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Abstract Diabetes mellitus (DM) is a multifactorial

chronic metabolic disease characterized by hyperglyca-

emia. Several different mechanisms have been implicated

in the development of the disease, including endoplasmic

reticulum (ER) stress. ER stress is increasingly acknowl-

edged as an important mechanism in the development of

DM, not only for b-cell loss but also for insulin resistance.

Accumulating evidence suggests that ER stress-induced

apoptosis may be an important mode of b-cell loss and

therefore important in the development of diabetes. Recent

data also suggest a role of ER stress-induced apoptosis in

liver and adipose tissue in relation to diabetes, but more

extensive studies on human adipocyte and hepatocyte

(patho)physiology and ER stress are needed to identify the

exact interactions between environmental signals, ER

stress and apoptosis in these organs.
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Abbreviations

ASK1 Apoptosis signal-regulating kinase 1

ATF3 Activated transcription factor 3

ATF4 Activated transcription factor 4

ATF6 Activated transcription factor 6

Bcl-2 Factor B cell lymphoma-2

BiP/GRP78 Glucose regulated protein 78/binding

immunoglobulin protein

CHOP/GADD153 C/EBP-homologous protein/growth

arrest-and DNA damage-inducible

gene GADD153

DM Diabetes mellitus

EIF2AK3/PERK ER-resident PKR-like eIF2a kinase/

eukaryotic translation initiation factor

2-alpha kinase 3

EIF2a Eukaryotic translation initiation factor

2-alpha

ERAD ER associated degradation

ERAI ER stress activator indicator

FA Fatty acids

GADD34 Growth arrest and DNA damage

inducible protein (also known as

PPP1R1A = protein phosphatase 1,

regulatory (inhibitor) subunit 15A)

GADD153/CHOP C/EBP-homologous protein/growth

arrest-and DNA damage-inducible

gene GADD153

GRP78/BiP Glucose regulated protein 78/binding

immunoglobulin protein

GRP94 Glucose regulated protein 94

HF/HS High fat/high sucrose

HIV Human immunodeficiency virus

IKK IjB kinase

IL-1b Interleukin 1b
IL-6 Interleukin 6
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IRE1 Inositol requiring 1

IRS-1 Insulin receptor substrate 1

JNK c-Jun N-terminal kinase

MCP-1 Monocyte chemo-attractant protein 1

NAFLD Nonalcoholic fatty liver disease

NASH Non-alcoholic steatohepatitis

ORP150 Oxygen regulated protein (150 kD)

PERK/EIF2AK3 ER-resident PKR-like eIF2a kinase/

Eukaryotic translation initiation factor

2-alpha kinase 3

PKC Protein kinase C

PTP1B Protein tyrosine phosphatase 1B

ROS Reactive oxygen species

Ser Serine

mTOR Mammalian target of rapamycin

T1DM Type 1 diabetes mellitus

T2DM Type 2 diabetes mellitus

TNFa Tumor necrosis factor a
TRAF2 TNF receptor-associated factor 2

Tyr Tyrosine

UPR Unfolded protein response

XBP-1 X-box binding protein 1

Introduction

Diabetes mellitus (DM) is a multifactorial chronic meta-

bolic disease characterized by hyperglycaemia. Several

different mechanisms have been implicated in the devel-

opment of the disease. Although the precise molecular

events underlying the different forms of diabetes still

remain unclear, it is generally accepted that the underlying

defects include decreased secretion of insulin, its impaired

signalling or both. Type 1 diabetes (T1DM) is known to

result from an excessive loss of pancreatic b-cells, leading

to insulin deficiency. Among other important causes,

autoimmune and inflammatory processes have been

reported to disrupt b-cells, cause insulin deficiency and

hyperglycaemia and subsequently T1DM. Type 2 diabetes

(T2DM), the most common form of diabetes, is charac-

terized by impaired insulin action (insulin resistance) par-

alleled by impaired insulin secretion and a progressive

decline in b-cell function. Insulin resistance, often associ-

ated with obesity and physical inactivity, is a major factor

in the progression of T2DM. Obesity is a well-known risk

factor for the development of T2DM. Importantly, obesity

is not only associated with lipid accumulation in adipose

tissue, but also in non-adipose tissues, such as liver and

muscle. Lipid accumulation in non-adipose tissue, also

known as ectopic lipid accumulation, has also been asso-

ciated with the development of insulin resistance. There-

fore, muscle, adipose tissue and liver are, beside pancreas,

crucial tissues contributing to the development of insulin

resistance and thus to the development of T2DM.

