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The mechanisms of attention prioritize sensory input for efficient
perceptual processing. Influential theories suggest that attentional
biases are mediated via preparatory activation of task-relevant
perceptual representations in visual cortex, but the neural evi-
dence for a preparatory coding model of attention remains incom-
plete. In this experiment, we tested core assumptions underlying
a preparatory coding model for attentional bias. Exploiting mul-
tivoxel pattern analysis of functional neuroimaging data obtained
during a non-spatial attention task, we examined the locus, time-
course, and functional significance of shape-specific preparatory
attention in the human brain. Following an attentional cue, yet
before the onset of a visual target, we observed selective activa-
tion of target-specific neural subpopulations within shape-
processing visual cortex (lateral occipital complex). Target-specific
modulation of baseline activity was sustained throughout the
duration of the attention trial and the degree of target specificity
that characterized preparatory activation patterns correlated with
perceptual performance. We conclude that top-down attention
selectively activates target-specific neural codes, providing a com-
petitive bias favoring task-relevant representations over compet-
ing representations distributed within the same subregion of
visual cortex.

top-down bias � visual attention

Our perception of the external environment is continually
shaped by internal goals and expectations. In particular, the

mechanisms of attention fine-tune perception to facilitate the
analysis of sensory input that is most likely to be relevant for
behavior. Goal-oriented attentional biases determine the neural
impact of sensory stimulation, enhancing (or suppressing) the
neural response to information that is relevant (or irrelevant) to
current task demands (1).

Influential models of attention have proposed that attentional
bias is coded directly within the baseline activation profile of
behaviorally relevant perceptual representations (1–4). Accord-
ing to a biased competition model of attention (1), re-entrant
feedback, via top-down control mechanisms, increases sponta-
neous firing within neural populations that code task-relevant
perceptual information. At the level of single-unit neurophysi-
ology, an attentional cue for a specific target stimulus modulates
baseline activity in neurons that preferentially respond to that
stimulus (5, 6). Elevated baseline activity, distributed across a
specific cell assembly, could potentiate, or prime, subsequent
neural processing. According to this model, specificity of atten-
tional bias is determined by the similarity between neural
populations activated by top-down preparatory attention and
subsequent stimulus-driven input.

Preparatory coding across cell assemblies that are co-extensive
with corresponding perceptual representations could provide a
crucial link between neural coding for goals and expectations in
higher-level brain areas, including prefrontal and parietal cortex,
and the attentional modulations observed in perceptual cortex
(7). Despite the broad potential appeal of such a model, the
current literature lacks critical evidence for selective activation
of distinct perceptual representations in the human brain. Func-

tional magnetic-resonance imaging (fMRI) studies of attention
have shown differential increases in baseline activity across
retinotopically specific subregions of visual cortex during spatial
attention (8–10). More generally, when a task requires attention
to one visual feature, such as color or motion (11–14), then
activation levels within visual areas specialized for processing the
attended feature increase. However, if preparatory attention for
specific target stimuli exploits the representational structure of
perceptual cortex as we predict, top-down mechanisms must also
be able to activate selectively target-specific representations
amongst competing non-target representations, even if they
are coded across intermingled cell-assemblies within the same
cortical subregion. Until recently, fMRI has been unable to
differentiate activity from functionally distinct, yet spatially
overlapping neural populations. However, developments in im-
age processing now provide analytical methods that can discrim-
inate activation patterns with a remarkable degree of selectivity
(15, 16). For example, recent fMRI studies of working memory
have used pattern analytic techniques to demonstrate that
top-down mechanisms can selectively maintain orientation-
specific patterns of activity in early visual cortex following
stimulus offset (17, 18). Evidence from visual imagery (19)
further demonstrates top-down generation of shape-specific
activity patterns in higher-level visual shape-processing areas,
including lateral occipital complex (LOC). In this experiment,
we apply similar methods to investigate how top-down mecha-
nisms may be used in attentional control. We ask where atten-
tional control signals are implemented in the human visual
system, and examine their time-course and their relationship to
behavior.

