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Abstract
Measures of brain changes can be computed from sequential MRI scans, providing valuable
information on disease progression for neuroscientific studies and clinical trials. Tensor-based
morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of
tissue growth or atrophy. In this paper, we examine the power of different nonrigid registration
models to detect changes in TBM, and their stability when no real changes are present. Specifically,
we investigate an asymmetric version of a recently proposed unbiased registration method, using
mutual information as the matching criterion. We compare matching functionals (sum of squared
differences and mutual information), as well as large deformation registration schemes (viscous fluid
and inverse-consistent linear elastic registration methods versus symmetric and asymmetric unbiased
registration) for detecting changes in serial MRI scans of 10 elderly normal subjects and 10 patients
with Alzheimer's Disease scanned at 2-week and 1-year intervals. We also analyzed registration
results when matching images corrupted with artificial noise. We demonstrated that the unbiased
methods, both symmetric and asymmetric, have higher reproducibility. The unbiased methods were
also less likely to detect changes in the absence of any real physiological change. Moreover, they
measured biological deformations more accurately by penalizing bias in the corresponding statistical
maps.
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1 Introduction
In recent years, computational anatomy has become an exciting interdisciplinary field with
many applications in functional and anatomic brain mapping, image-guided surgery, and
multimodality image fusion (Avants and Gee (2004); Christensen et al. (1996); Chung et al.
(2001); Collins et al. (1994); Grenander and Miller (1998); Miller (2004); Shen and Davatzikos
(2003); Thompson and Toga (2002)). The goal of image registration is to align, or spatially
normalize, one image to another. In multi-subject studies, this reduces subject-specific
anatomic differences by deforming individual images onto a population average brain template.
When applied to serial scans of human brain, image registration offers tremendous power in
detecting the earliest signs of illness, understanding normal brain development or aging, and
monitoring disease progression (Camara et al. (2008); Crum et al. (2001); Hogan et al.
(2000); Klein et al. (2009); Pieperhoff et al. (2008); Ridha et al. (2006); Wang et al. (2003)).
Recently, there has been an expanding literature on various nonrigid registration techniques,
with different image matching functionals, regularization schemes, and numerical
implementations. Many algorithms were developed that regularize different differential
operators, including elastic regularization (Broit (1981)), viscous fluid registration
(Christensen et al. (1996)), and large deformation diffeomorphic metric mapping (Beg et al.
(2005)), among other works. We have argued previously that most work in tensor-based
morphometry (TBM) is interested in relative volume gain or loss, and if that is to be statistically
evaluated, it is preferable to be working on distributions that have no bias and minimal skew,
in order to obtain correct interpretations.

It is also important to observe that the Unbiased technique, though a novel concept in medical
image registration, can be adapted and combined with any non-rigid registration algorithm. As
such, we chose to add unbiased registration to work with fluid regularization in order to show
its advantages in measuring biological deformations more accurately, by penalizing bias in the
corresponding statistical maps and generating more stable and reproducible results than if only
fluid regularization were used.

In (Leow et al. (2007); Yanovsky et al. (2007b)), our group systematically examined the
statistical properties of Jacobian maps (the determinant of the local Jacobian operator applied
to the deformations), and proposed an unbiased large-deformation image registration approach.
In this context, unbiased means that we strive to obtain a zero-mean and symmetric log-
Jacobian distribution under the null hypothesis, when a pair of images is matched. We argued
that this distribution is beneficial when recovering change in regions of homogeneous intensity,
and in ensuring symmetrical results when the order of two images being registered is switched.
An unbiased algorithm is advantageous as it does not detect gain with more likelihood than
loss when signals of equal magnitude log-Jacobian but opposite sign are present. We applied
this method to a longitudinal MRI dataset from a single subject, and showed promising results
in eliminating spurious signals. We also noticed that different registration techniques, when
applied to the same longitudinal dataset, may sometimes yield visually very different Jacobian
maps, causing problems in interpreting local structural changes. Given this ambiguity and the
increasing use of registration methods to measure brain change, more information is required
concerning the baseline stability, reproducibility, and statistical properties of signals generated
by different nonrigid registration techniques.

