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Abstract
Sulcal and gyral landmarks on the human cerebral cortex are required for various studies of the human
brain. Whether used directly to examine sulcal geometry, or indirectly to drive cortical surface
registration methods, the accuracy of these landmarks is essential. While several methods have been
developed to automatically identify sulci and gyri, their accuracy may be insufficient for certain
neuroanatomical studies. We describe a semi-automated procedure that delineates a sulcus or gyrus
given a limited number of user-selected points. The method uses a graph theory approach to identify
the lowest-cost path between the points, where the cost is a combination of local curvature features
and the distance between vertices on the surface representation. We implemented the algorithm in
an interface that guides the user through a cortical surface delineation protocol, and we incorporated
this tool into our BrainSuite software. We performed a study to compare the results produced using
our method with results produced using Display, a popular tool that has been used extensively for
manual delineation of sulcal landmarks. Six raters were trained on the delineation protocol. They
performed delineations on 12 brains using both software packages. We performed a statistical
analysis of 3 aspects of the delineation task: time required to delineate the surface, registration
accuracy achieved compared to an expert-delineated gold-standard, and variation among raters. Our
new method was shown to be faster to use, to provide reduced inter-rater variability, and to provide
results that were at least as accurate as those produced using Display.
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1. Introduction
The examination of the patterns of variation in the human brain often relies upon the accurate
identification of structures on the surface of the cerebral cortex. Sulci are of great interest in
the structural analysis of magnetic resonance imaging (MRI), where the functional and
architectonic boundaries are not directly visible. These boundaries have been linked to various
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characteristics of the sulci (Watson et al., 1993; Roland and Zilles, 1994), thus major functional
areas in the brain may be associated with sulci. Similarly, various gyri have been associated
with a variety of brain functions. Fischl et al. (2007) have recently reported that localization
of Broadman areas with respect to folding patterns demonstrates stability, providing further
motivation for aligning cortical data based on geometric structure.

There are a number of sulci that appear reliably in normal brains; however, these structures are
characterized by large variations across subjects (Ono et al., 1990). These variations have been
studied in relationship to several aspects of health and disease. Early studies of sulci using MRI
relied upon tracings on images with slice thicknesses of 5-9 mm (Missir et al., 1989; Steinmetz
et al., 1989, 1990). Kikinis et al. (1994) traced sulcal patterns in 2D on renderings made from
3D images of brains oriented to the same camera view. Thompson et al. (1996) performed
statistical analysis of high-resolution 3D sulcal curves that were traced on human cryosection
data. These techniques were later extended and applied to MRI in several studies that examined
sulcal asymmetry in the hemispheres. These included explorations of the brain during
developmental stages (Blanton et al., 2001; Sowell et al., 2002), in subjects with schizophrenia
(Narr et al., 2001), and in relationship to handedness and gender (Luders et al., 2003).

Since the sulci typically separate the brain into distinct functional areas, spatial normalization
techniques have been developed that use explicitly defined sulcal features as constraints.
Thompson et al. (1997) computed high-dimensional volumetric maps by elastically deforming
scans into structural correspondence using landmarks that were traced manually on the cortical
surface. Collins et al. (1998) combined sulcal ribbons with image-based features for volumetric
registration. Cachier et al. (2001) used automatic sulcal identification and labeling followed
by a combination of linear point matching and intensity matching to achieve intersubject
correspondence. Joshi et al. (2007) used sulcal landmarks as constraints in a combined surface
parameterization/registration approach, which was extended to the whole volume by
constrained harmonic mapping, and finally refined using an intensity-based warp. Surface-
based registration techniques, such as those described by Davatzikos et al. (1996), Fischl et al.
(1999), or Tosun and Prince (2005), may also be used to align cortical surface models based
on geometric features of the surface without the use of explicit constraints. These aligned maps
can then be used to study the properties of the cortex in sulcal or gyral regions. Fischl et al.
(2004) developed a method for labeling each point on the surface with a neuroanatomical label
based on a manually labeled training set and geometric priors. Yeo et al. (2008) extended this
work, proposing a generative model for the joint registration and parcellation of the cortical
surface that provided improved parcellation accuracy. Geometric features can also be
combined with explicitly defined sulcal constraints (Eckstein et al., 2007).