Participants were cued, via an auditory tone, to attend for a
specific shape in preparation for faint stimuli that were embed-
ded within visual noise. To determine the pattern-similarity
between population codes activated during preparatory atten-
tion and those activated by direct visual stimulation, we first
characterized the population response in visual cortex to target
stimuli during a separate pattern-localizer task. Once the target-
specific perceptual representations were characterized, we then
tested the extent to which the same population codes were
activated following the corresponding attention cue. These
cross-comparison analyses confirmed that an arbitrarily assigned
attentional cue can trigger preparatory activation of target-
specific representations encoded among overlapping neural
populations within shape-processing regions of human visual
cortex. Target-specific attentional biases were maintained for
the duration of attentional allocation. Importantly, within ante-
rior LOC, preparatory activity that more closely resembled
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target-specific stimulus-driven activity was associated with
higher detection rates for target stimuli, providing the essential
link between behavior and this putative neural substrate for
preparatory attention.

Results
Pattern-Localizer Task. A pattern-localizer task was used to char-
acterize, within each participant, visual activation patterns as-
sociated with the two target stimuli used in the attention task
(see Fig. 1, Materials and Methods, and SI Text). Initially, the
pattern-localizer data were examined via univariate analyses to
test whether target stimuli elicited different mean levels of
neural activity within any brain area. Consistent with previous
evidence that these letter stimuli elicit equivalent level of visual
activity (19), there were no differences between activity associ-
ated with either the letter X or O in any brain areas (PFDR �
0.44). Despite equivalent mean levels of brain activity across the
two conditions, multivoxel analysis of visual activation patterns
(Fig. 1B) could accurately discriminate between viewing X and
O (see Fig. 1 C and D). In particular, a searchlight analysis
(spherical searchlight, r � 10 mm) revealed activation patterns
throughout visual cortex that discriminated between the two
perceptual conditions. These robust MVPA results suggest that
the pattern-localizer task provides an effective data set from
which to characterize discriminative activation patterns associ-
ated with differential population coding for the target stimuli
used in the attentional task.

Attention Task. During the attention task, participants were cued
to attend for either the letter X or O via auditory tones (220 Hz
or 1,100 Hz for 100 ms, counterbalanced within participants; see
Fig. 2A, Materials and Methods, and SI Text). During target-
present trials (25% of trials), up to two sequentially presented
target stimuli were displayed over the dynamic noise. During
non-target trials, either non-target letters were presented (25%
of trials), or no letter (50% of trials) was presented throughout
the 16-s trial period. At the end of each trial, participants
indicated via a button press response whether one, two, or no
targets were presented. On average, participants detected 88%
of all target stimuli. To avoid contamination from stimulus-

driven visual information, all data following the onset of a letter
(target or non-target) stimulus were discarded from analyses of
attentional bias. Similar to the localizer data, initial univariate
analyses did not identify any brain regions that responded
differentially during periods of attending for X or O (PFDR �
0.124), thus confirming equivalent levels of brain activity during
both attentional states. Similarly, no differences were observed
between X or O averaged across the attention and localizer task
(SeeX � AttendX vs. SeeO � AttendO: PFDR � 0.21).

Despite similar overall levels of activity, we found that we
could reliably discriminate between activation patterns associ-
ated with attending for X or O using multivariate classifiers
trained to discriminate between viewing X or O during the
pattern-localizer task (see Fig. 2B). Accurate cross-comparison
implies a significant degree of similarity between the neural
ensembles activated during specific states of preparatory atten-
tion and corresponding stimulus-driven perception. Searchlight
analyses revealed a highly specific cluster of significant cross-
comparison results within left and right extrastriate visual cortex
(peak xyz coordinates: �45, �78, �11; 48, �75, �8) (Fig. 2C),
corresponding closely to previously defined posterior LOC (20).
Interestingly, there was no evidence for accurate cross-
comparison within earlier visual areas that code for lower-level
visual features, such as orientation and precise retinotopy.

