�, and
it has been shown that CD8� T-cell cytotoxicity can be medi-
ated exclusively by TNF-�. Plasma levels of IL-10 were shown
to correlate with platelet decay in DENV-infected patients (10,
132) and may modulate the activation of coagulation. IL-6 is a
major mediator of fever and acute-phase reactions and is pro-
duced by macrophages and activated EC. Furthermore, IL-6
and IL-8 mediate derangement of coagulation and fibrinolysis,
whereas TNF-� and VEGF act synergistically to induce ex-
pression of TF on EC (216). TNF-� has a direct effect on
production of IL-6 and thus an indirect effect on coagulation
and fibrinolysis. IL-2 plays a central role in the regulation of
the immune response, as it induces potent proliferation of T
cells and to a lesser extent of B cells, stimulates synthesis of
IFN-� and TNF-�, and may damage the integrity of EC. IL-8
has an effect on the expression of adhesion molecules such as
ICAM-1 and VCAM-1. MCP-1 causes EC tight-junction open-
ings in vitro (231) and elevates endothelial permeability
changes in vivo (265). IL-13 is a pleiotropic type 2 cytokine,
and its receptor is expressed on vascular EC. IL-13 downregu-
lates expression of proinflammatory cytokines IL-1, IL-6, IL-8,
and IL-12. Furthermore, IL-13 is a potent stimulator of matrix
metalloproteinase 9 (MMP-9) and cathepsins and plays impor-
tant roles in the pathogenesis of emphysema in animal models
of respiratory infections. Interestingly, DENV-infected cells
have been shown to produce MMP-9, which increases vascular
permeability in vitro (145). IL-18 is a type 1 cytokine, produced
mainly by monocytes, macrophages, and DC, and has a strong
proinflammatory activity. In vitro, IL-18 upregulates expres-
sion of adhesion molecules (E- and P-selectins) on EC, which
may contribute to a procoagulant state (167). High levels of
IL-18 may be associated with neutropenia, thrombocytopenia,
and elevated levels of liver enzymes. During DENV infection,
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CD4� T cells have been shown to produce a unique cytokine
called the cytotoxic factor, with peak amounts measured in
DHF/DSS cases (2, 37). The validity of these observations has
to be confirmed by independent experiments.

Clearly, there is a substantial redundancy between cytokines
(i.e., the lack of one specific cytokine may be compensated for
by another cytokine with overlapping activities), making it dif-
ficult to explain DHF/DSS pathogenesis on the basis of a single
cytokine. It is more likely that multiple cytokines contribute
simultaneously in a complex way to the development of DHF/
DSS. Apart from any other considerations, it is reasonable to
assume that cytokines and other soluble mediators of the func-
tional, and to a lesser degree the morphological, pathology
characteristic of DHF/DSS are also essential for efficient viral

clearance. The fact that DSS patients recover extremely rapidly
after appropriate fluid therapy suggests that cytokines do not
cause tissue destruction like in many immunopathology models
but rather cause a reversible EC dysfunction.

THE INTERGRATED VIEW

The mechanisms leading to the severe manifestations of
DENV infections are still not completely understood but are
likely to be multifactorial (Fig. 1). The genetic background of
the host influences the way that the immune response reacts to
DENV infection. Upon inoculation of DENV into the dermis,
Langerhans cells and keratinocytes will primarily be infected.
The virus subsequently spreads via the blood (primary viremia)

TABLE 2. Summary of soluble factors that are or are likely to be associated with development of DHF/DSS

Soluble factor Biological function in relation to pathogenesis

Thrombin ..............................................Thrombin is thought to act near the site at which it is produced. Thrombin converts circulating fibrinogen
to fibrin and triggers platelet activation, which results in platelet aggregation. Thrombin activates EC
and increases EC permeability, leading to plasma leakage and edema formation. Thrombin is
chemotactic for monocytes and is mitogenic for lymphocytes and mesenchymal cells. Activated platelets
release several soluble factors with inflammatory, antimicrobial, and immune modulating activity, such
as MMP-9, which enhances EC permeability. Activated platelets also secrete soluble CD40 ligand,
which can induce EC to produce reactive oxygen species, adhesion molecules, chemokines, and TF.
Thrombin also inhibits IL-12 production by mononuclear cells.

C3a and C5a .........................................C3a activates platelets and enhances their activation and adhesion properties. C5a enhances blood
thrombogenicity by upregulating TF and PAI-1 expression on various cell types. C5a stimulates
monocytes to produce IL-1, IL-6, IL-8, and TNF-�. Activation of these complement factors is
enhanced by thrombin, which cleaves C3 and C5 to C3a/b and C5a/b, respectively. Activated platelets
are also involved in C3 cleavage, which induces activation of the classical complement pathway.