The main contribution of this paper is to provide quality calibrations for different non-rigid
registration techniques in tensor-based morphometry (TBM). We systematically investigate
and compare the performances of different non-rigid registration techniques including two
common matching functionals: L2, or the sum of squared intensity differences, versus mutual
information, and four regularization techniques (fluid registration, inverse-consistent linear
elastic registration, and the Symmetric and Asymmetric Unbiased registration techniques). Our
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experiments are designed to determine which registration method is more reproducible and
more reliable with less artifactual variability, especially in regions of homogeneous image
intensity. Also, for the first time we investigate the Asymmetric version of the Unbiased
registration (by contrast with the Symmetric Unbiased model), as well as analyze unbiased
models with mutual information based matching functionals (prior work has focused on the
case where the summed squared intensity differences is used as the criterion for registration).

Following analyses in the preparatory phase of the Alzheimer's Disease Neuroimaging
Initiative (ADNI) (Leow et al. (2006)), the foundation of our calibrations is based on the
assumption that, by scanning healthy normal human subjects twice over a 2-week period using
the same protocol, serial MRI scan pairs should not show any systematic biological change.
Therefore, any regional structural differences detected using TBM over such a short interval
may be assumed to be errors. We apply statistical analysis to the profile of these errors,
providing information on the reliability, reproducibility and variability of different registration
techniques. Moreover, serial images of 10 subjects from the ADNI follow-up phase (images
acquired one year apart) were analyzed in a similar fashion and compared to the ADNI baseline
data. In images collected one year apart, real anatomical changes are present; neurobiological
changes due to aging and dementia include widespread cell shrinkage, regional gray and white
matter atrophy and expansion of fluid-filled spaces in the brain. Thus, a good computational
technique should be able to differentiate between longitudinal image pairs collected for the
ADNI baseline (2-week) and follow-up (1-year) phases. We refer to prior papers for details of
the ADNI acquisition protocol, but briefly, all subjects were scanned with a standardized MRI
protocol, developed after a major effort evaluating and comparing 3D T1-weighted sequences
for morphometric analyses (Jack et al. (2008)).

In the experiments that follow, all scans were collected according to the standard ADNI MRI
protocol (http://www.loni.ucla.edu/ADNI/Research/Cores/), which acquires a high-resolution
sagittal T1-weighted 3D MP-RAGE sequence for each subject, with a reconstructed voxel size
of 0.9375 × 0.9375 × 1.2 mm3. Additional image corrections were also applied, using a
processing pipeline at the Mayo Clinic, consisting of: (1) a procedure termed GradWarp for
correction of geometric distortion due to gradient non-linearity (Jovicich et al. (2006)), (2) a
“B1-correction”, to adjust for image intensity non-uniformity using B1 calibration scans (Jack
et al. (2008)), (3) “N3” bias field correction, for reducing intensity inhomogeneity Sled et al.
(1998), and (4) geometrical scaling, according to a phantom scan acquired for each subject
(Jack et al. (2008)), to adjust for scanner- and session-specific calibration errors. Additional
phantom-based geometric corrections were applied to ensure spatial calibration was kept within
a specific tolerance level for each scanner involved in the ADNI study (Gunter et al. (2006)).

At this point, we would like to motivate the unbiased approach, which couples the computation
of deformations with statistical analyses on the resulting Jacobian maps. As a result, the
unbiased approach ensures that deformations have intuitive axiomatic properties by penalizing
any bias in the corresponding statistical maps. In the following sections, we describe the
mathematical foundations of this approach, define energy functionals for minimization, and
perform thorough statistical analyses to demonstrate the advantages of the unbiased registration
models.

2 Unbiased Large-Deformation Image Registration
We first introduce the notation used in this paper. Throughout this paper, we denote the vectors
by bold fonts and scalars by regular fonts. Let Ω be an open and bounded domain in ℝn, for
arbitrary n. Without loss of generality, assume that the volume of Ω is 1, i.e. |Ω| = 1. Let I1 :
Ω → ℝ and I2 : Ω → ℝ be the two images to be registered. We seek to estimate a transformation
g : Ω → Ω such that I2 matches I1 when deformed by g. In this paper, we will restrict this
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mapping to be differentiable, one-to-one, and onto. We denote the Jacobian matrix of a
deformation g to be Dg. The inverse mapping of g is denoted by g−1.

The displacement field u(x) from the position x in the deformed image I2○g(x) back to I2(x)
is defined in terms of the deformation g(x) by the expression g(x) = x − u(x) at every point x
∈ Ω. Thus, we consider the problems of finding g and u to be equivalent. It is sometimes more
convenient to write expressions in terms of either g or u. For instance, we can denote the
determinant of the Jacobian matrix of deformation g as either |Dg(x)| or |D(x − u(x))|.