Further analyses examined attentional biases within predefined
regions-of-interest (ROIs) associated with visual shape processing
(20): anterior and posterior LOC (aLOC, pLOC). Cross-
comparison classification accuracy, averaged across the duration of
the attention trial (4–20s postcue: t3, t4, …, t10, excluding all time
bins following the onset of visual stimuli), was significantly above
chance (50%) within all ROIs (P � 0.05, one sample t-test) (Fig.
3A). Next, we performed a three-way ANOVA, with factors for
ROI (aLOC, pLOC), Laterality (left, right) and Time (0- to 22-s
post-cue: t1, t2, …, t12). We also included a covariate comprising
mean target detection rates for each participant (Accuracy). Main
effects were observed for ROI [pLOC � aLOC: F (1, 14) � 6.8, P �
0.020] and Time [F (11, 154) � 2.6, P � 0.024], and there were no
significant terms including Laterality. There was significant inter-
action between ROI and Time [F (11, 154) � 2.1, P � 0.025]. As
illustrated in Fig. 3B, target-specific biases emerged within both

Fig. 1. The pattern-localizer task identified target-specific neural populations in visual cortex. (A) Participants alternately viewed target stimuli (X or O)
presented at the centre of the visual display within a circular aperture of dynamic white noise. Participants monitored the stream of X, or O stimuli for an
occasional stimulus presented in a smaller font (12.5% targets, randomly distributed). (B) We first performed pattern analysis to verify that our procedure can
extract neural activation patterns specifically associated with the two target stimuli. A searchlight analysis examines each region of cortex (sphere, r � 10 mm):
each pattern classifier was trained to discriminate between patterns for ‘‘X’’ or ‘‘O’’ estimated from a subset of training data, and classification performance was
assessed on an independent test data set. Classifier output indicated whether the stimulus category of the test data matched the classifier prediction. (C) Left
and right lateral views of the rendered cortical surface illustrate above-chance discrimination extending throughout left and right visual cortical areas (corrected
for multiple comparisons, PFDR � 0.001). Shading represents brain areas beyond the field of view of our data acquisition protocol, and gray lines indicate coronal
slices shown in (D).
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anterior and posterior LOC with a delay of 4–6 s after the cue onset,
corresponding to the hemodynamic lag. Shape-specific activity then
persisted until approximately 4 s after the end of the attention trial,
before returning to baseline (i.e., chance at 50%). The sustained
profile for attentional modulation was more pronounced in pLOC
than aLOC, but the time-course in both regions contrasted with the
transient profile of target-specific activity triggered by the visual
presentation of target stimuli (Fig. 3C).

The omnibus ANOVA also revealed an interaction between
ROI and Accuracy [F (1, 14) � 6.7, P � 0.021]. Correlation
analyses performed on classification data averaged across the
duration of the attention trial (4- to 20-s post-cue: t3, t4, …, t10)
confirmed a significant relationship between behavior and clas-
sification accuracy in aLOC, but not in pLOC (Fig. 3D). There
was also an interaction between ROI, Time and Accuracy [F (11,
154) � 2.0, P � 0.034], prompting us to examine how this
relationship evolved throughout the trial within each region. The
correlation between behavior and attentional bias was assessed
using successive 4-s time windows spanning the duration of
the attention trial (Fig. 3E). Interestingly, the relationship
between top-down activation of target-representations and de-
tection accuracy was most robust during the latter half of the
attention trial. This profile suggests that individual differences in
performance did not depend on differences in establishing a
task-relevant attentional bias within visual cortex, but rather,
behavioral differences were associated with differential main-
tenance of attentional biases within aLOC.