Manual delineation of sulcal anatomy can be a time-consuming process, and much effort has
gone into the development of automated approaches to identify sulci. We summarize a few of
the recent methods here. Khaneja et al. (1998) applied dynamic programming to identify length
minimizing geodesics and curves of extremal curvature to identify the sulcal fissures. Le
Goualher et al. (1999) developed a method called sulcal extraction and assisted labeling
(SEAL), which detected cortical ribbons that were then associated manually with known sulci.
Zeng et al. (1999) developed an automatic intrasulcal ribbon finding technique using the
distance function computed as part of a coupled level set surface extraction method. Caunce
and Taylor (2001) applied active shape models to identify sulci. Tao et al. (2002) applied a
statistical shape model to identify sulci on cortical surfaces that were mapped to the unit sphere.
Rivière et al. (2002) generated maps of the cortical sulci using a graph matching approach
based on neural networks trained with manually labeled data. Rettmann et al. (2002) applied
a watershed method to the sulcal beds in order to identify major sulci; this was later augmented
with a system to perform assisted labeling of the identified regions (Rettmann et al., 2005).
Ratnanather et al. (2003) applied dynamic programming to identify crestlines on cortical
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surfaces. Tu et al. (2007) applied a supervised learning approach to perform extraction of sulcal
lines from MRI using curves that were manually delineated.

While automated methods have been successfully applied in several settings, their accuracy
may not be satisfactory for expert neuroanatomists, particularly in the presence of the wide
variation that appears in neuroanatomy and in image acquisition quality. Data from subjects
exhibiting abnormal cortical shape, such as individuals with Alzheimer’s disease, may be
handled better by manual delineation. In registration applications, errors in automatic sulcal
identification may propagate into errors in the registration accuracy. It is likely that landmarks
defined by experts, who have been trained to make consistent decisions when faced with
ambiguities that arise frequently in the analysis of cortical geometry, will produce improved
registration results. In some cases a particular area, such as the visual cortex, may be of interest
and constraints specific to that area may provide more appropriate registration. Furthermore,
some of the methods for automatic sulcal delineation (e.g., Rivière et al., 2002; Tu et al.,
2007) require an expert-labeled training set. Thus, in certain instances, it is still desirable to
use a manual approach to perform sulcal landmark identification.

Several semi-automated methods have been developed that allow raters to define curves on
the cortex. Display (Montreal Neurological Institute, Montreal, Canada) is an OpenGL-based
software package that provides a 3D rendering of a cortical surface, synchronized with views
of a corresponding MRI or other data. Users can define a series of points along a curve, which
are joined using a shortest-path algorithm based on the Euclidean distance between edges on
the surface mesh. The Caret software package (available online at
http://brainmap.wustl.edu/caret/) provides facilities for delineation of landmarks on various
types of neuroanatomical data, including inflated and flattened cortical surfaces (Van Essen et
al., 2001). Sulcal landmarks produced with Caret have been used in surface-based registration
processes (Van Essen, 2005). The RView software package (available online at
http://rview.colinstudholme.net) displays volume and surface data; it also provides the
capability to define sets of points joined by straight line segments to define landmarks such as
sulci. Bartesaghi and Sapiro (2001) developed a system for optimally computing geodesics on
surfaces, and used it to identify sulci and gyri based on local curvature measures. Hurdal et al.
(2008) applied Dijkstra’s algorithm to find shortest paths between endpoints of sulci, using a
weighted graph with an edge cost function designed to follow crestlines such as gyri or sulci.
Studies of variation in manually delineated sulcal delineations can be limited by the variations
in the definitions of the end points of sulcal curves, specifically when pointwise correspondence
between curves is derived from the end point positions. To address this problem, Durrleman
et al. (2008) proposed measuring the distance between landmark curves using currents, with
no implicit assumption of pointwise correspondence.