We now describe the construction of the Unbiased Large-Deformation Image Registration. We
associate three probability density functions (PDFs) to g, g−1, and the identity mapping id:

(1)

By associating deformations with their corresponding global density maps, we can now apply
information theory to quantify the magnitude of deformations (Yanovsky et al. (2007a)). In
our approach, we choose the Kullback-Leibler (KL) divergence and symmetric Kullback-
Leibler (SKL) distance. The KL divergence between two probability density functions, p1(x)
and p2(x), is defined as

(2)

We define the SKL distance as

(3)

The Unbiased method solves for the deformation g (or, equivalently, for the displacement u)
minimizing the energy functional E, consisting of the image matching term F and the
regularizing term R which is based on KL divergence or SKL distance. The fidelity term F
dependents on I2 and I1, as well as the displacement u. The general minimization problem can
be written as

(4)

Here, λ > 0 is a weighting parameter.

2.1 Asymmetric Unbiased Registration
To quantify the magnitude of deformation g, in this paper we introduce a new regularization
term RKL, which is an asymmetric measure between Pid and Pg:

(5)
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This regularization term can be shown to be

(6)

Thus, the energy functional in (4) implementing Asymmetric Unbiased registration can be
written as

(7)

for some distance measure F between I2(x − u) and I1(x). The second term on the right-hand
side of the equality in (7) is equivalent to the logarithmic barrier in numerical optimization
theory (Nocedal and Wright (1999)) and is well-behaved.

2.2 Symmetric Unbiased Registration
In this section, we describe the regularization functional based on the symmetric KL distance
between Pid and Pg:

(8)

As shown in (Leow et al. (2007); Yanovsky et al. (2007b)), the regularization term is linked
to statistics on Jacobian maps as follows

(9)

The energy functional employing Symmetric Unbiased registration can be rewritten as

(10)

for some distance measure F. Notice that the symmetric unbiased regularizing functional is
pointwise nonnegative, while the asymmetric unbiased regularizer in equation (6) can take
either positive or negative values locally. Although in theory, the asymmetric KL regularization
may potentially favor voxel expansion over the identity transformation (at least locally), this
is not the case globally. Indeed, given a body force of zero everywhere, the deformation with
minimum asymmetric KL energy is still the identity transformation. This can be readily
appreciated by noticing that the function − log(x), though not strictly non-negative, is still a
convex function with respect to its argument, x. Thus, expansion in some regions would induce
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contraction in others, driving the overall asymmetric KL energy upwards and away from zero.
Moreover, although symmetrization was shown to be important in (Christensen and Johnson
(2001)), here we show that in practice, the asymmetric unbiased method does not seem to
perform much differently than its symmetric version. This further supports our conclusion that
the log transformation may be a more fundamental operation than symmetrization in
understanding Jacobian maps in the context of medical imaging.

3 Fidelity Metrics
In this paper, the matching functional F takes two forms: the L2 norm (the sum of squared
intensity differences) and MI (mutual information). These functionals have each been widely
used in the past for nonrigid registration, to measure the intensity agreement between a
deforming image and the target image. We briefly describe both distances in this section.

3.1 L2-norm
The L2-norm matching functional is suitable when the images have been acquired through
similar sensors and thus are expected to present the same intensity range and distribution. The
L2 distance between the deformed image I2(x − u) and target image I1(x) is defined as

(11)

Computing the first variation of functional FL2 gives the following gradient

(12)

3.2 Mutual Information
Mutual information is a measure of how much information one random variable has about
another. The use of mutual information for image registration was first introduced in (Collignon
et al. (1995) and Viola and Wells (1995)). One of the main advantages of using mutual
information is that it can be used to align images of different modalities, without requiring
knowledge of the relationship (joint intensity distribution) of the two registered images. We
refer the readers to (D'Agostino et al. (2003); Hermosillo et al. (2001); Wells et al. (1996)) for
relevant discussions on mutual information.

To define the mutual information between the deformed image I2(x − u) and the target image
I1(x), we follow the notations in (Hermosillo et al. (2001)), where pI1 and  are used to denote
the intensity distributions estimated from I1(x) and I2(x − u), respectively. An estimate of their
joint intensity distribution is denoted as . In this probabilistic framework, the link between
two modalities is fully characterized by a joint density.