Discussion
The results of this experiment provide important evidence for a
preparatory coding model for attentional bias in the human
brain. We confirm five key predictions that follow from a general
model of preparatory coding that is situated within the repre-
sentational structure of perceptual cortex. Firstly, population
selectivity: different neural subpopulations were selectively ac-
tivated within area LOC during attentional trials. Secondly,

population specificity: cross-comparison confirmed that prepa-
ratory attention specifically activated the same neural subpopu-
lations that were active during corresponding visual stimulation.
Thirdly, we show that both selectivity and specificity were under
the control of f lexible top-down mechanisms by using arbitrarily
assigned auditory cues to direct attention. Attentional bias,
mediated via target-specific activity within LOC, was not de-
pendent on any visual stimulation; therefore, we infer that
flexible top-down attentional mechanisms are sufficient to gen-
erate shape-specific activity patterns in visual cortex. Fourthly,
we also demonstrate that preparatory activity is sustained
throughout the duration of attention trial. Finally, we provide
crucial evidence that confirms the functional role of this sus-
tained preparatory activity. The positive relationship between
the target-specific pattern activity in aLOC and subsequent
target detection demonstrates that effective maintenance of
preparatory activity facilitates target processing.

Previously, neurophysiological recordings in non-human pri-
mates provided the most direct evidence for a preparatory
coding model for selective attention (5, 6, 21). For example,
Chelazzi et al. (5, 6) recorded from single neurons within area
IT during the delay period of a cued visual search task. Neurons
that responded optimally to a particular cue stimulus maintained
an above-baseline firing rate until the onset of the target array.
Similar modulations have also been observed in response to
spatial cueing within retinotopically organized visual areas (21).
In the current experiment, we asked whether similar baseline
shifts are expressed at the level of population coding in human
visual cortex during non-spatial selective attention. Exploiting
cross-comparison MVPA to characterize population coding of
attentional bias with a level of selectivity that functionally
approximates the resolution of single-unit neurophysiology (15,
16), we observed evidence for preparatory activation of distinct
neural subpopulations in response to specific attentional cues. In
our task, preparatory activity was specific to high-level visual
areas involved in shape processing (20). This functional speci-

Fig. 2. Preparatory attention activates target-specific neural populations in visual cortex. (A) Participants were cued to attend for either the letter X or O via
auditory tones. Target, and non-target, stimuli were semitransparent (range: 83–90% transparency) letters presented over dynamic visual noise. For illustration
only, stimuli are depicted here with relative high visibility (60% transparency). Activation data following the onset of a target, or non-target, stimulus were
discarded from all analyses of attentional bias. (B) Classification algorithms were trained on each 10 mm sphere of brain data to discriminate between neural
patterns for ‘‘X’’ and ‘‘O’’ stimuli observed during the localizer task, and classification accuracy was tested on the neural responses measured whilst participants
attended for each of the target letters. Classifier output indicated the match between perception-discriminative patterns identified in training data from the
localizer task and the attention-discriminative patterns observed during the test data from the attention task. (C) Searchlight analyses identified a specific
subregion of visual cortex where classifiers trained to discriminate between perceptual states for X or O could also discriminate between the cued attentional
states (attend X vs. O; PFDR � 0.05), corresponding to lateral occipital complex (LOC).
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ficity is consistent with monkey neurophysiological evidence for
shape-specific preparatory activity in IT (5, 6), but not V4 (22).
Complementary evidence also suggests that attention to lower-
level features such as orientation produces preparatory effects at
an earlier stage of visual processing (23). These task-
dependencies are consistent with the hypothesis that task context
determines the primary location of preparatory bias (24). In our
task, participants were instructed to respond to the cued target
letter, and ignore all other non-target letters. Biasing neural
subpopulations within LOC that represent the target-specific
shape would optimize visual processing. If, however, attention
was manipulated according to lower-level units of selection (e.g.,
location, orientation, color), top-down modulation would need
to operate at earlier processing stages to bias stimulus-driven
competition.