In this paper, we describe a semi-automated curve tracking algorithm and its implementation
as part of a curve tracing protocol software tool. The curve tracking method computes a
weighted graph from the vertices and edges of a triangle mesh representation of the cerebral
cortex. The weight of each edge is determined by a combination of local curvature features
and the distance between vertices on the surface representation. Given two seed points on the
surface, we use a shortest path algorithm on the weighted graph to determine a series of edges
that follow the valleys of sulci or the ridges of gyri. The tracking tool was integrated into our
existing BrainSuite software package (Shattuck and Leahy, 2002) to guide the user through
the process of identifying a sequence of well-defined landmarks on the cortical surface. The
user can seed multiple points along the path and view the results in real-time as points are added
or as the end point of the curve is moved on the surface. The view of the curve traced on the
cortical surface is synchronized with a view of orthogonal slices in a corresponding 3D image
volume, providing the user with additional context for decision making during the delineation
process. To establish performance relative to an established software tool, we performed inter-

Shattuck et al. Page 3

J Neurosci Methods. Author manuscript; available in PMC 2010 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://brainmap.wustl.edu/caret/
http://rview.colinstudholme.net


rater and intra-rater comparisons using both Display and our new BrainSuite tool. The results
demonstrate that our new method can achieve comparable accuracy with reduced inter-rater
variability in dramatically less time.

2. Methods
2.1. Curve-tracking procedure

We assume, as input to our algorithm, a triangular mesh M, comprising a set of vertices, V =
{v1, v2, . . . , vNV}, and a set of edges, E = {e1, e2, . . . , eNE} that compose the triangles of the
mesh. Each vertex vi ∈ V is a point in 3D space, and each edge ej ∈ E is a pair of integers
corresponding to the indices of the vertices V. This triangle mesh can be produced in a number
of ways. In this work, we focus our validation on surfaces produced by the method of
MacDonald (1998), though we have also applied the technique to surfaces produced with our
own BrainSuite software (Shattuck and Leahy, 2002), FreeSurfer (Dale et al., 1999), and
BrainVoyager (Brain Innovation B.V., Maastricht, The Netherlands).

Given a pair of points va ∈ V and vb ∈ V, we compute an optimal path through a weighted
graph constructed from the surface mesh. While we could define the weights of this graph
using the Euclidean distances of the edges in the path, such a path would be unlikely to follow
the neuroanatomical features of the surface. Instead, we compute the cost of each edge using
the Euclidean distance modulated by a measure of the local convexity at each point. The path
that is found will thus depend on the local properties of the surface.

2.1.1. Convexity measure—We define the convexity measure at each vertex index i as

(1)

where Ni is the set of first-order neighbors of vertex i, i.e., those vertices sharing an edge with
vi, |Ni| is the size of set Ni, vi is the 3D spatial position of vertex i, and n̂i is the surface normal
at i. The surface normal n̂i is computed as the average of the normals of the triangles adjacent
to vertex vi, with the convention that the normals point outwards from the surface.

In simpler terms, the sum in Eq. (1) averages the cosines of the angles between the surface
normal at vi and the edges connected to that vertex. Fig. 1 shows a map of the convexity
measures for a cortical surface model. In a flat configuration, ci will be zero since the surface
normal is orthogonal to the connected edges. If the surface is locally concave, i.e., has negative
mean curvature, at that point, then the angles will be in the range (0, π/2) since all points in the
neighborhood are above the tangent plane. Thus, the sum will be positive, and ci will be
negative. Similarly, if the surface is locally convex, i.e., has positive mean curvature, then the
sum will be negative and ci will be positive. In previous work, we adopted this measure (Timsari
and Leahy, 2000) in place of mean curvature, as it could be computed rapidly. We note here
that this measure could be replaced by more formal discrete approximations of curvature, such
as those described by Meyer et al. (2003). In practice, the convexity measure we selected has
been effective and produced sulcal tracking results that were satisfactory to neuroanatomists.

2.1.2. Graph weighting—We create a weighted graph G = (E, V, W) from the edge and
vertex sets, E and V. The weighting wk ∈ W of an edge ek = (vi, vj), ek ∈ E is determined by
the equation
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(2)

where αi is a cost function that we define at each vertex

(3)