C4b.........................................................C4b binds to protein S and thereby inhibit the anticoagulant properties of activated protein C-protein S
complexes.

IL-1 ........................................................IL-1� is major mediator of platelet-induced activation of EC, causing enhanced chemokine release and
upregulation of VCAM-1. VCAM-1 promotes adhesion of monocytes to the endothelium. IL-1
increases the expression of TF on EC and suppresses the cell surface anticoagulant activity of EC.
Depending on its concentration, it may upregulate TNF-� production or downregulate TNF-receptors.
IL-1 stimulates the hypothalamus and, as a consequence, the pituitary gland to produce anti-
inflammatory mediators such as endorphins, melanocyte-stimulating hormone, and adrenocorticotropic
hormone.

IL-6 ........................................................Together with other proinflammatory cytokines, IL-6 potentiates the coagulation cascade. It can
downregulate production of TNF-� and TNF receptors. IL-6, together with IL-1, is a potent inducer of
fever.

IL-8 ........................................................IL-8 is a chemokine that is abundantly produced by monocytes, EC, and hepatocytes. EC damage in the
liver may elevate systemic concentrations. Activation of the coagulation system results in increased
expression of IL-6 and IL-8 by monocytes, while the APC-PS anticoagulation pathway downregulates
production of IL-8 by EC.

IL-10 ......................................................IL-10 is produced by monocytes and regulatory T helper cells and may cause platelet decay. Thrombin
can stimulate IL-10 production by monocytes. The cytokine downregulates the inflammatory response
and creates a proviral survival milieu. IL-10 promotes OAS by inhibiting development of effector T
cells to new epitopes. IL-10 also inhibits the expression of TF and inhibits fibrinolysis.

TNF-�....................................................TNF-� in a potent activator of EC and enhances capillary permeability. TNF-� upregulates expression of
TF on monocytes and EC and downregulates expression of thrombomodulin on EC. It also activates
the fibrinolysis system. TNF-� enhances expression of NO and mediates activation-induced death of T
cells, and it has therefore been implicated in peripheral T-cell deletion.

TGF-�....................................................TGF-� may act as a proinflammatory or anti-inflammatory cytokine, depending on its concentration.
Early in infection, low levels of TGF-� may trigger secretion of IL-1 and TNF-�. However, later in
infection, the cytokine inhibits the Th1 response and enhances production of Th2 cytokines such as IL-
10. TGF-� increases expression of TF on EC and upregulates expression and release of PAI-1.

NO .........................................................NO has a multifaceted role in inflammatory reactions. It enhances vasodilatation and formation of
edema. It upregulates TNF-� production in monocytes. At low concentrations it protects cells from
apoptosis, while at high concentrations it induces apoptosis. NO downregulates expression of MHC
class II and suppresses expansion of Th1 cells. Maintenance of the EC barrier requires a basal level of
NO. Both a lack of NO and high NO levels destabilize EC junctions.

VEGF ....................................................VEGF is a key driver of vascular permeability. It reduces EC occludins, claudins, and VE-cadherin
content, all of which are components of EC junctions. Upon activation, VEGF stimulates expression of
ICAM-1, VCAM-1, and E-selectin in EC.
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and infects tissue macrophages in several organs, especially
the macrophages in the spleen. The replication efficiency of
DENV in DC, monocytes, and macrophages, as well as its
tropism for and replication efficiency in EC, bone marrow

stromal cells, and liver cells, collectively determine the viral
load measured in blood. This viral load represents an impor-
tant risk factor for development of severe disease. Essentially,
infection of macrophages, hepatocytes, and EC influences the

FIG. 1. Proposed model for the pathogenesis of DF, DHF, and DSS, based on an integrated view of the data presented (see section The
Integrated View in the text). Black arrows, processes leading to the indicated event; colored boxes with white centers, pathological events. Each
event will ultimately affect the EC or the hemostatic system (purple arrows).
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hemostatic and the immune responses to DENV. Infected cells
die predominantly through apoptosis and to a lesser extent
through necrosis. Necrosis results in release of toxic products,
which activate the coagulation and fibrinolytic systems. De-
pending on the extent of infection of bone marrow stromal
cells and the levels of IL-6, IL-8, IL-10, and IL-18, hemopoiesis
is suppressed, resulting in decreased blood thrombogenicity.
Platelets interact closely with EC, and a normal number of
functioning platelets is necessary to maintain vascular stability.
A high viral load in blood and possibly viral tropism for EC,
severe thrombocytopenia, and platelet dysfunction may result
in increased capillary fragility, clinically manifested as pete-
chiae, easy bruising, and gastrointestinal mucosal bleeding
(170), which is characteristic of DHF. At the same time, infec-
tion stimulates development of specific antibody and cellular
immune responses to DENV. When IgM antibodies that cross-
react with EC, platelets, and plasmin are produced, the loop
that results in increased vascular permeability and coagulopa-
thy is amplified. In addition, enhancing IgG antibodies bind
heterologous virus during secondary infection and enhance
infection of APCs, thereby contributing to the increased viral
load that is seen during secondary viremia in some patients.
Furthermore, a high viral load overstimulates both low- and
high-avidity cross-reactive T cells. In the context of certain
HLA haplotypes, cross-reactive T cells delay virus clearance,
while producing high levels of proinflammatory cytokines and
other mediators. Ultimately, these high levels of soluble fac-
tors, many of which still remain to be identified, induce
changes in EC leading to the coagulopathy and plasma leakage
characteristic of DSS.

