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Phage lambda is among the simplest organisms that make a developmental decision. An infected bacterium
goes either into the lytic state, where the phage particles rapidly replicate and eventually lyse the cell, or into
a lysogenic state, where the phage goes dormant and replicates along with the cell. Experimental observations
by P. Kourilsky are consistent with a single phage infection deterministically choosing lysis and double
infection resulting in a stochastic choice. We argue that the phage are playing a “game” of minimizing the
chance of extinction and that the shift from determinism to stochasticity is due to a shift from a single-player
to a multiplayer game. Crucial to the argument is the clonal identity of the phage.

Organisms typically use information from the environment
to suitably modify their behavior. Some of these can be con-
sidered “strategic” decisions for maximizing the chances of
success of the population. For example, many organisms are
able to adjust their reproductive strategies according to envi-
ronmental conditions. A typical signal that often triggers
changes in the reproductive strategy is population density (1,
6). Temperate bacteriophages are among the simplest organ-
isms that are able to sense population density and choose their
reproductive strategy accordingly. In general, temperate phage
choose to stay dormant and replicate along with the host (ly-
sogeny) rather than making many virions and killing the host
(lysis) when larger numbers of phage attack a bacterial popu-
lation (4, 7, 10). Phage lambda’s choice between lysis and
lysogeny has become a paradigm for developmental decisions
(12). For this lysis-lysogeny decision, we use game theory to
understand under what conditions different strategies might be
optimal. In particular, we focus on the determinism versus the
stochasticity of the strategy. We show that deterministic strat-
egies are best when the phage has minimal information and
must consider itself as the only “player” in the game. In con-
trast, having multiple identical players can make a stochastic
strategy the best.

We consider the phage to be playing a game whose pur-
pose is to minimize the chance of extinction. For single-
player games of this kind, where the player has several options
but limited information, the optimal strategies are typically
deterministic (13). And it is indeed the case that the lysis-
lysogeny decision is often deterministic. This statement is
somewhat at odds with the general perception that stochastic-
ity plays an important role in the decision, a view initiated by
reference 2, which invoked stochasticity to explain Kourilsky’s
measurements (7) of the frequency of lysogenization in
lambda. However, our analysis of Kourilsky’s data (7, 8) (Fig.
1; see also Materials and Methods) shows that (i) when a single
phage infects a bacterium (i.e., when the multiplicity of infec-

tion [MOI] is 1), it invariably goes lytic and (ii) when the MOI
is 2, the decision is stochastic, with a slight preference toward
lysogeny (this preference increases as the MOI increases).

The stochasticity in the strategy for an MOI of 2 refers to the
fact that seemingly identical infection events lead to different
developmental paths. This inhomogeneity in the decision could
reflect either true randomness (for example, due to the sto-
chasticity of individual molecular events) or inhomogeneity
across different infected cells (for example, the cell size could
affect the decision [14]).

The determinism in the phage decision for an MOI of 1 fits
the game-theoretic expectation, as we will show, but then, the
conundrum is this: why is the decision stochastic for an MOI of
2? In this paper, we argue that the shift from determinism at an
MOI of 1 to stochasticity at an MOI of 2 is analogous to the
shift from deterministic to stochastic strategies in single-player
versus multiplayer games.

THEORY

Game theoretic view of the lysis-lysogeny decision. We con-
sider the set of all phages in an infected bacterium to be one
player in a game where the choice is between lysis and lysog-
eny. Note that individual phage are not the players, as multiple
phage inside the same bacterium cannot choose separately
between lysis and lysogeny; it is the infected bacterium with all
the phage that it contains that goes into one state or the other.
From the point of view of a given player, one round of the
game starts with the infection and the lysis-lysogeny decision
and continues until one of the phage offspring released from
the bacterium (either on immediate lysis or later, following
prophage induction) subsequently infects another bacterium.
The purpose of the game is to minimize the chance of extinc-
tion of the phage population. Whether this is best achieved by
deterministically going lytic/lysogenic or making a stochastic
decision may depend on the environmental conditions. How
many bacteria are there? Do the phage outnumber the bacte-
ria? Are the bacteria starving or growing well? The MOI pro-
vides some information about the first two questions, specifi-
cally, the relative numbers of phage to bacteria.
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(i) MOI of 1. Here, the phage in the bacterium has the least
possible information about the surrounding environment. It
does not know how many phage or bacteria are present or
whether the phage outnumber the bacteria or not. In this
situation of minimal information, we assume that the infected
bacterium must play a solitary game, where it assumes it is the
only player.