A relatively new player in the DM field is endoplasmic

reticulum (ER) stress. ER stress and/or ER stress-induced

apoptosis are increasingly acknowledged as important

mechanisms in the development of DM, not only for b-cell

loss but also for insulin resistance. Since the last decade, it

has been generally accepted that ER stress plays an

important role in b-cell function and loss [1]. This is for

instance illustrated in Akita mice [2, 3], and the Wolcott-

Rallison syndrome [4, 5]. Akita mice spontaneously

develop diabetes with significant early loss of pancreatic

b-cell mass resulting from a missense mutation (Cys96Tyr)

in the insulin 2 gene that disrupts a disulfide bond between

A and B chains of insulin [6]. The Wolcott-Rallison syn-

drome is a rare autosomal-recessive disorder characterized

by the association of permanent neonatal or early-infancy

insulin-dependent diabetes, and growth retardation, and

other variable multisystemic clinical manifestations. The

gene responsible for this syndrome is EIF2AK3 (PERK),

the pancreatic eukaryotic initiation factor 2 (eIF2) kinase

[4, 5]. More recently, it was acknowledged that high fat-

and obesity-induced insulin resistance is also associated

with ER stress in adipose tissue and liver [7, 8]. Remark-

ably, until now no studies have demonstrated a role for ER

stress in skeletal muscle in relation to (the development of)

obesity or diabetes [7, 9]. Besides, the role of ER stress in

the development of diabetes that will be discussed in this

paper, there is also evidence that diabetes can induce or

aggravate ER stress and thereby affect the complications of

diabetes, such as renal disease, retinopathy and vascular

abnormalities [10–12].

In this review an overview of ER stress, the unfolded

protein response (UPR), and ER stress induced apoptosis is

given (see also refs [13–20]) with a further focus on the

possible role of ER stress-induced apoptosis in the liver

and adipose tissue in the onset of diabetes.

Endoplasmic reticulum stress-unfolded protein

response

The endoplasmic reticulum (ER) is an important organelle

required for cell survival and normal cellular function. In

the ER, nascent proteins are folded with the assistance of

ER chaperones (i.e. molecular chaperones and folding

enzymes). Subsequently, correctly folded proteins are

transported to the Golgi apparatus. Unfolded and misfolded

proteins, on the other hand, are retained in the ER, retro-

translocated to the cytoplasm by the machinery of ER

associated degradation (ERAD), and degraded by the pro-

teasome. As a major intracellular calcium storage com-

partment, the ER also plays a critical role towards

maintenance of cellular calcium homeostasis. In addition,

Apoptosis (2009) 14:1424–1434 1425

123



the ER also has a role in lipid biosynthesis, e.g. lipid

membrane synthesis and controlling the synthesis of cho-

lesterol and other membrane lipid components.

ER stress is caused by perturbations of any of the three

homeostatic functions of the ER, i.e. functioning as a site

for protein folding, for synthesis of unsaturated fatty acids

(FA), sterols, and phospholipids and for intracellular Ca2?

storage. ER stressors include: (1) disturbances in cellular

redox regulation caused by hypoxia, oxidants, or reducing

agents, which interfere with disulfide bonding of proteins in

the lumen of the ER, (2) glucose deprivation, probably by

interfering with N-linked protein glycosylation in the ER,

(3) disruption of Ca2? metabolism causing impaired func-

tions of Ca2? dependent chaperones such as Grp78, Grp94

and calreticulin, (4) viral infections, which overload the ER

with virus encoded proteins, (5) high fat diet, and (6) protein

mutations that hamper adequate folding [17, 18]. The con-

sequence of ER stress is an overwhelmed or compromised

ability of the ER to properly fold proteins.