DISCUSSION

Here we review and discuss the plethora of hypotheses about
DHF and DSS pathogenesis presented in the literature. Most
of these hypotheses are not mutually exclusive, and together
they harbor multiple elements that collectively may explain
most of the phenomena observed in the multiple presentations
of DENV infection. Table 3 addresses major challenges to the
hypotheses described in this review. The pathogenesis of both
DHF grades I/II and DSS is complicated and multifactorial,
involving both viral and host factors. However, necessary
and/or sufficient factors have still not been identified. It may be
questioned whether factors that explain the pathogenesis of
DHF and DSS in all patients do exist. Genetic predisposition
may have a significant effect on disease outcome. Only a few
studies have studied host genetics with regard to the severity of
DENV infection. Most commonly, clinically significant genetic
variations consist of single-nucleotide polymorphisms within
genes that affect disease pathways. Many polymorphisms have
small and independent effects on disease outcome and often
act in concert with other polymorphisms and environmental
risk factors (24). This eventually results in complex and vari-
able disease outcomes. Studies using a combination of geno-
mics (transcriptomics, proteomics, and metabolomics), single-
nucleotide polymorphism genotyping, and careful phenotypic
disease characterization in well-defined cohorts should be
adopted to identify individual molecular markers of DHF/DSS.

As discussed in this review, the pathways to DHF involve

both viral and host-specific elements. The following points can
be summarized.

(i) In contrast to what is generally believed, the involvement
of liver and of EC in different organ systems seems to be an
important factor in the pathogenesis of dengue. In this respect,
it is of paramount importance to understand how EC lining the
thoracic and peritoneal cavities are affected. It is worth noting
that despite the increased vascular permeability measured in
both DHF and DSS patients (16), plasma leakage is highly
restricted to the pleural and peritoneal cavities, while no gen-
eralized edema is seen. No specific vascular lesions are found
in fatal cases of DENV infections. Viruses known to cause
hemorrhagic fever, such as viruses belonging to the families
Arenaviridae (Junin virus and Lassa virus), Filoviridae (Ebola
virus and Marburg virus), Bunyaviridae (Hanta virus and Rift
Valley virus), and Flaviviridae (yellow fever virus), are also not
associated with EC damage (43, 70). In these cases, the patho-
genesis of hemorrhagic diathesis is the result of severe liver
damage leading to decreased production of coagulation pro-
teins and albumin. Increased vascular permeability as a result

TABLE 3. Challenges for DENV research

Challenge

Developing an animal model of dengue disease
Understanding the role of several DENV strains and serotypes in

DENV tropism in vivo
Elucidating the role of intrahost evolution of DENVs in emergence

of virulent strains and the role of genetic variants and different
serotypes in promoting OAS, ADE, transient autoimmunity, and
unbalanced T-cell responses

Elucidating the role of DENV proteins, especially NS1 in
pathogenesis

Understanding the interplay between the hemostatic and the
complement systems in DENV infection

Elucidating the mechanisms by which innate immunity regulates
memory B- and T-cell generation, maintenance, and activation
during primary and secondary DENV infections

Elucidating the role of autoimmunity in dengue pathogenesis
Identifying serotype-specific linear and conformational B-cell

epitopes and understanding their role in primary and anamnestic
B-cell responses

Understanding the role of DENV immune complexes in the
signaling network within target cells, especially APCs, and how it
influences virus replication and priming of immune responses

Elucidating the role of the T-helper and T-cytotoxic cell repertoire,
especially the private repertoire, on evolution of T-cell responses
during primary and sequential heterologous DENV infections

Understanding the role of OAS in T-cell-mediated immunity in
heterologous DENV infections and elucidating the factors that
determine occurrence of OAS for T cells and its role in
pathogenesis

Identifying soluble factors that are necessary or sufficient to induce
endothelial cell dysfunction and coagulopathy seen in DHF/DSS

