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Abstract

Background: Macrophages are principal drivers of synovial inflammation in rheumatoid arthritis (RA), a prototype immune-
mediated inflammatory disease. Conceivably, synovial macrophages are continuously replaced by circulating monocytes in
RA. Animal studies from the 1960s suggested that macrophage replacement by monocytes is a slow process in chronic
inflammatory lesions. Translation of these data into the human condition has been hampered by the lack of available
techniques to analyze monocyte migration in man.

Methods/Principal Findings: We developed a technique that enabled us to analyze the migration of labelled autologous
monocytes in RA patients using single photon emission computer tomography (SPECT). We isolated CD14+ monocytes by
CliniMACS in 8 patients and labeled these with technetium-99m (99mTc-HMPAO). Monocytes were re-infused into the same
patient. Using SPECT we calculated that a very small but specific fraction of 3.461023 (0.9525.161023) % of re-infused
monocytes migrated to the inflamed joints, being detectable within one hour after re-infusion.

Conclusions/Significance: The results indicate monocytes migrate continuously into the inflamed synovial tissue of RA
patients, but at a slow macrophage-replacement rate. This suggests that the rapid decrease in synovial macrophages that
occurs after antirheumatic treatment might rather be explained by an alteration in macrophage retention than in monocyte
influx and that RA might be particularly sensitive to treatments targeting inflammatory cell retention.
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Introduction

Macrophages in the inflamed synovial tissue of rheumatoid

arthritis (RA) patients play a central role in the sustenance of

synovial inflammation and promotion of tissue destruction [1–3].

Conceivably they are continuously replaced by circulating

monocytes [4]. The dynamics of this replacement is a matter of

controversy. Data on the effects of anti-rheumatic treatments

suggest this might be a highly dynamic process [5–11], while

animal studies from the 1960s suggested it might occur at a slow

rate [12–15].

Newly developed imaging techniques, such as Single Photon

emission Computed Tomography (SPECT), Positron Emission

Tomography (PET) and more recently bioluminescence and

fluorescence reflectance imaging, offer the possibility to portray

the in vivo dynamics of cell migration in patients [16]. The

application of these imaging modalities to analyze the behavior of

monocytes is hampered by the relative scarcity of these cells in the

peripheral blood and the technical difficulties of specific cell

isolation at the GMP level and efficient labeling to result in an

adequate detection signal. These problems might be addressed by

the combination of scintigraphic imaging with sophisticated cell

isolation procedures, such as immunomagnetic cell selection [17].

We recently developed a procedure using a combination of

immunomagnetic cell selection with CD14 coated beads and an

improved labeling procedure with technetium-99m (99mTc)-

hexamethylpropylene-amino-oxime (HMPAO) and SPECT to

visualize the migratory behavior of autologous monocytes [18,19].
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We applied this method in patients with active RA to test the

hypothesis that synovial inflammation is maintained by a

continuous influx of monocytes into the synovial compartment

and to analyze the dynamics of such influx.

Results

Eight RA patients (4 male and 4 female) were included into the

study. The median age of the patients was 52 years (range 39 to 59

years) and the mean disease duration was 19 (range 10–38) years.

Erosions were present in all patients. Two patients had nodular

disease. Four patients were seropositive for IgM rheumatoid

factor. The mean (6SD) disease activity score evaluated in 28

joints (DAS28) at screening was 5.860.8. All patients were treated

with stable dosages of methotrexate.

Applying immunomagnetic cell selection with CD14 labeled

beads, on average 19.96106 (10.4236.96106) monocytes were

isolated, with a mean recovery of 40.8% (24–69%) CD14 positive

cells. This resulted in a cell suspension with a purity of 90.4% (79–

96%) CD14 positive cells as determined by FACS analysis.

Labeling with 99mTc-HMPAO resulted in a mean radioactivity of

211 (43–393) MBq. Having shown that CD62L expression on

monocytes did not change after the bead isolation procedure and

that 99mTc-HMPAO labeling did not affect the monocyte

migratory capacity in vitro (unpublished observations), we decided

to re-infuse labeled monocytes in RA patients. Re-infusion was

well tolerated in all patients. No signs of increased complement

activation could be demonstrated one hour after re-infusion of

radioactively labeled monocytes: C3b/c (mean6SD): 26.4613.5

and C4b/c 8.361.5 before treatment versus 26.0612.3 and

16.2610.0 1 hour after re-infusion, respectively).