(ii) MOI of 2. Now, the phage inside the bacterium do have
some information about the environment. First, having two
phage simultaneously infect the same bacterium means it is
quite likely that the phage outnumber the bacteria. It is prob-
able, in this case, that there are multiple infected bacteria. We
assume that the strategy takes into account the presence of
multiple players all playing the same game.

The game being played by the phage involves weighing the
chance of extinction in lysogeny (the bacterium and its descen-
dants may die before the phage escapes it by prophage induc-
tion) versus the chance of extinction if it goes lytic (for exam-
ple, due to a toxic substance that kills phage before they find
other bacteria to infect). We can set up a simple payoff matrix
(Fig. 2) that reflects the consequences, for the phage popula-
tion, of the different choices. We use p1 to represent the net
chance that all the free phage (the ones outside bacteria) die.
We denote by p2 the chance that each lysogenized bacterium
and all its descendants die before the phage escape by pro-
phage induction.

Throughout the rest of this paper, we assume that the two
options are asymmetric in the sense that the lytic option ex-
poses all phage to the current, possibly dangerous, conditions
and that the lysogenic option initiates a lineage of lysogenized
bacteria. As each such lineage could stretch far into the future,
the fate of each lysogen is postponed to a later time and can be
assumed to be independent of the fate of other lysogens.

MATERIALS AND METHODS

Interpreting Kourilsky’s data. Kourilsky measured the probability of lysogeny,
Plys, for different values of the average phage input (API) (a) for lambda phage
infecting a population of Escherichia coli under conditions described in refer-
ences 7 and 8. The API is simply the ratio of the total number of phage to the
total number of bacteria. The API is thus the MOI averaged over the whole
bacterial population. From the point of view of a given bacterium, the API
reflects the probability of its being infected. The probability of lysogeny versus
API curve, Plys (a), shown in Fig. 1, is a combination of two probabilities:

Plys�a� � �
m�0

� Q�m� � P�m,a�, where Q(m) is the probability of lysogeny at a

given MOI (m) and P(m,a) is the probability that a bacterium will be infected by
m phage at a given API (a). We assume, as is consistent with Kourilsky’s

data (see Fig. 4 in reference 7), that P(m,a) is Poissonian: P�m,a� � am
e�a

m!, i.e.,

adsorption and injection of phage DNA are random, and the same is true for all
bacteria in the population. The only unknown, then, is Q(m), and one can try
different functions to fit the data. The best fits for Q(m) are shown in Table 1.
Notice that the observed Plys(a) (Fig. 1) scales as the second power of a for a
small API. That is, Plys(a) is �a2 for small a. In words, the probability of lysogeny
is proportional to the probability that two phage infect a bacterium (i.e., the
chance of getting an MOI of 2). This is precisely what constrains Q(1) to be equal
to zero. The orange curve in Fig. 1 shows that if Q(1) differs from zero by even
a small amount (5%), the resultant Plys(a) curve scales with the first power of a at
a small API and therefore clearly deviates from the data. Even if the chance of
lysogeny at an MOI of 1 were as low as 1%, the resultant Plys value would be

FIG. 1. Red circles show the fraction of bacteria that entered ly-
sogeny as a function of the API (overall phage/bacterium ratio) in
Kourilsky’s experiments (7, 8, 9). Solid lines are theoretical estimates
using different functions for Q(m), which is the probability of going
lytic as a function of the MOI (m) (see Materials and Methods). As
shown by the red curve, the best fits � estimated 95% intervals (Table
1) for Q(m) are 0.004 � 0.001, 0.70 � 0.04, and 0.99 � 0.08 for m
values of 1, 2, and 3, respectively. Even a small amount of stochasticity
in the decision for an MOI of 1 is inconsistent with the data: for the
orange curve the Q(m) values are 0.05, 0.70, and 0.99 for m values of
1, 2, and 3, respectively.

FIG. 2. Phage game payoff matrix. p1 is the probability that all free
phage die, and p2 is the probability that each lysogenized bacterium
and all its descendants die before the phage escapes. q is the proba-
bility that the infected bacteria go lytic. “Cost” represents the proba-
bility of phage extinction in a given situation and, for simplicity, is set
to either 1 or 0.