Identifying critical components of tight junctions and adherent
junctions present in the vascular beds affected during DHF/DSS
and elucidating the role that different soluble factors play in
expression and functions of the several components of these
junctions

Investigating the effect of demographic history of infection on the
type of B- and T-cell responses elicited during primary and
secondary DENV infections and on pathogenesis

Elucidating the role of host gene polymorphism, such as FcR,
cytokines, chemokines, etc., in DHF/DSS pathogenesis

Understanding race- and age-dependent susceptibility to severe
DENV infection
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of hypercytokinemia and a reduction of plasma osmotic pres-
sure due to severe liver damage contribute to edema forma-
tion, as is seen in severe cases of Lassa fever (67). In addition,
replication of most of these viruses in the adrenal gland con-
tributes to hypotension and sodium loss, which collectively
result in hypovolemic shock. The shock syndrome associated
with DSS, however, is unique to DENV infection, and it is of
paramount importance to understand how the EC lining the
thoracic and peritoneal cavities are affected.

(ii) Hemorrhagic manifestations as seen in DF and DHF
grades I/II are usually mild and manifested as petechiae dis-
seminated in the skin, with an increased tendency of bleeding
upon bruising. These manifestations are found early after on-
set of fever and coincide with the window of viremia and
degree of thrombocytopenia (121). The pathogenesis of mild
hemorrhages seen in DF and DHF grades I/II may be ex-
plained by increased capillary fragility as a result of thrombo-
cytopenia or platelet dysfunction, virus infection of EC, and
high concentrations of cytokines that disrupt vascular integrity
(54, 170, 257). Most mediators that increase vascular perme-
ability affect the organization of the adherens junctions (AJ), a
complex network of adhesion proteins that are linked to intra-
cellular cytoskeleton (54), causing retraction of EC and open-
ing of intercellular gaps. Alternatively, the stability of the junc-
tions may be weakened, resulting in vascular fragility.
Weakness of the junctions is not reflected by morphological
changes, as is exemplified by the fact that internalization of
VE-caherin or phosphorylation of AJ proteins reduces junc-
tion stability without the opening of intercellular gaps (4, 62).
It is noteworthy that the major anatomical sites of bleeding in
patients with severe thrombocytopenia are the intercellular
gaps in the postcapillary venules, which are rich in AJ (170).
Platelets play a role in maintaining the integrity of AJ by
constitutively releasing an array of factors such as platelet-
activating factor and sphingosine-1-phosphate, which are re-
leased as a result of fluid shear stress (5). Therefore, interrup-
tion of platelet-EC interaction by severe thrombocytopenia or
platelet dysfunction may lead to increased vascular fragility,
resulting in hemorrhages or increased tendencies for hemor-
rhages.

(iii) Several studies have shown that plasma leakage occurs
before defervescence or hemoconcentration. As mentioned
before, the WHO case definition has mainly a clinical diagnos-
tic purpose and is not an appropriate selection criterion for
pathogenesis studies. Pathogenesis studies should be designed
to understand the differences between (i) no bleeding tenden-
cies, (ii) increased manifestations of bleeding or tendencies for
bleeding, or (iii) plasma leakage as measured by sonography
and hemoconcentration. It is crucial to study the pleural fluid
in order to understand the pathophysiological cause of plasma
leakage and why it is restricted to or more pronounced in
thoracic and peritoneal areas.

(iv) Antibody-mediated enhancement of infection either re-
sults in a high viral load or represents the link to type 2
cytokine responses.

(v) In some viral systems, cross-reactive CD8� T-cell re-
sponses are involved in the development of pathological
changes during secondary infection with a related but heterol-
ogous virus. DENV cross-reactive T cells, however, lose their
cytolytic activity, while producing high levels of proinflamma-

tory cytokines and other mediators. The role that preexisting
immunity to other flaviviruses plays in the development of
severe dengue should be investigated.

(vi) Soluble host factors seem to be central in the pathogen-
esis of both DHF grades I/II and DSS. Although several of
these have been associated with severe disease, their concen-
trations are also elevated in other viral infections without re-
sulting in plasma leakage. High concentrations of cytokines
such TNF-�, IL-6, and IL-8 have been implicated in capillary
leakage and development of hypovolemic shock in patients
with anaphylaxis, meningococcal sepsis, and Jarish Herxheimer
reaction (105, 176, 233). Similarly, high concentrations of cy-
tokines have been associated with unfavorable outcomes of
filovirus (253), arenavirus (89, 160), and yellow fever virus
(241) infections. However, the shock syndrome associated with
DSS does not occur in these conditions. Therefore, it may be
speculated that soluble factors incriminated in the increased
vascular permeability seen in DSS must be qualitatively and
quantitatively different from those involved in the conditions
described above.
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