Migration of labeled monocytes was visualized using scintigraphy.

The majority of monocytes was initially trapped in the lungs, followed

by redistribution in liver, spleen and bone marrow (Figure 1),

following the pattern of labeled leukocytes [19]. As expected, renal

activity with visualization of the urinary bladder was seen in all

patients. Furthermore, physiological bowel uptake could be detected

from one hour post infusion. Significant uptake of radioactivity in

stomach and/or thyroid was not observed. In 2 patients whole-body

imaging was feasible up to 20 hours post infusion.

Small but distinct uptake was found in the joints of all patients,

with a mean of 9 (range 1–25) positive joints (Figures 1 and 2).

There was an increased signal in di-arthrodial joints in all patients

at all time points, with a maximal signal at one hour post re-

infusion (Figure 3). We calculated that a median of 4827

(interquartile range [IQR] 2094–8370) labeled monocytes migrat-

ed into the biopsied joints that were analyzed in more detail,

representing 3.461023 (0.9525.161023) % of re-infused mono-

cytes. The results were confirmed after 2 weeks, when the scans

were repeated: there was no change in clinical parameters, the

number of joints with increased signal on the scintigraphic images,

and joint signal intensity. Using these numbers, an estimate was

made about the extent of monocyte influx into the biopsied joints.

The median monocyte concentration in peripheral blood was

1.96109 (1.622.36109) at the time of blood withdrawal.

Assuming an average blood volume of 5 liters, a median of

323.000 (272.000–1.150.000) monocytes entered the biopsied

joints (3.461023 % of total circulating monocytes).

Figure 1. Scintigraphic images of labeled autologous monocytes in a patient with rheumatoid arthritis. Anterior and posterior (A,B)
whole body images of a patient 2 hours after infusion of monocytes labeled with 283 MBq 99mTc-HMPAO. Transient pulmonary accumulation occurs,
with an equivalently increased uptake in liver, spleen and bone marrow (A,B). A reference source is placed just below the knees. Panel C and D show
the same images but with masking of the pulmonary, bladder and source signal. Increased articular uptake is observed in di-arthrodial joints as the
shoulders, elbows, knees and small hand joints.
doi:10.1371/journal.pone.0007865.g001
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Since macrophages are the dominant synovial inflammatory cell

population and the extent of their tissue infiltration correlates with

disease activity [1–3,20], we compared scintigraphic signal intensity

with synovial macrophage infiltration and disease activity param-

eters. Synovial macrophage infiltration was assessed by immuno-

histochemical staining of arthroscopic biopsies from selected joints.

These biopsy samples had been obtained one day after the second

scintigraphy. Six out of 8 synovial biopsies passed synovial tissue

quality control. The number of CD163 positive macrophages in the

synovium correlated significantly with the number of scintigraphy

positive joints one, two and three hours after re-infusion (r = 0.89,

P = 0.019; r = 0.89, P = 0.019; r = 0.94, P,0.01, respectively).

Furthermore, there was a significant correlation between the

number of CD163 positive macrophages and the percentage of

monocytes shown by scintigraphy two hours after re-infusion

(r = 0.89, P = 0.019). The other immunohistologic markers were not

significantly correlated with scintigraphic data (data not shown).

Subsequently, the relationship between scintigraphic signal and

disease activity parameters was analyzed. Of interest, the swollen

joint count correlated significantly with the percentage of monocytes

in the biopsied joints selected for detailed quantification on the

images that were taken one and two hours after re-infusion (day 1:

r = 0.97 and r = 0.73, respectively; P,0.01, day 14: r = 0.78 and

r = 0.90; P,0.01). There was also a positive correlation between the

number of swollen joints and the number of positive joints shown by

scintigraphic scans at day 14 (r = 0.81, r = 0.76 and r = 0.81; all

P,0.01, at respectively 1, 2 and 3 hours after infusion).