where ci is the local measure of convexity, κ is a global constant controlling the slope of the
sigmoid, and λ is a second global constant that determines the influence of the convexity term
in the weighting function. In this work, we use κ = 20 for the sigmoid slope. We did not perform
extensive testing of this parameter, but this value demonstrated acceptable performance during
initial development of the algorithm. The sigmoid provides a limit on extreme convexity
measures, making the method more robust to rapid changes in the surface that result from noise
that is often present in surface models, such as those produced from tissue classification maps.
The weight averages the robust convexity measure along the edge. When λ = 0, the weighting
is based solely on the Euclidean distance between the two vertices; when λ > 0, paths through
convex regions will have higher costs than paths of equal edge length through concave regions,
thus the path through the concave region will be preferred. Changing the sign of the convexity
measure or the sign of κ will reverse this effect, allowing us to trace convex regions. In the
context of cortical surface models, changing these parameters allows the algorithm to follow
sulci or gyri when we apply this method to cortical surface models. Lambda is user-adjustable.
We selected a default value of λ = 2 based on our initial use of the algorithm; we did not formally
test the stability of this parameter. The influence of λ will vary depending on the smoothness
of the particular surface and feature being traced. On rough surfaces, increasing to larger values
will cause the curve to trace around surfaces bumps which may be attributable to noise rather
than anatomy. Fig. 1 shows a map of the vertex cost function, αi, for a cortical surface model,
with κ = 20 and λ = 2.0. The darker blue areas indicate the lowest cost vertices, and are largely
restricted to the sulcal fundi. Fig. 2 shows examples of curves traced upon white matter/grey
matter boundary surfaces produced by BrainSuite using parameter settings to follow sulci, gyri,
or unweighted edge length.

2.1.3. Path computation—Once the edge weighting has been determined, the graph can be
used to compute paths between seed points. Given two vertices, va and vb, we compute the
shortest weighted path between them using Dijkstra’s algorithm (Dijkstra, 1959). This path
will be composed of contiguous points on the cortical surface mesh M, joined by edges from
E. In practice, more complicated curves may be defined as the total path computed between
adjacent pairs of points in an ordered set of points defined by the user.

2.2. Software implementation
2.2.1. Landmark identification—We built the curve identification algorithm into a
customized version of our BrainSuite software (Shattuck and Leahy, 2002). BrainSuite uses
OpenGL to display a 3D rendering of the cortical surface mesh (see Fig. 3). The user can
interactively reorient this surface and zoom to different levels of detail. This view is
synchronized with 3 orthogonal views of a corresponding 3D MRI volume that can be loaded
into the interface. This allows the user to identify neuroanatomical landmarks through several
views. The software can be run interactively on Windows-based PCs or on other platforms
using tools such as WINE (http://www.winehq.org).
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When tracking a curve on the surface, the user can identify an initial seed point va by clicking
on the view of the surface. The software then displays that point on the surface and computes
the data used in the Dijkstra algorithm. This provides a fast method to compute the optimal
path between va and any other point on the mesh. Once these data have been generated, the
user can select a second point on the surface. The Curve Protocol software then generates the
lowest cost path and displays it on the cortical surface model. Because all necessary data for
optimal paths from va have been computed, the software updates the displayed curve as the
user drags the next point to different locations on the surface. These updates occur in real-time
on relatively modest personal computers; we have achieved acceptable performance on
computers with 1.7 GHz Intel Pentium 4 processors. The rapid updates provide the user with
direct feedback so that he or she can quickly select an appropriate endpoint or midpoint for a
cortical landmark. This allows the user to ensure that the traced curve properly follows the
anatomy, which would otherwise be difficult near interrupted sulci. Once an initial pair of
points has been selected, the optimal path is displayed and the software computes the Dijkstra
information from the second point. The user can then track curves from this next seed point,
and this new path segment is added to the complete path. We also developed the software to
provide undo features, allowing the user to rewind the curve to correct mistakes that may occur
during the landmark selection process. The user can also adjust the parameter to determine the
influence of the curvature weighting. For example, when tracing an interrupted sulcus, the user
can cross another gyrus by setting the weighting to zero.

2.2.2. Protocol interface—Since the purpose of this software tool is to provide a mechanism
for identifying a set of landmarks that are defined by a delineation protocol, we built a
specialized interface that displays the protocol information within BrainSuite (see Fig. 3). A
protocol file is specified using an XML document. This protocol file provides a definition for
each curve, including descriptions of the start and stop points that should be used for the
landmark, the direction in which the landmark curve, e.g., sulcus, should be traced, and
additional notes of any features or special criteria that should be observed during the delineation
process. An additional field is provided for a URL reference, which allows a webpage to be
specified that provides additional information relating to the landmark.