These results critically extend upon early neurophysiological
evidence for preparatory baseline shifts (5, 6, 21), as well as more
recent fMRI studies of non-spatial preparatory attention that
demonstrate activation biases between feature-specific process-
ing areas (11–13, 25). Specifically, we demonstrate that top-down
attentional mechanisms can selectively activate target-specific
representations coded within the same subregion of visual
cortex. Moreover, adapting our experimental protocol for hu-
mans allowed us to explore attentional bias with greater flexi-
bility than is typically afforded by non-human primate studies. In
particular, using an arbitrarily assigned auditory cue to direct
attention, we could demonstrate that top-down mechanisms
generate, as well as maintain, target-specific biases in visual
cortex. Most importantly, our results provide additional evi-

dence that top-down modulations of specific visual representa-
tions reflect the neural implementation of attentional bias.
Firstly, we satisfy a necessary precondition for an attentional
interpretation of the top-down activity: target-specific activation
patterns were sustained throughout the duration of the attention
trial. Secondly, we also found that individual participants who
generated and sustained neural patterns that more closely
resembled visually evoked patterns for the cued target stimulus
could detect the faint target stimuli with greater accuracy than
participants who showed weaker evidence for attentional bias.
Together, baseline activity that scales with the duration and
efficacy of selective attention provides compelling evidence that
the neural response is causally related to attention (9, 10). An
intriguing result is that the behavioral relationship was reliable
for aLOC, but not pLOC. Although preparatory bias was evident
in both regions, the more anterior region might be more closely
linked to behavior.

Recent pattern analytic fMRI studies of attention have ex-
amined modulation of the population response during direct (26,
36), and indirect (27), sensory stimulation. These studies dem-
onstrate that the population response to specific directions of
motion is modulated by selective attention (26, 27), even when
the driving stimulus was presented outside the measured region’s
receptive field (27). Similar results have also been observed using
more conventional univariate analysis of fMRI (28). However,
no previous fMRI experiment has demonstrated attentional
activation of distinct population codes in the complete absence
of visual stimulation. Recent MVPA studies of visual imagery
(19) and working memory (17, 18) provide the closest evidence
for top-down modulations of visual cortex that resemble our
findings. Here, we asked how top-down input is used in atten-
tional control, exploring the locus, time-course, and behavioral
consequences of preparatory activity.

Overall, these results provide strong evidence that preparatory
coding for attentional bias exploits the preexisting representa-
tional architecture of perceptual cortex. Perceptual representa-
tions, coded across distributed cell assemblies, are shaped
throughout the history of perceptual experience, and form the
storehouse of perceptual memories (29). Stimulus-driven acti-
vation of stored visual representations provides the basis of
ongoing perception; however, according to a preparatory coding
model of selective attention, top-down mechanisms can also
selectively activate specific perceptual representations. Top-
down signals coding high-level information (e.g., task goals)
strategically prime behaviorally relevant representations stored
amongst other perceptual representations that are currently less
relevant to behavior. Similar coding schemes have also been
proposed to account for more general mechanisms of percep-
tion. According to predictive coding models, for example, prior
expectation, which may be expressed formally in terms of
Bayesian priors, modulates specific representations stored in
perceptual cortex (30). Within this framework, ongoing percep-
tion is biased by statistical regularities in the environment, which
can be expressed rapidly according to higher-level information,
such as foreknowledge that stimulus A always precedes stimulus
B within a particular context (30).

Although numerous influential models of attention and ex-
pectation assume that top-down modulation of baseline neural
activity biases ongoing perception (1, 4, 30, 31), the precise
mechanisms of top-down perceptual activation in the absence of
sensory input still remain poorly understood. In particular,
perceptual representations are coded across distributed neural
populations (32); therefore, competition between representa-
tions stored within the same cortical area can only be resolved
by selectively biasing spatially intermingled neural subpopula-
tions. Selective preactivation of behaviorally relevant neural
codes that spatially overlap with competing representations
presents a significant challenge for mechanisms of attention if