Discussion

In the present study we used a recently developed procedure,

that visualizes the migratory behavior of monocytes [18,19], to test

the hypothesis that synovial inflammation in RA is maintained by

influx of monocytes into the synovial compartment. The results

suggest that while there is indeed a continuous influx of circulating

monocytes into the synovial compartment, their numbers are

small, indicating that only a relatively small fraction of synovial

macrophages is replaced per day.

We found that a median of 3.461023 (0.9525.161023) % of

labelled monocytes entered the synovial compartment after re-

Figure 2. Scintigraphic detail images of hands and feet of labeled autologous monocytes in a patient with rheumatoid arthritis.
Scintigraphic detail images of hands in palmar position (A–C) and feet in plantar position (D,E) and anterior position (F) of RA patients 2 h after
infusion of monocytes labeled with 99mTc-HMPAO. Images of the hands show increased uptake in the wrists, MCP and IP joints (A–C). Images of the
feet show increased uptake of the ankle, tarsus, MTP and IP joints (D–F).
doi:10.1371/journal.pone.0007865.g002
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infusion. Since we found no indication that the monocytes were

activated by the labelling or isolation procedures, this suggests that

similar percentages of unlabeled circulating monocytes enter the

synovial compartment, being a median of 323.000 cells. Since the

number of synovial macrophages in large inflamed joints exceeds

such numbers considerably, these data indicate that in RA patients

the rate of synovial macrophage renewal by circulating monocytes

is slow.

It was recently shown that a range of anti-rheumatic treatments

induces a significant decrease in synovial macrophages associated

with clinical improvement within hours to weeks after initiation of

therapy [5,6]. It was hypothesized that these treatments ultimately

affect migration of monocytes and/or retention of macrophages

[21]. In studies on infliximab, an effective biological treatment for

RA which blocks TNFa [22], a marked decrease in synovial

macrophage numbers occurred already 24 hours after initiation of

treatment, which could not be explained by induction of apoptosis

[8–11]. The results of the current study suggest that this effect may

mostly explained by an effect of TNFa blockade on macrophage

retention. Of interest, a decrease in VCAM-1 and ICAM was

found shortly after infliximab treatment [8,10]. While these are

important molecules involved in adhesion of monocytes to the

vascular endothelium, they are in RA patients also abundantly

expressed by cells in the intimal lining layer and the synovial

sublining, where they play a pivotal role in inflammatory cell

retention and survival [23].

Thus, the data indicate that in line with animal models on

chronic inflammatory lesions, macrophage renewal by monocytes

is slow in chronic synovitis [12–15]. Together with the previous

studies showing a rapid decrease in cellularity after successful

antirheumatic therapy (even in the absence of apoptosis), these

data support the notion that therapeutic strategies aimed at

interfering with retention of inflammatory cells at the site of

inflammation might be capable of inducing clinical improvement

in immune-mediated inflammatory disease. Accordingly, recent

studies have shown benefit of interfering with adhesion molecules:

anti-function associated antigen (LFA)-1 antibody (efalizumab)

treatment in psoriasis and anti-a4b1-integrin (VLA-4) antibody

(natalizumab) treatment in multiple sclerosis [24,25].

In conclusion, we developed monocyte scintigraphy, which allowed

us to demonstrate the dynamic influx of monocytes into the synovial

compartment of RA patients. This approach provides insight into the

pathogenesis of this immune-mediated inflammatory disease and

supports the notion that blocking only the influx of inflammatory cells

may be insufficient to induce clinical improvement.

Materials and Methods

Patients
Patients fulfilling the American College of Rheumatology (ACR)

1987 revised classification criteria for RA [26] were included into

the study. All patients had active RA, as defined by a disease

activity score evaluated in 28 joints (DAS28) .3.2 [27]. Patients

were on stable disease-modifying antirheumatic drug (DMARD)

treatment at inclusion.

Ethics Statement
Approval was granted by the Medical Ethics Committee of the

Academic Medical Center/University of Amsterdam (AMC).

Each patient gave written informed consent prior to participation.