When a user selects a curve in the curve protocol interface, BrainSuite displays the information
for that curve and provides a button to launch the related webpage if required by the user. The
user can trace curves defined by the protocol, save curve sets, and load them. The protocol is
stored in the same file as the saved curves, thereby providing a record of which protocol was
followed to define a set of landmarks. Each landmark can be described in the protocol as being
required or optional, and BrainSuite will warn users when they save a set of curves that is
incomplete. These curves can be exported in formats appropriate for surface registration
methods (e.g., Thompson et al., 2004) or studies of sulcal variation (e.g., Blanton et al.,
2001; Narr et al., 2001; Sowell et al., 2002; Luders et al., 2003). In this work, we adapted the
existing LONI protocol (Sowell et al., 2002, protocol available online at
http://www.loni.ucla.edu/Protocols/SulcalAnatomy) into this format. This protocol specifies
each sulcal landmark to be traced by a single contiguous curve. Included in this protocol is the
specification for how the rater should trace each landmark, including how to locate the
landmarks on the brain surface and how to determine the path to take for each sulcus. The
protocol accounts for many of the variations that are encountered across subjects; this provides
a consistent set of rules that plays an important role in establishing reliable landmarks for
intersubject analysis. For example, in the case of a bifurcation, the protocol specifies which
path to follow. Similarly, in the case of a sulcus that may be interrupted by a gyrus, the protocol
specifies how the traced curve should traverse the gyrus. In the case of tracing an interrupted
sulcus with BrainSuite, the raters were instructed to adjust the curvature weighting to allow
the curve tracker to cross gyri as necessary.
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2.3. Validation methodology
To assess our new method, we compared its use to that of Display (Montreal Neurological
Institute, Montreal, Canada), which had been used previously as a standard for delineation at
the UCLA Laboratory of Neuro Imaging. Display allows users to delineate curves using an
OpenGL interface, and it will compute paths along mesh edges between seed points using a
shortest path algorithm.

Tracings were performed on 12 cortical surface meshes. These meshes were produced from
T1-weighted MRI volumes using the cortical surface extraction method of MacDonald
(1998). Each mesh represents one hemisphere of the brain. These surfaces were traced
previously by experts within our laboratory to produce training standards for use within our
laboratory; these expert delineations were performed using the Display software. The expert
delineations included landmark curves on the lateral aspect of the brain hemisphere for six of
these surfaces (L1-L6) and landmark curves on the medial aspect of the remaining six surfaces
(M1-M6). A set of 23 curves (see Table 2) was selected that were determined to be consistently
present in most subjects. Surfaces L1-L6 were used for evaluating 13 curves on the lateral
surface of brains; surfaces M1-M6 were used for evaluating 10 curves on the medial surface.
In principal, we could have evaluated the 23 curves on all 12 surfaces; however, we opted to
use the existing expert delineations as our gold standard for evaluation since they have been
used reliably for several years.

Delineation of the surfaces was performed by six raters who had limited experience with
cortical surface delineation and limited neuroanatomical knowledge. This selection of the raters
should reduce bias effects that might otherwise result from experience with the delineation
tools. We note that the raters were not blinded to which method they were using, as the tools
have very different interfaces. The raters were trained on the LONI protocol by an experienced
rater and trainer (E.K.). The raters delineated a set of 8 practice surfaces, constructed using the
same methods as those used in the study. The raters had engineering backgrounds but minimal
knowledge of brain anatomy. Therefore, training involved learning both cortical anatomy and
the tracing protocol, as well as the use of the two software packages. Training sessions started
with BrainSuite, because it provided better visualization of the cortical surfaces. A total of 6
cortical surfaces were traced by all participants, during which they familiarized themselves
with cortical anatomy and the use of BrainSuite. A second tracing session then followed, during
which the participants were instructed to trace 2 more surfaces with Display to learn how to
use that software. Feedback on their delineation results was provided by the trainer.