Fig. 3. Attentional bias in anterior and posterior lateral occipital complex
(aLOC/pLOC). (A) Region-of-interest analyses confirmed attentional activation of
shape-specific neural patterns in bilateral pLOC and aLOC. (B) Time-course anal-
yses revealed that attentional modulation of target-specific patterns following
the onset of the cue stimulus was sustained throughout the duration of the trial.
In contrast with the sustained attentional modulation, (C) presentation of target
stimuli resulted in a transient activation of target-specific neural populations. (D)
The accuracy of the pattern match between template-specific bias observed in
the attention task and stimulus-driven perception defined by the pattern-
localizer within aLOC was positively correlated with detection accuracy for sub-
sequently presented target stimuli (r � 0.59, P � 0.016), but not within pLOC
(P � 0.434). (E) Finally, time-course analysis of the correlation between visual
template activation and target detection revealed a stronger relationship during
the latter portion of the attention trial. Error bars, � 1 SEM.
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they are to modulate perceptual bias from a central, anatomically
distant, control centre such as a prefrontal, and/or parietal
cortex. In this study, we demonstrate that the brain meets this
challenge during flexibly controlled selective attention, but
future research is needed to explore the precise mechanisms of
top-down control over perceptual bias. An important goal for
future research will be to discover the neurophysiological mech-
anisms that link flexible, and abstract, goal representations in
frontoparietal cortex to top-down modulation of baseline acti-
vation of stable, but distributed and overlapping, representations
in perceptual cortex.

Materials and Methods
Participants and Behavioral Task. Sixteen right-handed volunteers (nine fe-
male; mean age 25 years and 6 months, range 18 years and 5 months to 35
years and 3 months) participated in this experiment. All participants had
normal, or corrected-to-normal, vision and no history of neurological or
psychiatric illness. All participants were screened for MR contraindications and
gave written informed consent before scanning. Participants received a small
honorarium to reimburse them for taking part and to reward accurate per-
formance. All experimental protocols were approved by the Hertfordshire
Local Research Ethics Committee.

The experiment was conducted over six separate scanning runs, and con-
sisted of a pattern-localizer task in addition to the main attention task. Each
scanning run contained three epochs of the pattern-localizer task, and three
epochs of the attention task. The order of presentation was randomized
across scans and participants, and each epoch was preceded by a verbal cue
informing participants of which task they were about to perform. Throughout
all scanning, participants were instructed to refrain from head movements
and eye movements.

All visual stimuli were viewed via a back-projection display (1024 � 768
resolution, 60 Hz refresh rate), with a black background. Visual Basic (Mi-
crosoft Windows XP; Dell Latitude 100L Pentium 4 Intel 1.6 GHz) was used for
all aspects of experimental control, including stimulus presentation, recording
behavioral responses (via an MR-compatible button-box) and synchronizing
experimental timing with scanner pulse timing.

Pattern Localizer. The localizer task was used to characterize patterns of brain
activity associated with visual presentation of the target stimuli used in the
attention task: the letters ‘‘X’’ and ‘‘O.’’ All letters were presented at the
centre of the visual display in black 72-point Arial font (�1.5° of visual angle)
within a circular aperture containing a dynamic visual noise pattern. The
aperture was 200 pixels in diameter (�3.25°) and the noise pattern was
generated by assigning a random greyscale value to each pixel within the
aperture. Pixel values covered the full range of greyscale values from white to
black with a uniform frequency distribution. Each pixel was randomly as-
signed a new value every 33.3 ms to give the impression of an animated noise
pattern.

Each block of the localizer task consisted of 8 repetitions of a single letter,
either X or O. Each letter was presented for 1 s and followed by a 1-s
interstimulus interval. A white fixation cross (0.33°) was also visible through-
out each block. All visual stimuli were clearly visible over the noise display, and
participants were instructed to monitor the letter stimuli for occasional size
deviations. The size deviant stimuli were slightly smaller than the standard
letters (60-pt Arial font, �1.25°). In total, one-third of blocks contained no
deviants, one-third contained one deviant, and the final one-third contained
two deviants. The position in which the deviants occurred was randomized
across blocks. At the end of each block, a response screen was presented and
participants were given 4 s to indicate how many deviant stimuli they had
detected. This was followed by a 12-s period of fixation after which the next
block began. Each epoch of the localizer task contained a single block of each
letter, yielding a total of three blocks per letter in each scanning run, and a
total of 18 blocks per letter over the course of the whole experiment.