Accumulation of unfolded and/or misfolded proteins in

the ER lumen is a hallmark of perturbation of any of the

three functions of the ER and results in activation of the

unfolded protein response (UPR). The UPR is a complex

and coordinated adaptive signalling mechanism to re-estab-

lish homeostasis of ER functions (Fig. 1). ER stress sensors

[IRE1 (inositol requiring 1), ATF6 (activated transcription

factor 6) and PERK (ER-resident PKR-like eIF2a kinase)]

detect the accumulation of unfolded and/or misfolded

protein at the onset of ER stress and initiate the UPR. To

re-establish homeostasis and normal ER function, the UPR

initiates a global decrease in protein synthesis while

increasing the production of ER chaperone proteins and

ER-associated degradation (ERAD).

The mammalian UPR with its signalling components is

complex, diverse and flexible as has been described in great

detail in recent reviews [16, 20]. In short, UPR signals

through three pathways, that each utilizes one of the three

ER stress sensors IRE1, ATF6 and PERK (Fig. 2). IRE1 is a

transmembrane kinase/endoribonuclease (RNAse). Activa-

tion of IRE1 initiates the nonconventional splicing of Xbp-1

mRNA. Spliced Xbp-1 mRNA encodes a transcription

activator that drives transcription of genes such as ER

chaperones, whose products directly participate in ER

protein folding. PERK is a transmembrane kinase that

phosphorylates the eukaryotic translation initiation factor 2

subunit (eIF2). This leads to a reduced protein synthesis,

which counteracts ER protein overload. ATF6 is an

ER-resident transmembrane protein. Upon activation, the

cytoplasmic domain of ATF6 is released from its membrane

anchor by regulated proteolysis. The cleaved N-terminal

fragment migrates to the nucleus, acts as an active tran-

scription factor, and increases the expression of the genes

encoding proteins that function to augment the ER protein

folding capacity. The exact mechanism of UPR activation is

unknown. One of the most described models is the com-

petition model, in which the ER chaperone protein glucose

regulated protein (Grp)78/BiP, is an UPR regulator and

plays an essential role in the activation of IRE1, PERK and

ATF6. In the inactive state, i.e. in resting cells, all three ER

stress sensors (IRE-1, PERK and ATF6) are maintained in

an inactive state through their association with the ER

chaperone BiP (Fig. 2a). When the ER homeostasis is

perturbed, i.e. upon ER stress, BiP is sequestered by

unfolded and/or misfolded proteins that accumulate in the

ER lumen (Fig. 2b, c). Dissociation of BiP from de ER

stress sensors triggers the activation of IRE1, PERK and

ATF-6 (Fig. 2d). Other models of UPR activation are the

ligand-binding model in which unfolded and/or misfolded

proteins directly interact with the ER stress-sensing

domains of the ER stress sensors, and the probing model, in

which newly synthesized stress-sensing proteins probe the

efficiency of the ER-resident protein-folding machinery by

presenting themselves as substrates to the folding machin-

ery [20].

Endoplasmic reticulum stress—apoptosis

Under conditions of severe and prolonged ER stress, the

UPR is unable to restore normal cellular function. Subse-

quently, cell death, usually occurring by apoptosis, is trig-

gered (Fig. 1). Cell death results in loss of cell/tissue

function and may be the primary reason for the manifesta-

tion of disease in several ER stress-related disorders. Indeed,

cell death induced by ER stress has been implicated in a

wide variety of diseases including ischemic injury (stroke,

myocardial infarction), heart failure, several neurodegen-

erative diseases, diabetes and bipolar disorder [17, 18]. The

mechanisms of apoptosis are highly complex, involving an

energy-dependent cascade of molecular events. There are

two main apoptotic pathways: the extrinsic or death receptor

Endoplasmic Reticulum Stress
e.g. high glucose, FFA, inflammation

Accumulation of unfolded proteins in the ER

Re-establish homeostasis

Normal ER function

Failure to restore homeostasis 

Cell death, usually apoptosis

Activation of the Unfolded Protein response (UPR)

Fig. 1 The relation between ER stress and ER stress induced

apoptosis in the development of diabetes
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pathway and the intrinsic or mitochondrial pathway [21].

Current evidence suggests that these two pathways are

linked and that molecules in one pathway can influence the

other [22]. The extrinsic signalling pathways act via trans-

membrane receptor-mediated interactions. These involve

death receptors that are members of the tumor necrosis

factor (TNF) receptor gene superfamily [23]. The intrinsic

signalling pathways involve a diverse array of non-receptor-

mediated stimuli that produce intracellular signals that act

directly on targets within the cell and are mitochondrial-

initiated events. These non-receptor stimuli include radia-

tion, toxins, hypoxia, hyperthermia, viral infections, and

free radicals but also the absence of certain growth factors,

hormones and cytokines [21].