The raters then delineated the 12 test cortical surface models. Each surface was delineated
twice by each rater—once in Display and once in BrainSuite. The order in which the
delineations were performed was randomized to reduce bias effects from fatigue and
experience with the surfaces and software. Each rater was provided a schedule specifying which
brain surface to trace with which software package. The lateral brain surfaces were traced first.
In statistical terms, each rater was assigned the same 12 experimental units, produced by the
combination of 2 software packages (BrainSuite,Display) × 6 brains(L1-L6). This order was
randomized for each rater. The order was then repeated for the 6 medial surfaces, replacing L1
with M1, and so on. The raters were instructed to record the time taken to delineate each surface
completely. A set of curves, which had previously been established by very experienced raters
at the UCLA Laboratory of Neuro Imaging using the Display software tool, was used as the
ground truth for this study. To compare BrainSuite and Display, we analyzed 3 aspects of the
delineation task: time efficiency, delineation accuracy, and inter-rater variability.

2.3.1. Time efficiency—To analyze the delineation time, we considered the rater as a random
factor, and the software (BrainSuite/Display) and delineation side (lateral/medial) as fixed

Shattuck et al. Page 7

J Neurosci Methods. Author manuscript; available in PMC 2010 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



factors. We followed the summary statistic approach and modeled the delineation time
separately for each rater using an ANCOVA (analysis of covariance) design:

(4)

where ti is the delineation time for the ith cortical surface; si is the software indicator variable
(0 for BrainSuite, 1 for Display); vi is the view indicator variable (0 for lateral, 1 for medial),
hi is the habituation covariate, which denotes the brain delineation order (1 for the first brain,
2 for the second, etc.), and ei is the error term. Variables b1, b2, b3, and b4 are the estimable
model parameters, and the first term b1 is the intercept term (mean delineation time). We use
the superscript r to denote that the same model is fit separately per rater r. We include the view
indicator in this model since brains L1-L6 were traced on the lateral side and brains M1-M6
were traced on the medial side. The medial and lateral tracing tasks differed significantly in
key areas, including the numbers of curves traced, the difficulty in visualizing the anatomy,
and the nature of the curves that were traced.

2.3.2. Delineation accuracy—Because of limited neuroanatomical knowledge, the raters
often produced large tracing errors irrespective of software. Such erroneous tracings constitute
large measurement outliers, which deemed the analysis of variance approach inaccurate. To
evaluate whether delineation accuracy is affected by each software, we used the median
statistic, which is robust to the presence of outliers.

For a surface s and a specified curve n, we estimate the error difference  between Display
and BrainSuite in a traced curve  from a rater r as

(5)

where  is the gold standard curve and e1 is a distance measure defined by

(6)

where the first term in (6) is the average minimum distance of each point in curve Da to a point
in curve Db, and the second term is the average minimum distance from each point in Db to a
point in Da. We note that this is one of the 24 distance measures based on the Hausdorff distance
that were described by Dubuisson and Jain (1994). For each rater, we estimate the median of
the error difference as

(7)

.

2.3.3. Inter-rater variability—To trace a curve, Display requires the selection of multiple
points on a surface, which are then joined by line segments computed using the shortest path
along the surface mesh edges. BrainSuite, on the other hand, guides curves based on a curvature
weighted lowest-cost path algorithm. Therefore, as long as brain anatomy has been identified
accurately, the software will tend to trace the same curve, reducing inter-rater variability. To
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evaluate this effect, we measured the inter-rater variance for each curve using the following
equation:

(8)

where R = 6 is the number of raters.

3. Results
The 6 raters delineated all 12 brains according to the methods described above. In one case,
due to a file transfer error, one rater had to retrace a single curve that had been traced in Display;
the corrected file was used in this study. We assumed this had a minimal impact on the
assessment of the methods and did not take this into account in the analysis. The raters did not
record how many manually selected points were needed for each curve. The raters reported
that they did not alter the default parameter settings (λ = 2.0) in the BrainSuite tracing tool,
except in the case of interrupted sulci where they turned this feature off (λ = 0.0) in some
instances. The raters did not have control over the value of κ, which was set to 20 in all cases.