TABLE 1. Best fits for Q(m), found using the least-square
fitting of log10 Plys

a

m Q(m)

1 .........................................................................................0.0038 � 0.0012
2 .........................................................................................0.6960 � 0.0408
3 .........................................................................................0.9886 � 0.0769
4 .........................................................................................0.9886 � 0.0537
5 .........................................................................................0.9886 � 0.0487
6 .........................................................................................0.9886 � 0.0487
7 .........................................................................................0.9886 � 0.0487
8 .........................................................................................0.9886 � 0.0487
9 .........................................................................................0.9886 � 0.0487

a The Q(0) value of 0 and the Q(m�10) value of 1 were kept fixed. There are
no error bars for the data points in Kourilsky’s paper, so we determined error
bars (which indicate 95% intervals) for the Q(m) fit by redoing the fit 100 times,
each time randomly perturbing the data points by up to �10% (uniformly
distributed).
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around a factor of 2 higher than what Kourilsky observed at the lowest API that
he measured and is therefore clearly ruled out by his data.

RESULTS

Deterministic strategies are optimal for single players. We
denote the decision-strategy by q, the probability that the in-
fected bacterium goes lytic. The probability that the phage
population goes extinct when following this strategy in the
model phage game defined in Fig. 2 is

P � qp1 � �1 � q�p2 (1)

What strategy, i.e., what value of q, will minimize this? Clearly,
the best strategy is as follows: q is 0 if p1 is 	p2, and q is 1 if p1

is 
p2 (if p1 equals p2 exactly, it does not matter what the
phage does) (see also Fig. 4A). Either way, the optimal strategy
is deterministic. Note that changing the precise values of the
costs in the payoff matrix will change only the threshold at
which the best strategy shifts from that in which q is 0 to that
in which q is 1. It will not change the fact that there exists a
deterministic strategy that is at least as good as any stochastic
one (see, for example, theorem 6.12 in reference 13).

The underlying mathematical reason for this is that the net
cost is a linear function of q (a function linear in q [in general,
continuous and monotonic in q] necessarily has its minimum
value at a boundary of the region under consideration, in this
case representing a q value of 0 or 1). Intuitively, it may be
easier to understand in the simpler, but analogous, game
shown in Fig. 3A. This “umbrella game” involves trying to
decide whether to carry an umbrella or not on the basis of the
chance of rain. If the inconvenience of carrying an umbrella on
a sunny day is the same as the unpleasantness of getting soaked
by rain, then you should always carry an umbrella if the chance
of rain is more than 50% [the net cost is p(1 � q) � (1 � p)q
if p is the chance of rain and q is the chance of carrying an
umbrella; if p is 	0.5, the cost is minimized when q is 1]. Any
stochastic strategy will be worse: the reduction in the number
of times you carry an umbrella on sunny days will be out-

weighed by an increase in the number of days you get soaked.
If you dislike getting wet more, a deterministic choice is still
best; the threshold shifts just below 50%.

How do we then understand the stochastic decision when
two phage infect a bacterium?

Stochastic strategies can be optimal for multiple players.
Let us now assume there are n infected bacteria. We will keep
the costs the same as in Fig. 2 and assume that each of the
n players follows the same strategy, represented by q. Further,
for a clonal phage population, it is sufficient if at least one of
the infected bacteria follows the “correct” developmental path
so that the clone does not go extinct. That is, if free phage are
not killed then even if only one of the n players chooses lysis,
the cost is zero for all the players; this is a game with a
“collective” reward. The chance of extinction is then

P � qnp1 � nqn�1�1 � q�p1p2 � n�n � 1�qn�2�1 � q�2p1p2
2/2 � . . .

� nq�1 � q�n�1p1p2
n�1 � �1 � q�np2

n (2)

Each term in the above sum represents one extinction sce-
nario: for instance, the first term is the probability that all
infected bacteria lyse (qn) and that all are killed (p1), while the
last term is the probability that all infected bacteria go lyso-
genic [(1 � q)n] and that all these lysogenized lineages die
before the phage escape by prophage induction (p2

n). Notice
how p2 is raised to the power of n. This is because, as discussed
earlier, we assume that the fate of each lysogenized lineage is
independent of the others, whereas p1 is not raised to a power
because it represents the probability that all free phage die.
That is, we assume that phage die together and that bacteria
die independently of each other, an assumption that stems
from the facts that bacterial lifetimes are much longer than
those of phage and that therefore phage experience only the
present environment whereas it is possible for bacteria to ex-
perience environments indefinitely far into the future.