Signalling through the ER stress sensors can trigger

pro-apoptotic signals during prolonged ER stress. How-

ever, the ER stress sensors do not directly cause cell death

but rather initiate the activation of downstream molecules

such as CHOP or JNK, which further push the cell down

the path of death. This results in caspase activation, the

execution phase of ER stress-induced apoptosis, and

finally in the ordered and sequential dismantling of the

cell. Caspases are cysteine proteases that exist within the

cell as inactive pro-forms or zymogens and are cleaved to

form active enzymes following the induction of apoptosis.

ER stress activates both intrinsic and extrinsic apoptotic

pathways [13, 14]. Currently, three main pathways of ER

stress-induced apoptosis are identified (Fig. 3): (1) the

proapoptotic pathway of CHOP/GADD153 transcription

factor which is mainly induced via PERK/eIF2, (2) IRE1-

mediated activation of apoptosis signal-regulating kinase 1

(ASK1)/c-Jun NH2-terminal kinase (JNK), and (3) acti-

vation of the ER localized cysteine protease, caspase 12

[15, 18, 19].

BiP IRE1 BiP

ER
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IRE1
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PERK
BiP

ATF6

IRE1
PERK

BiP

ATF6

IRE1
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Endoplasmic Reticulum
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ATF6
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BiP
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BiP
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ATF6

IRE1
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eiF2α

Translation
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S1P
S2P XBP1
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XBP1
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P

P

= unfolded protein

UPR-genes
- BiP
- XBP1
- …

Nucleus

Endoplasmic Reticulum Endoplasmic Reticulum

Fig. 2 The unfolded proteins response and its signaling components.

A simplified scheme of the initiation of the unfolded protein response

(UPR). In the inactive state, i.e. in resting cells, all three ER stress

sensors (IRE-1, PERK and ATF6) are maintained in an inactive state

through their association with the ER chaperone BiP (a). Upon ER

stress, BiP is recruited by the unfolded and/or misfolded proteins (b).

This results in BiP dissociation from its conformational binding state

to the transmembrane receptor proteins PERK, IRE1 and ATF6 (c).

Dissociation results in activation of IRE1, PERK and ATF6 (d). The

activated cytosolic domain of PERK phosphorylates the eukaryotic

translation initiation factor 2 subunit (eIF2), inhibiting translation.

The activated cytosolic domain of IRE1 initiates the nonconventional

splicing of Xbp-1 mRNA, thereby cleaves a 252 bp intron from

XBP1. Spliced Xbp-1 mRNA encodes a transcription activator that

drives transcription of genes such as ER chaperones, whose products

directly participate in ER protein folding. Activated ATF6 translo-

cates to the Golgi, cleaved by proteases to form an active 50 kDa

fragment. ATF6 p50 and XBP1 bind ER stress-response element

(ERSE) promoters in the nucleus to produce up regulation of the

proteins that function to augment the ER protein folding capacity
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ER stress, UPR and apoptosis in different organs

and the development of diabetes

ER stress, UPR and apoptosis in the pancreas

b-cell loss plays a crucial role in the development of insulin

deficiency and in the onset and/or progression of diabetes.

Regulation of the b-cell mass involves a balance of b-cell

replication and cell death. Accumulating evidence suggests

that apoptosis may be the main mode of b-cell death in

both types of diabetes. Recent studies point to a role of the

ER in the sensing and transduction of apoptotic signals in

b-cells as recently described in detail in excellent reviews

[19, 24]. We now addressed the most relevant data of the

last year, with a focus on ER stress and apoptosis in the

pancreas, adipose tissue and the liver.