3.1. Time performance
The estimated model for the time analysis ANCOVA model parameters bi for each rater are
shown in Table 1. The b1 term indicates the mean time, in minutes, required to delineate a set
of curves on a brain surface. The remaining terms indicate, for each rater, the differences in
time required with respect to different aspects of the study. We note that the signs of each of
these terms were consistent across the raters. The b2 term indicates the difference in time
required to use Display instead of BrainSuite. The sign for b2 was positive for all raters, thus
more time was needed to trace curves with Display. The time difference between tracing the
medial surface, which requires fewer curves, and tracing the lateral surface is denoted by b3;
its negative value indicates that the medial side was traced faster then the lateral. Finally, the
habituation parameter b4 indicates that there was a linear learning effect, since its negative
value indicates that less time was required to trace the latter brains in the set.

To establish statistical significance, we used the above parameters as data on a second level

analysis. For example, to test for a software effect, we define the statistic . This
statistic is equal to 10.77 min for the original dataset, denoting the average extra time to
delineate brains using Display. To test whether the positive value of S was statistically
significant, we generated 26 permutation samples S* by randomly multiplying each subject’s

value by ±1: . The original statistic S was larger than all permutation
samples, indicating a software effect with p-value = 1/26 = 0.0156. We can similarly
demonstrate a view and habituation effect with the same p-value.

3.2. Delineation accuracy
The median statistic for accuracy assessment had values 0.2127, 0.0588, 0.0402, 0.0504,
0.3287, 0.0621 in units of mm for the 6 raters. Since this statistic is always positive, using the
same permutation procedure as described in the time efficiency analysis, we can show that less
error was introduced by the BrainSuite software with p-value = 0.0156. However, we have
observed that the software dependent component of the error was typically much smaller than
the errors introduced by erroneous curve tracings. Therefore, the neuroanatomical knowledge
of the raters is much more important than the software they use.
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3.3. Inter-rater variability
The majority of curves, as listed in Table 2, had less interrater variance with BrainSuite than
with Display. We performed a one-sided Wilcoxon signed rank test of the difference between
the variance of Display curves minus the variance of BrainSuite curves. We tested the null
hypothesis that the difference comes from a distribution whose median is zero, against the
alternative that the distribution has positive median. The p-value was equal to 7.03 × 10-4,
indicating that BrainSuite reduces inter-rater curve variance.

4. Discussion
The work presented here demonstrates an improved approach to the manual delineation of
cortical landmarks. While the method could be applied to the delineation of either sulci or gyri,
our validation study examined the identification of sulcal landmarks. We chose this focus
because of our previous application of sulcal-based protocols since these are frequently used
in intersubject registration methods (e.g., Thompson et al., 2004; Joshi et al., 2007). The
analysis of sulcal curve tracing results produced by six raters shows that the new tool was as
accurate or better than Display, another software package that has been widely used within the
Laboratory of Neuro Imaging and elsewhere. Furthermore, our algorithm produced results with
reduced inter-rater variability. Users were consistently able to produce delineations using
BrainSuite in less time - 10 min per brain on average than using Display. Reducing the time
required to perform the delineation while also reducing inter-rater variation without
compromising accuracy is a significant improvement.

Several factors may have been involved in the improvement provided by BrainSuite for the
delineation task tested. The most significant difference between the two software programs,
for the purpose of delineation, was the curvature weighting used by BrainSuite. It was this
difference that allowed the curved paths of the cortical anatomy to be defined in BrainSuite
with fewer mouse clicks without compromising the quality of the delineations. Anecdotally,
the raters reported using approximately 3 points per curve delineated in BrainSuite and
approximately 15 points per curve delineated in Display. Differences in the user interface were
also likely factors. BrainSuite rendered the brain surface model faster than Display, providing
the user with smoother rotation of the surface to visualize the anatomy. BrainSuite provided
visual updates of the curve being drawn, giving the user better feedback so that he or she could
easily reposition the curve during delineation. BrainSuite also provided features for undoing
segments of a drawn curve, while Display only allowed the user to restart a curve if changes
had to be made. Furthermore, BrainSuite provided the details of the delineation protocol
directly in the user interface, while the use of Display required the user to cross-reference
external documentation, e.g., a website.