Isolation of Monocytes
Hundred milliliters of peripheral blood was taken from each

patient. CD14+ monocytes were isolated using a positive selection

procedure with magnetic-activated cell sorting according to the

manufacturer’s protocol (MACSHMiltenyi Biotech, Bergisch Glad-

bach, Germany). After selection, the percentage of CD14, CD3,

and CD66 positive cells was determined by fluorescence-activated

cell sorting (FACS) analysis. The CD14+ enriched cells were

resuspended in 10 ml buffer containing 0.9% (w/v) NaCl, 20% (w/

v) human serum albumin (Sanquin Blood Supply Foundation

division of Plasma Products, Amsterdam, the Netherlands) and

3.8% (w/v) TNC (NVI, Bilthoven, the Netherlands) for labeling.

Radiopharmaceuticals
Exametazime (CeretecTM, RVG16226) was supplied as a ready-

for-labeling kit (GE Healthcare B.V., Amersham, Cygne Centre,

Eindhoven, the Netherlands). 99mTc-pertechnetate was obtained

from a 99Mo-carrying UltratechnekowH FM generator (DRN

4329, Tyco Healthcare, Mallinckrodt Medical, Petten, the

Netherlands) and was eluted in accordance with the instructions

of the manufacturer. Radiochemical purity control (RPC) assays

were done by means of chromatography on ITLC-SG strips, using

a mobile phase of 0.9% sodium chloride (NaCl) [28]. Radiolabel-

ing of cells was performed as described earlier [18]. Briefly, the

cells were centrifuged and freshly prepared 99mTc-HMPAO of

very high specific activity in a low volume was added to the

monocyte cell pellet. After incubation the excess of 99mTc-

HMPAO was diluted and subsequently removed from the cell

pellet after centrifugation. The labeled monocytes were resus-

pended in 0.9% NaCl and re-infused into the same patient.

Scintigraphy
An average of 206106 monocytes labeled with 200 MBq 99mTc-

HMPAO was injected intravenously within 15 minutes after

radiolabeling. Whole body imaging was performed at 15 minutes

and 1, 2, 3, and 20 hours post infusion using a dual head

gammacamera (140 keV, window 15%, 25661024 matrix,

10 cm/min) fitted with low energy all purpose collimators

(Siemens Ecam). Detail images of the hands (palmar) and feet

(plantar) were acquired in a 2566256 matrix for 5 minutes. This

procedure was repeated two weeks after the baseline scintigraphy.

Figure 3. Percentage of re-infused monocytes in a joint in time.
Detailed signal intensity calculation of percentage of re-infused
monocytes in a selected joint of the individual patients in time after
infusion. A stable presence of monocytes in the joints is visible.
doi:10.1371/journal.pone.0007865.g003
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Signal Calculations
The scintigraphic scans were analyzed for signal intensity in

joints and other tissues. The number of positive joints and the

exact signal intensity of the biopsied joint was selected for more

detailed quantification. The signal intensity was calculated in

counts per region of interest, subtracting the background signal

from the joint signal. A correction was made for the number of re-

infused monocytes and the injected dose, using a standard dose

source, leading to a deduction of the percentage of re-infused

monocytes per ROI.

In Vitro Assays to Determine the Influence of Isolation
and Labeling on Monocyte Migratory Function and
Activation

Monocytes were isolated from whole blood of subjects and

migratory function was assessed by in vitro chemotaxis assay

comparing radioactively labeled and non-labeled cells. Briefly,

chemotaxis assay was done using 24-well chemotaxis plates

(Corning Costar, Corning, NY) with inserts containing pre-grown

ECV304 cells. Purified monocytes were re-suspended in 600 ul of

pre-warmed RPMI medium containing 3% fetal calf serum

(GIBCO, BRL) and added to the upper chamber of the transwell

plate. Chemotaxis was performed for 2 hours at 37uC against

various concentrations of recombinant MCP-1 (R&D Systems,

Minneapolis, MN). Cell migration rate was quantified by flow

cytometry for non-labeled monocytes and scintillation gamma

counter for labeled monocytes. Comparison of migrating cell

percentage for non-labeled and Tc- HMPAO labeled monocytes

did not demonstrate an impairment of monocyte migratory

capacity in the in vitro chemotaxis assay (data not shown).