Figure 4B shows the value of q that minimizes P for a range
of p1 and p2 values at different values for n. Notice that the
optimal strategy is now stochastic when p1 is 
p2. Essentially,

FIG. 3. (A) Umbrella game for one person, with 60% chance of rain and 40% chance of sunshine. The best strategy is to always carry an
umbrella; all stochastic strategies result in more mistakes. (B) Umbrella game for two people with identical strategies. As there is a collective
reward for carrying an umbrella, if the chance of rain is significant, the ideal situation is that in which one person brings an umbrella, leaving the
other person free from carrying one. This is possible only with the use of a stochastic strategy, because both individuals are using the same strategy.
If the chance of rain is below a certain threshold (p 
 1/3), however, then the deterministic strategy of never carrying an umbrella is best.
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because there is a collective reward/punishment for going lytic,
ideally in our model game, one infected bacterium should be
lysed, leaving the rest to go lysogenic. With identical strategies,
this is possible only with the use of a stochastic strategy.

Mathematically, a stochastic strategy can be optimal in this
case because P is no longer linear in q, as there are n players.
However, this is not enough. If the nonlinear function could be
factorized into a product of identical linear functions, then,
again, the optimal strategy would be deterministic. The reason
this does not happen is that the collective rewards and punish-
ments associated with free phage result in an asymmetry in the
way in which p1 and p2 appear in equation 2. This becomes
clear when we rewrite equation 2 as follows:

P � p1�qn � nqn�1�1 � q�p2 � n�n � 1�qn�2�1 � q�2p2
2/2 � . . .

� nq�1 � q�n�1p2
n�1
 � �1 � q�np2

n (3)

The absence of p1 in the last term is what makes this expression
nonfactorizable. A more generic function could also include,
for example, a collective probability that all lysogenized bac-
teria die. This would, in general, also be nonfactorizable. The
existence of any collective rewards/punishments is enough to
prevent factorization, and we have attempted to illustrate this
more transparently by having such a collective cost only for the
free phage. Adding a collective punishment for lysogenized
bacteria would additionally favor stochastic strategies when
p1 is 	p2, a condition under which our simpler cost function
always favors deterministic lysogeny (Fig. 4).

What makes a stochastic strategy optimal?. Again, it is
easier to understand what is going on by using a two-player
version of the umbrella game (Fig. 3B), which is simpler than
the phage game but illustrates the same point. As in the phage
game, each player uses the same strategy, represented by q,
and there is a collective reward because one umbrella is taken
to be sufficient for both if it rains. The net cost is

Cost � 2�1 � q�2p � 2q�1 � q��1 � p� � 2q2�1 � p�

� q2�2p� � 2q�1 � 3p� � 2p (4)

To minimize this, one must choose the deterministic strategy in
which q is 0 if p is 
1/3 and the stochastic strategy in which q is
(3p � 1)/2p otherwise. For the case considered in Fig. 3, where
p is 0.6, the best strategy is therefore the stochastic one,
wherein q is 2/3.

The umbrella game shows that the basic effect—the shift
from determinism to stochasticity as one goes from single to
multiple players—depends on (i) identical strategies and (ii)
collective rewards/punishments. The collective reward—a sin-
gle umbrella is sufficient to protect everyone—means that ide-
ally one person would bring an umbrella, leaving the others
free. Because everyone uses identical strategies, this is possible
only with a stochastic strategy. The collective reward thus al-
lows a population to hedge its bets and thereby do better than
the sum of individuals. In a single-player game, there is no
population, and therefore stochastic strategies simply result in
more mistakes.

DISCUSSION

In this paper, we have attempted to connect two pieces of
information: (i) under conditions explored by Kourilsky, an
MOI of 1 deterministically leads to lysis, while the decision is
stochastic for an MOI of 2, and (ii) in games involving a choice
based on incomplete information, optimal single-player strat-
egies are deterministic, while for multiple players they can be
stochastic. Looking at the lysis-lysogeny decision from a game-
theoretic point of view thus leads us to the conjecture that the
shift from a deterministic strategy at an MOI of 1 to a stochas-
tic one at an MOI of 2 arises from a shift from a single-player
to a multiplayer game. Crucial to our argument is the clonal
population of the phage, which results both in identical strat-
egies among the multiple players and in collective rewards/
punishments.