Our algorithm is closest related to the approaches taken by Bartesaghi and Sapiro (2001) or
Hurdal et al. (2008). We note that the approach of Bartesaghi and Sapiro (2001) computes the
geodesic on the surface, and is not restricted to the mesh edges. In our principal application of
image registration, we are matching the meshes using finite element methods (Thompson et
al., 2004; Joshi et al., 2007), thus delineation on the edges is appropriate. Bartesaghi and Sapiro
(2001) also make the point that Dijkstra’s algorithm can produce multiple minimal paths. In
practice, should such a case arise it would be circumvented during the delineation procedure
by the trained rater. The sulcal identification method of Hurdal et al. (2008) is quite similar to
the one we present here, though it uses a slightly different cost function devised to achieve the
same purpose. In that work, which was focused on the mathematical shape analysis of the
curves, 10 sulcal curves were specified by users who selected the two endpoints of the curve,
with verification by another user. The pre-central sulcus was split into superior and inferior
components, and specified with two curves. The lowest cost path between them was then
computed. The approach we present here is more general, as it allows for more explicit control
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by the operators. We note that the curves we generate would be suitable for analysis by the
methods described by Hurdal et al. (2008). An additional difference between our method and
that of Bartesaghi and Sapiro (2001) or Hurdal et al. (2008) is our use of a convexity metric in
place of an estimate of mean curvature. A natural extension of the work we present here would
be to explore alternate cost functions, though pragmatically the cost function we use has been
demonstrated to produce satisfactory results for detection of sulci and other landmarks.

In related work, we have been developing new protocols for delineation of the surfaces
generated from the white-matter/grey-mater interface, such as those produced using
BrainSuite. These surfaces represent the deep cortical folds more accurately and therefore make
the delineation task more challenging. For example, the Sylvian fissure in these surfaces is
mostly an empty space, thus surface landmarks cannot be defined upon it. In that instance, we
instead trace the deep circular sulcus of the insula as a landmark. Also, we have identified
optimal subsets of sulcal landmarks that minimize the cortical surface registration error (Joshi,
2008). We anticipate that these developments will allow us to apply our delineation method
more broadly and further reduce the burden of manual delineation. We are currently preparing
an updated public release version of the BrainSuite software, which will include the method
and tools described here. The BrainSuite software is available online at
http://brainsuite.loni.ucla.edu and http://brainsuite.usc.edu.
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Fig. 1.
A cortical surface model shaded by (top) its convexity measure and (bottom) the cost function
(α).
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Fig. 2.
Surface curves traced with the method described in this paper; all points were traced using the
same 2 seed points. (top) Surface curve automatically traced using the Euclidean distance along
each edge (λ = 0). (middle) Sulcal curve traced using λ = 2 and positive convexity weighting.
(middle) Gyral curve traced using λ = 2 and negative convexity weighting.
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Fig. 3.
The BrainSuite curve protocol tool. Tracing protocols, defined in XML, can be loaded into the
tool. The user can select a curve to be traced, and control the λ parameter, undo previous points
selected, and save and load results. The interface also provides access to additional information
via URLs encoded in the protocol specification.
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Table 2

Inter-rater variance (in units of mm2) for protocol curves traced by 6 individuals using BrainSuite and Display

Curve BrainSuite Display

Sylvian fissure 0.0669 2.2214
Central sulcus 0.7552 1.4937
Postcentral sulcus 4.9397 5.2170
Precentral sulcus 0.4018 0.9754
Superior temporal sulcus main body 2.5692 1.7645
Superior temporal sulcus ascending branch 1.8983 1.7679
Transverse occipital sulcus 14.5701 14.1739
Intraparietal sulcus 1.5365 2.7808
Primary intermediate sulcus 1.7256 1.9433
Inferior temporal sulcus 0.6676 1.1129
Inferior frontal sulcus 0.7439 0.7983
Superior frontal sulcus 1.8302 4.1926
Olfactory sulcus 4.7014 5.4206
Callosal sulcus 0.7380 0.7472
Superior rostral sulcus 0.3383 0.6818
Inferior rostral sulcus 0.7287 1.0865
Paracentral sulcus 2.3139 2.8526
Cingulate sulcus, anterior segment 1.3430 2.8599
Cingulate sulcus, posterior segment 0.7920 2.5374
Parieto-occipital sulcus 3.1697 3.3113
Calcarine sulcus, anterior segment 0.7599 1.1439
Calcarine sulcus, posterior segment 3.1257 3.1236
Subparietal sulcus 1.5099 2.9581
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