Monocyte activation was tested by assessing CD62L expression

by flow cytometry on monocytes in unmanipulated whole blood and

after the bead isolation procedure using CD62L-PE conjugated

antibody (BD Biosciences). Antibody concentrations were used

according the manufacturer’s protocol. Antibody staining was

performed using 50 ml of whole blood. Blood cells were incubated

with antibodies for 15 min and washed twice with PBS containing

1% bovine serum albumin (Sigma-Aldrich, MO). Red cells were

lysed by washing cells twice with BD FACSTMlysis solution (BD

Biosciences, CA). Purified monocytes were resuspended in PBS

containing 1% bovine serum albumin (Sigma-Aldrich, MO),

incubated with antibody and fixed with FACSTMlysis solution

(BD Biosciences, CA). Samples were analyzed by flow cytometry

using a FACS Calibur (Becton Dickinson, NJ). Frequency of

CD62L expression on monocytes did not change after the bead

isolation procedure (data not shown).

In Vivo Assessment of Complement Activation after
Re-Infusion

To exclude the possibility that re-infusion of labeled monocytes

induced complement activation, complement activation products

were measured in the serum before and one hour after re-infusion.

Activation of C3 (C3b/c) and C4 (C4b/c) was assessed with an

ELISA as described before in detail [29]. In brief, monoclonal

antibodies recognizing neo-epitopes on activated C3 and C4 were

used as capturing antibodies. Biotinylated polyclonal rabbit anti-

human C3 and polyclonal sheep anti-human C4 antibodies were

used as detecting antibodies.

Arthroscopy and Synovial Biopsy
The day after the second set of scans, all patients underwent a

mini-arthroscopy under local anesthesia from an actively inflamed

knee, ankle or wrist, to obtain synovial tissue samples [30]. Biopsies

were taken with a 2.3-mm grasping forceps (Storz, Tuttlingen,

Germany) from 6 or more sites within the joint to minimize sampling

error. The tissue samples were snap frozen en bloc in Tissue Tek

OCT (Miles, Elkhart, IN) after collection. Frozen blocks were stored

in liquid nitrogen until sectioning. Sections of 5 mm were cut using a

cryostat and mounted on Star Frost adhesive glass slides (Knittelglä-

ser, Braunschweig, Germany). Sealed slides were stored at 280uC
until immunohistochemical staining was performed.

Immunohistochemical Analysis
Synovial tissue sections were stained using the following

monoclonal antibodies to analyze the cell infiltrate: anti-CD55

(67:Serotec, Oxford, UK) to detect fibroblast-like synoviocytes

(FLS), anti-CD68 (EBM11: DAKO, Glostrup, Denmark) to detect

macrophages and anti-CD3 (SK7, Becton Dickinson, San Jose, CA)

for T-cells as described previously [31]. The scavenger receptor

CD163 (Ber-MAC3; DAKO) was stained to detect alternatively

activated tissue macrophages. Staining of cellular markers was

performed using a three-step immunoperoxidase method [32]. For

control sections the primary antibody was omitted or irrelevant

immunoglobulins were applied. Tissue quality was assessed by

analyzing the presence of an intimal lining layer.

Digital Image Analysis
All sections were analyzed at random by trained technicians

who were blinded for clinical and scintigraphic data. The analysis

was done by computer-assisted image analysis as previously

described in detail (323). In short, images were acquired and

analyzed using a Syndia algorithm on a Qwin-based analysis

system (Leica, Cambridge, UK). For all markers 18 high-power

fields were analyzed. Positive staining of cellular markers was

expressed as positive cells per mm2 (counts/mm2). CD68+
macrophages were analyzed separately for the intimal lining layer

and the synovial sublining.

Statistics
Associations between joint signal parameters and swollen joint

count, tender joint count, DAS28, ESR, CRP and immunohisto-

chemical markers were expressed by Spearman’s correlation

coefficients. The changes in joint signal intensity and clinical

parameters after two weeks were tested with the Wilcoxon signed

ranks test for paired non-parametric data.
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