Several studies show evidence for a role of ER stress in

b cell failure. Mutations in the primary sensors of the UPR

or mutations that affect chaperone functions of the UPR,

e.g. EIF2AK3, IRE1, P58IPK (DNAJC3) and EIF2a, impair

b cell health and function [4, 25–28]. Moreover, mutations

in proinsulin causing disruption of disulfide bond pairing

result in misfolding and accumulation of proinsulin in the

ER lumen of b cells. This accumulation can cause b cell

failure [6, 29, 30]. In vivo data show that also pathological

conditions like high glucose, free fatty acids, cytokines,

and nitric oxide induce UPR gene expression and com-

promise b cell function [25, 31–33]. Moreover, in islets of

T2DM patients, ER stress has been demonstrated by

increased staining for ER chaperones and CHOP along

with increased ER size [34–37].

However, the exact molecular mechanisms for the ER

stress-induced apoptosis in b cells are not entirely clear. The

most recent data support that the PERK-ATF4-CHOP stress

signalling pathway is important in b-cell apoptosis (Fig. 3).

This pathway plays a role in b-cell injury induced by oxi-

dative stress and saturated fatty acids [38–42]. This is

confirmed by the finding that CHOP deletion reduces oxi-

dative stress, improves b cell function, and promotes cell

survival in multiple mouse models of diabetes [39]. How-

ever, the PERK-ATF4-CHOP pathway is not the only

pathway inducing apoptosis in b-cells. In contrast to apop-

tosis by high lipids, the PERK-ATF4-CHOP ER stress–

signalling pathway is not necessary for cytokine-induced

b-cell death [42]. Other data show that also the IRE1-JNK

pathway is associated with the apoptosis in b cells [41]

(Fig. 3). This pathway is also involved in ER stress-induced

apoptosis caused by chronic high glucose, fatty acids, and

Il-1b induced depletion of Ca2? [41, 43–45].

ER stress, UPR and apoptosis in adipose tissue

The prevalence of obesity is increasing rapidly worldwide,

especially in developing countries. An important consequence

of obesity is an increased risk of developing impaired glucose

tolerance and T2DM. Indeed, along with the increase in

obesity, a parallel increase in the prevalence of T2DM,

impaired glucose tolerance has occurred [46, 47]. The meta-

bolic complications of obesity, usually referred to as the

metabolic syndrome, consist of insulin resistance (often cul-

minating in b-cell failure, impaired glucose tolerance and

T2DM), dyslipidemia, hypertension, and premature heart

disease. Our understanding of the role of adipose tissue in

metabolic syndrome has continued to evolve with the iden-

tification of adipose tissue as a potent endocrine organ. Adi-

pose tissue secretes large amounts of adipocyte-generated

factors, such as adipokines, cytokines and complement com-

ponents. Cells that are specialized for a high secretory

capacity, such as mature B lymphocytes, liver cells and

pancreatic b-cells, are known to expand and adopt their ER

capabilities to meet an increased demand of protein synthesis

[48]. It is, therefore, likely that ER stress plays a role in adi-

pose tissue dysfunction and most probably also in cell death.

Although apoptosis of (pre)adipocytes has not been

extensively studied, there is growing evidence that, under

Endoplasmic

PERK

BiPReticulum
Stress IRE1

TRAF2
ASK1

eiF2α

pro-caspase-12

caspase-12 JNK

ATF4 caspase

cascade

CHOP

= unfolded protein

APOPTOSIS

Endoplasmic Reticulum

Fig. 3 ER stress induced apoptosis. Three main pathways of ER

stress-induced apoptosis are identified: (1) the proapoptotic pathway

of CHOP/GADD153 transcription factor which is mainly induced via

PERK/eIF2. CHOP down-regulates the anti-apoptotic factor B cell

lymphoma-2 (Bcl-2), but also upregulates Ero-1, a thiol oxidase that

promotes protein folding in the ER but also generates reactive oxygen

species (ROS), and thereby promotes apoptosis, (2) IRE1-mediated

activation of apoptosis signal-regulating kinase 1 (ASK1)/c-Jun NH2-

terminal kinase (JNK). IRE1 interacts with TRAF2 (TNF receptor-

associated factor-2) and ASK1. This leads to activation of ASK1 and

JNK, followed by apoptosis, and (3) activation of the ER localized

cysteine protease, caspase 12. Caspase 12 is activated by m-Calpain

in the cytoplasm. Activation of m-Calpain is a consequence Ca2?

efflux out of the ER upon ER stress. These three pathways all end in

caspase cascade activation, the execution phase of ER stress-induced

apoptosis
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specific circumstances, decreases in adipose tissue mass in

humans could result from a loss of fat cells through pro-

grammed cell death. The general idea is that in a normal

healthy situation adipocyte number is relatively stable

when the energy intake is less than the energy output. In

this case, the adipose tissue mass only decreases as a result

hypotrophy via mobilization of triglycerides [49]. On the

other hand, conditions of pathological fat wasting can

involve loss of adipocytes through apoptotic mechanisms.