Attention Task. Each trial of the attention task began with a cue informing
participants to attend for either the letter ‘‘X’’ or the letter ‘‘O.’’ Cues were
auditory tones (220 Hz or 1,100 Hz) presented for 100 ms, and the association
between cues and target stimuli was randomized across participants (i.e., 220
Hz 3 X, and 1,100 Hz 3 O; or 220 Hz 3 O, and 1,100 Hz 3 X). Halfway
although the experiment, the cue-target mapping was also reversed for each
participant to ensure that cue-related effects were specific to the contents of
attention rather that any physical differences between cues. The task cue at
the beginning of each epoch reminded participants of the current mapping.

A visual noise pattern identical to that used in the pattern-localizer task was
also presented with the onset of the auditory cue. This noise pattern was
displayed for the entire 16-s duration of each trial, during which participants
were instructed to monitor the noise pattern for the occasional presentation
of the current target letter (i.e., the cued letter, X or O). A white fixation cross
(0.33° of visual angle) was also visible throughout each trial to help partici-
pants maintain central fixation. Trial types were divided into target-present
(25% of all trials), non-target (25%), and no-letter (50%). During target-
present trials, either one or two letters were presented, with at least one
presentation being the currently cued target letter. Attentional cues were
never invalid, therefore successful allocation of selective attention was never
penalized. Non-target trials also contained up to two letter presentations, but
these were randomly selected letters, excluding both of the possible target
letters.

During both target-present and non-target trials, letter presentations be-
gan at any time between 0.5 and 14.5 s after the auditory cue. As in the
pattern-localizer task, letter stimuli were presented at central fixation in black
72-pt Arial font. To increase the difficulty of target detection, and to encour-
age attentional allocation, the letter stimuli were rendered semitransparent.
Each letter was initially presented as 100% transparent (i.e., invisible), and the
degree of transparency was gradually decreased over the course of a 1-s
presentation. The final transparency of each letter stimulus was randomly
allocated a value between 90.2 and 86.3%, corresponding to a contrast of
approximately 19–26% between the mean luminance of pixels within the
letter stimulus and the mean luminance of the dynamic white noise.

At the end of each trial, a response screen was presented, and participants
were given 4 s to indicate how many target stimuli they had detected. This was
followed by a 12-s period of fixation after which the next trial began. Each
epoch of the attention task contained two trials for each cue type, including
one target-present and one target-absent (non-target or no letter) trial. The
order in which trials were presented was randomized in each epoch.

fMRI Data Acquisition. All brain imaging was performed using a Siemens 3T
Tim Trio scanner with a 12-channel head coil. Functional volumes (T2*-
weighted echo planar images) consisted of 16 slices (64 � 64 voxels per 3-mm
slice; 3 � 3 � 3 mm voxel resolution with a 25% gap between slices), acquired
in descending order [TR � 1 s; TE � 30 ms; flip angle � 78°]. The near-axial
acquisition matrix was positioned to capture occipital and temporal cortex
while avoiding the ocular orbits. To avoid T1 equilibrium effects, the first eight
volumes were discarded from all functional analyses. Finally, high-resolution
(1 � 1 � 1 mm) structural images were acquired for each participant for
standard co-registration and spatial normalization procedures.

Univariate Data Analysis. Initially, data were analyzed using a conventional
univariate approach in SPM 5 (Wellcome Department of Cognitive Neurology,
London, U.K.). The purpose of these analyses was to verify that the conditions
of interest each evoked equivalent levels of activity. Specifically, we tested
whether X or O letter stimuli differentially activated visual cortex during the
pattern localizer. Similarly, during the attention task, we applied univariate
analyses to test whether attending for ‘‘X’’ or ‘‘O’’ elicited differential mean
responses in brain activity. In the absence of mean differences in regional
activity between conditions, significant differentiation based on MVPA im-
plies subtle, yet reliable, differences in the pattern of neural activity.