The game-theoretic framework used to describe the decision
can be extended to incorporate elements that could be impor-
tant under other conditions. For instance, the frequency of
lysogenization may be influenced by properties of the bacterial
cells, such as size (14) or starvation levels (5, 9). These prop-

FIG. 4. (A) Optimal strategies for the phage game for one player. The qmin strategy, which minimizes the chance of phage extinction, is
deterministic: always go lytic (qmin � 1) when p1 is 
p2, and always go lysogenic (qmin � 0) when p1 is 	p2. All stochastic strategies result in a
greater chance of extinction. (B) Optimal strategy for the phage game with n identical players. Blue, n � 2; green, n � 4; yellow, n � 10; red, n �
100. As there is a collective reward for going lytic, if the chance of free phage dying is low, the ideal situation is that in which one infected bacterium
is lysed, leaving the rest to go lysogenic. This is possible only with the use of a stochastic strategy, because each player is using the same strategy.
If the danger of going lytic is above a certain threshold (p1 	 p2), however, then the best strategy is to deterministically go lysogenic.
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erties are correlated with the growth rate of the cells, which in
turn could affect the decision if some of the terms of the cost
function depend on the growth rate. One reason for including
such a dependence on growth rate is that extinction of the
bacterial population will also lead to extinction of the phage.
That is, under conditions where bacteria are starving badly, it
might be important to take into account the fact that not only
is the phage alone but possibly its host is also alone (15). In our
game-theoretic framework we can do this by using a p1 value
that increases as the growth rate of the cells decreases. Because
the terms in the cost function that involve p1 are proportional
to some power of q, a lower growth rate would then shift
strategies toward more lysogenization. We would expect then
that even at an MOI of 1, one could observe phage choosing
lysogeny if p1 were low enough. However, even in this case, the
strategy would be deterministic, whereas it appears that, at
least under conditions different from those used by Kourilsky,
a stochastic strategy can be chosen at an MOI of 1 (9, 11, 14).
Our considerations indicate that such stochasticity could sur-
vive only if the phage had evolved to use a multiplayer strategy
even at an MOI of 1 under these conditions. That is, if phage
lambda would have evolved to behave as if, when it infected a
starved bacterium, it were not the only clonal phage infecting
an E. coli bacterium in its vicinity.

We have concentrated here on why phage lambda might use
different strategies for the lysis-lysogeny decision in different
cases. We have not addressed the separate question of how the
regulatory network of phage lambda is able to use the MOI to
implement this shift in strategy. Clearly, gene copy number
affects the behavior of genetic circuits; reference 16 shows how
this is possible for lambda, and we are currently exploring this
issue for a large class of simple regulatory motifs. St-Pierre and
Endy (14) point out that the lambda circuitry may not be able
to distinguish between infection of a large cell by two phages
and infection of a small cell by a single phage. Thus, it is
possible that the conditions used by Kourilsky produced a
particularly homogeneous cell population, allowing observa-
tion of the deterministic lytic response at an MOI of 1.

On a more general note, the “collective reward games” that
we have studied here differ in an interesting way from “coop-
erative games.” Collective rewards, as we have shown, favor
strategies that use stochasticity to produce diversity of behavior
in the population of players. In contrast, in cooperative games
it is better for multiple players to follow the same cooperative
strategy. This may have relevance for the phenomenon of bac-
terial persistence where occasionally bacteria that are resistant
to antibiotics can arise in a clonal population, which allows the

population to hedge its survival bets in case it encounters an
antibiotic environment (3).

An amusing illustration of these ideas can be expressed
within the context of human activity. Cooperative games, one
can say, characterize the industrial age and favor mass produc-
tion. Collective reward games, in contrast, characterize the
information age; given our extensive ability to communicate,
all members of a social group can gain from information ob-
tained by one person. Basic research in science is an example
of the latter type of game. Having too many scientists working
on similar projects could result in a decrease of information
gain per scientist. A more stochastic allocation of resources, on
the other hand, could take better advantage of the collective-
reward nature of research.
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