For example, apoptotic events were observed in fat tissue

of patients with tumor cachexia and in the fat remodelling

processes associated with highly active antiretroviral ther-

apy, e.g. ritonavir, in HIV infected patients with lipodys-

trophy [50–52]. Ritonavir not only induces apoptosis and

inhibits adipocyte differentiation, but also affects inflam-

matory mediators, ER stress and oxidative stress, as shown

by gene profiling [53, 54].

Recent data suggest that ER stress may, via several

mechanisms, also be involved in apoptosis of (pre)adipo-

cytes in relation to the development of obesity/diabetes. In

obese individuals, adipose tissue is poorly oxygenated [55,

56], which may lead to local hypoxia in adipose tissue. ER

stress may form a link between hypoxia and apoptosis.

Disturbances in cellular redox regulation caused by

hypoxia interfere with disulphide bonding in the lumen of

the ER, leading to unfolded and misfolded proteins. In

3T3-L1 adipocytes, hypoxia is associated with ER stress, as

shown by increased levels of GRP78 and CHOP [57]. Yin

et al. [58] described that hypoxia induces cell death, pro-

motes free FA release and inhibits glucose uptake in adi-

pocytes by inhibition of insulin signalling pathway. These

metabolic effects of hypoxia may also add to the generation

of ER stress, e.g. in addition to hypoxia itself, palmitate, a

saturated fatty acid (FA), also activated UPR and induced

apoptosis in preadipocytes. CHOP was one of the proteins

that were influenced [59]. Moreover, very recently, three

papers for the first time show ER stress in human adipose

tissue [60–62]. Although none of these papers show direct

evidence for a relation between obesity and ER stress-

induced apoptosis, the results of Sharma et al. [61], are

very suggestive for this. They used ATF4, GADD43 and

ATF3 as markers of apoptosis pathways, and show a

relation with obesity. Thus, although the data strongly

suggest a role for ER stress in apoptosis of adipose tissue,

experiments are needed to fully explore this pathway.

For all studies performed with adipose tissue biopsies, it

should be emphasized that the precise identity of cells

within adipose tissue that show ER stress, and possibly

related apoptosis, is not clear. Adipocytes generally

account for only 50% of the total number of cells in adi-

pose tissue. Other cells within adipose tissue, e.g. preadi-

pocytes, macrophages and vascular cells, can also secrete

an extensive range of protein signals and factors linked to

inflammatory response and may therefore also be sensitive

for ER stress. This is of special interest since adipose tissue

is more and more recognized as a tissue containing a

molecular network that connects obesity, adipokine secre-

tion, chronic inflammation and insulin resistance. Inflam-

mation of adipose tissue is often observed in obesity and

diabetes and is associated with the infiltration of macro-

phages into adipose tissue, which may be triggered by

adipocyte death, adipokine secretion e.g. TNF-alpha and

IL-6, and elaboration of chemokines by adipocyte e.g.

monocyte chemo-attractant protein (MCP)-1 [63–65]. The

mechanism via which adipocyte death stimulates macro-

phage infiltration has been proposed to occur via an alter-

native death pathway that share features of both necrosis

and apoptosis [66]. This possibility is supported by the

finding that macrophages are located around dead adipo-

cytes in the adipose tissue [67]. Apoptosis of macrophages

in adipose tissue may also be linked to diabetes. It has been

suggested that macrophage cell death in adipose tissue is an

important effect of pioglitazone treatment and this may

play an essential role in the management of diabetes mel-

litus and metabolic syndrome [68]. Hypoxia and hypoxia

related ER stress may also play a role in apoptosis of

macrophages in adipose tissue. Hypoxia does not only

stimulate the inflammatory response of macrophages [69,

70], but also induced apoptosis and cell cycle arrest at

G0/G1 phase, via AKT and JNK [71]. To our knowledge

no studies have been published on adipose tissue histology

showing ER stress related apoptosis in a specific cell type.