For all univariate analyses, functional images were passed through the
following preprocessing steps: realignment, unwarping, slice-time correction,
spatial normalization (MNI template), smoothing (Gaussian kernel: 8-mm
full-width half-maximum) and high-pass filtering (cut-off � 128 s). For the
localizer task, data from individual participants were analyzed using separate
fixed effects analyses. Each of the six scanning runs were modeled using two
explanatory variables: viewing X or O. These were derived by convolving the
onsets for each letter presented during the localizer task with the canonical
hemodynamic response function. First-level analyses of the attention task
were performed using a finite impulse response (FIR) basis set to model the
time-course of neural activity following the presentation of an attention cue
for ‘‘X’’ or ‘‘O.’’ Specifically, we modeled the time-course of activity from the
onset of each cue type until 12 s after the end of the attention trial. This period
was modeled using 15 separate time bins, each with a duration of 2 s. To
ensure that the attention-related activity was uncontaminated by letter-
specific visual input, time-bins occurring after the onset of either target or
non-target stimuli were excluded from the estimate of cue-related activation
patterns. The response to target stimuli was examined separately, using an FIR
model time-locked to the onset of target stimuli during target-present trials.
For all three design matrices, constant terms were included to account for
session effects. Serial autocorrelations were estimated using an AR (1) model
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with prewhitening, and second-level analyses were based on beta parameter
estimates for each condition, averaged across scanning runs.

Multivoxel Pattern Analysis. The full details of the MVPA procedure used in this
paper are presented in SI Text. All pattern analyses were performed on
minimally preprocessed data. Functional images were spatially aligned, un-
warped and slice-time corrected, but not spatially normalized or smoothed.
The time-series data from each voxel were high-pass filtered (cut-off � 128 s)
and data from each session were scaled to have a grand mean value of 100
across all voxels and volumes. Using a searchlight procedure (33), neural
classifications were performed at each voxel location, based on the pattern of
activity observed within the surrounding cortical volume (a radius � 10-mm
sphere, containing �90 voxels). Each classification was performed using a
correlation-based approach (19, 34, 35) (see SI Text). Data from the localizer
task were analyzed using a leave-one-out cross-validation procedure. For each
iteration, data were divided into test and train sets, and discriminative pat-
terns for X vs. O were derived for each set by subtracting the activation pattern
for X from the activation pattern for O across all voxels within the current
searchlight focus. A voxel-wise correlation was then calculated to assess the
similarity between train and test patterns. Correlation coefficients above zero
were coded as correct classifications, whereas coefficients of zero or below
were recorded as incorrect classifications. The overall percent of correct
classifications was calculated over six train-test permutations. We used a
cross-comparison variant of the correlation approach to assess the attention
data. First, we trained classifiers within each searchlight sphere to discriminate
between stimuli presented during the localizer task, and then we tested for a
pattern match using data from the attention task. We used the FIR model
described above to characterize the degree of pattern match over 12 separate

time points following the attention cue. For comparison, we also examined
the stimulus-driven pattern response using data from 0–14 s after the onset of
target stimuli.

For all searchlight analyses, classification accuracy within each sphere
was recorded at the central voxel. Repeating this procedure across all
voxels produced a 3-D accuracy map. Accuracy maps for each pattern
analysis were then spatially normalized to the MNI template, and assessed
via a random-effects group analysis. We also examined our results within
predefined regions of visual cortex associated with visual processing of
shapes (20). Mapping category-specific subregions of extrastriate cortex,
Spiridon et al. (2006) identified separate coordinates for anterior and
posterior lateral occipital complex (LOC). Regions-of-interest (ROIs) were
defined by a sphere (r � 10 mm) centered the peak activation co-ordinates
for each of these regions (averaged across hemispheres; aLOC: � 37, �51,
�14; pLOC: � 45, �82, �2). For the attention data, an overall summary
value was also calculated for each subject by averaging the classification
data across 8 time bins (i.e., 16 s), beginning 4 s after the cue onset. This
time-averaged summary value was used to assess the results of the search-
light analysis (Fig. 2C) and initial ROI analyses (Fig. 3A), and to examine the
relationship between behavior and attentional bias in LOC (Fig. 3D). The
time-course of classification accuracy was also down-sampled by averaging
together classification accuracy scores obtained for the two time bins
within each 4-s epoch. This more stable estimate was used to examine the
time-course of the brain-behavior relationship (Fig. 3E).
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