ER stress, UPR and apoptosis in the liver

ER stress has been recognized in various models of liver

injury and human liver diseases (as reviewed in [72]). The

liver plays essential roles in metabolism, biosynthesis,

excretion, secretion and detoxification. Comparable to

adipose tissue, the liver contains a range of different cell

types. The three main liver cell types are hepatocytes,

resident macrophages (i.e. Kupffer cells), and endothelial

cells. Apoptosis in the liver occurs in many forms of liver

injury, e.g. chronic viral liver disease, nonalcoholic and

alcoholic steatohepatitis [73–76].

Nonalcoholic fatty liver disease (NAFLD) results from

metabolic hepatic dysregulation in metabolic syndrome

and T2DM. NAFLD refers to a wide spectrum of liver

disease ranging from simple fatty liver (steatosis), to

nonalcoholic steatohepatitis (NASH), to cirrhosis (irre-

versible, advanced scarring of the liver). Several studies

have shown that NAFLD predicts future development of

T2DM (reviewed in [77]). The pathogenesis of NAFLD is

thought to be a multiple-hit process involving insulin

resistance, oxidative stress, apoptosis, and adipokines. In

NASH, inflammation of the liver is associated with the
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accumulation of fat in the liver and additionally to different

degrees of scarring, which may lead to severe liver scarring

and cirrhosis. The general idea is that as consequence of

both hepatic and peripheral insulin resistance, the hepato-

cellular accumulation of triglycerides, initially leads to an

altered metabolism of glucose and free fatty acids in the

liver. Increased expression of death receptors in response to

this altered hepatic metabolism enhances the hepatocytes’

susceptibility for pro-apoptotic stimuli, thus eliciting

excessive hepatocyte apoptosis and inflammation. Inter-

estingly, hepatocyte apoptosis is significantly increased in

patients with NASH and correlates with disease severity

[75, 78].

Evidence is mounting for an important role for ER

stress-induced apoptosis in NAFLD. In relation to the onset

of diabetes, most in vivo and in vitro studies on the relation

between ER stress-induced apoptosis and fatty liver focus

on saturated FA. Saturated FA induce ER stress and

apoptosis at physiologic concentrations and with a rela-

tively rapid time course in H4IIE liver cells [79, 80], as

illustrated by the induction of ER stress response genes and

apoptosis which occurred after 4 h and between 6 and 16 h,

respectively [79]. Ozcan et al. [7] showed that chronic

excessive nutrient intake activated the UPR both in liver

and in adipose tissue. A very recent study used transgenic

mice carrying the XBP-1-delta-DBD-venus expression

gene, which acts as an ER stress-activated indicator

(ERAI). In these transgenic mice, the gene encoding venus,

a variant of green fluorescent protein, is fused as a reporter

downstream of a partial sequence of human XBP-1

including the ER stress-specific intron. The XBP-1/venus

fusion protein is produced in cells under ER stress condi-

tions, and cells under ER stress can be detected by moni-

toring the generation of fluorescence. They showed in the

liver of the ERAI transgenic mice that ERAI fluorescence

was observed as early as 4 weeks after treatment with a

high fat, high sucrose (HF/HS) diet, whereas it was not

detected in the fat and muscle, even after 12 weeks of

HF/HS diet treatment [9]. It is important to realize that not

all FA activate the UPR. Only livers and hepatocytes from

rats on a high saturated fat diet, but not high polyunsatu-

rated fat diet, were characterized by the presence of spliced

XBP-1 mRNA and increased GRP78 and CHOP protein

[81]. This not only suggests that the UPR may sense and

respond to the fatty acid environment but also that the ratio

of saturated to unsaturated FA may be an important

determinant of hepatic ER homeostasis. Although not

directly shown in hepatocytes, several mechanisms have

been proposed for fatty acid induced ER stress. One pos-

sible mechanism is the rapid incorporation of palmitate into

lipid components of the rough ER followed by disruption

of ER structure and function [82]. Another mechanism of

palmitate-induced ER stress is the generation of reactive

oxygen species (ROS). ROS by itself can induce ER stress.

Prolonged or severe ER stress, which may occur in the

presence of excess palmitate, can lead to further ROS

accumulation, potentially amplifying the apoptotic/cell

death response [83]. Alternatively, as described in b cells,

palmitate

can lead to an early and sustained depletion of ER Ca2?

stores, which may trigger ER stress via impaired protein

folding [41].

ER stress—UPR—insulin resistance

ER stress and the UPR are not only associated with

apoptosis in of b-cells, hepatocytes and adipocytes but also

with metabolic derangements, especially with insulin

resistance. In adipose tissue and liver, the relation of ER

stress with insulin resistance is actually more evident than

its relation with apoptosis. The general idea is that ER

stress interferes with the signalling of the insulin receptor

via JNK (Fig. 4). Therefore JNK can not only be a link

between ER stress and apoptosis (Fig. 3) but also between

ER stress and insulin resistance. A major site of regulation

of insulin signalling, both positive and negative, is phos-

phorylation of the important insulin receptor docking

protein insulin receptor protein-1 (IRS-1), whereby phos-

phorylation of the tyrosine (Tyr) residues in IRS-1 induces

phosphorylation of the serine (Ser) residues in IRS-1 and

hampers insulin signal transduction (reviewed in [84]).

Although the exact mechanisms that lead to Ser phos-

phorylation of IRS-1 are not yet known, it is apparent that

several intracellular serine kinases, e.g. IjB kinase (IKK)

and JNK, mTOR and PKC-h are involved. A wide variety

of factors, including nutrients such as FA and amino acids,

have been found to induce insulin resistance at least in part

through inhibitory IRS-1 Ser phosphorylation. Insulin

resistant states (e.g obesity, T2DM) are associated with

activation of JNK and/or IKK leading to Ser phosphory-

lation of IRS1 and hence induction of insulin resistance

[85–88]. Activation of JNK in obesity may be a particular

consequence of ER stress since IRE-1 has, apart from en-

doribonuclease activity, also kinase activity that activates

JNK (Fig. 4). The liver and adipose tissue of genetic and

high-fat diet-induced mouse models of obesity demon-

strated increased levels of several ER stress markers as

well as induction of insulin resistance via increased Ser

phosphorylation/decreased Tyr phosporylation IRS-1. It is

of interest that JNK and IKK are also potential links

between ER stress and inflammation [89]. Other evidence

for a link between ER stress and insulin resistance comes

from studies using chaperones, such as 4-phenyl butyric

acid (PBA), trimethylamine N-oxide dihydrate (TMAO),

and dimethyl sulfoxide or oxygen regulated protein 150kD

1430 Apoptosis (2009) 14:1424–1434
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(ORP150). These chaperones protect cells from ER stress,

e.g via stabilization of protein conformation, improvement

of ER folding capacity, and therefore enhance the adaptive

capacity of the ER. Introduction of chaperones increased

insulin sensitivity in the liver of obese diabetic mice

[8, 90]. Moreover, an in vitro model of hepatocytes

(HepG2) shows that triglycerides induce the expression

of endogenous ER stress markers, including GRP 78,

IRE-1alpha, XBP-1, p-eIF2alpha, CHOP, and p-JNK. ER

stress, in turn, leads to the suppression of insulin receptor

signalling through increase in serine phosphorylation and

decrease of tyrosine phosphorylation of insulin receptor

substrate-1 (IRS-1), and therefore insulin resistance [91].

More evidence for a link between insulin resistance and ER

stress is shown in a study using a mouse model that is

hypersensitive to insulin (i.e. liver-specific-PTP1B defi-

cient mice). The livers of these mice are both insulin

sensitive and protected against a high fat diet-induced ER

stress response [92].

Conclusion

Taken together, these data indicate that ER stress plays a

role in diabetes by affecting at least two major events:

b-cell failure and generation of insulin resistance. Although

most of the current understanding of the known mediators

of the ER stress pathway comes from other experimental

systems, it is clear that ER stress-induced apoptosis of b
cells plays a role in the development of diabetes. Data

obtained in liver and adipose tissue suggest that also ER

stress-induced apoptosis in these tissues is important in the

development of diabetes. In contrast to apoptosis of b cells,

which will primarily affect insulin production, ER induced

apoptosis in liver and adipose tissue will rather lead to

increased insulin resistance. More extensive studies with

human adipocytes and hepatocytes are needed to identify

the exact interactions between environmental signals and

ER stress.
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