We let i1 = I1(x), i2 = I2(x − u(x)) denote intensity values at point x ∈ Ω. Given the displacement
field u, the mutual information computed from I1 and I2 is provided by

(13)
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We seek to maximize the mutual information between I2(x − u) and I1(x), or equivalently,
minimize the negative of :

(14)

The gradient of (14) is derived in Appendix C and is given by

(15)

where |Ω| is the volume of Ω, Qu is defined as

(16)

and ψ(ξ1, ξ2) is a two-dimensional Parzen windowing kernel, which is used to estimate the
joint intensity distribution from I2(x − u) and I1(x). Here, we use the Gaussian kernel with
variance σ2:

(17)

4 Minimization of Energy Functionals
In general, we expect minimizers of the energy functional E(u) to exist. Computing the first
variation of the functional in (4), we obtain the gradient of E(I1, I2, u), namely ∂uE(I1, I2, u).
We define the force field f, which drives I2 into registration with I1, as

(18)

Here, R(u) is either RKL(u) or RSKL(u). Explicit expressions for components of ∂uR(u), in both
cases, are derived in Appendices A and B for two and three dimensional cases, respectively.
Also, the gradient ∂uF(I1, I2, u) depends on the choice of the fidelity term.

Given the force field, the most straightforward way to minimize (4) might seem to involve
parameterizing the descent direction by an artificial time τ,

(19)

However, in our case, we do not solve Euler-Lagrange equations using the gradient descent
method. In order to regularize the flow, we employ the fluid regularization proposed in
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(Christensen et al. (1996)). Given the velocity field v, the following partial differential equation
can be solved to obtain the displacement field u:

(20)

The instantaneous velocity as in (D'Agostino et al. (2003)) is obtained by convolving f with
Gaussian kernel Gσ of variance σ2:

(21)

This equation can be solved efficiently using the Fast Fourier transform (FFT).

To avoid possible confusion, we summarize the methods we will be referring to in our
subsequent analyses. In later discussions, minimization of the following energies

(22)

and

(23)

using equations (18), (21), (20) will be referred to as L2-Asymmetric Unbiased and L2-
Symmetric Unbiased models, respectively. The model above, provided λ = 0, will be referred
to as the L2-Fluid model.

Similarly, minimization of

(24)

and

(25)

will be referred to as the MI-Asymmetric Unbiased and MI-Symmetric Unbiased models,
respectively. Such models, with λ = 0, define the MI-Fluid model.

We are now ready to give an algorithm for minimizing either one of energy functionals (22)
through (25) above.

Algorithm 1 Unbiased Nonlinear Registration
1 Initialize t = 0 and u(x, 0) = 0.

2 Given u(x, t), calculate the force field f(x, u(x, t)) using equation (18).
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Note that the fluid model, obtains the force field using equation (18) with λ = 0.

3 Solve (21) for the instantaneous velocity v(x, t).

Steps 4-6 describe the procedure for solving equation (20), advancing u(x, t) in time.

4 Calculate the perturbation of the displacement field

R(x) = v(x, t) − v(x, t) · ∇u(x, t).

5 Time step Δt is calculated adaptively so that Δt·max(‖R‖2) = δu, where δu is the maximal displacement allowed in one iteration. Results
in this work are obtained with δu = 0.1.

6 Advance equation (20), i.e. ∂u(x, t)/∂t = R(x), in time, with time step from step 4, solving for u(x, t).

7 If the cost functional, defined in either one of (22) through (25), decreases in the last fifty iterations by less than 1% of the total decrease
in energy, then stop.

8 Let t := t + Δt and go to step 2.

5 Statistical Analysis
5.1 Statistical testing on the deviation of log Jacobian maps in the absence of changes

Based on the authors' approach in (Leow et al. (2007); Yanovsky et al. (2007b)), we observe
that, given that there is no systematic structural change within two weeks, any deviation of the
Jacobian map from one should be considered error. Thus, we expect that a better registration
technique would yield log |Dg| values closer to 0 (i.e., smaller log Jacobian deviation translates
into better methodology). Mathematically speaking, one way to test the performance is to
consider the deviation map dev of the logged (i.e., logarithmically transformed) Jacobian away
from zero, defined at each voxel as

(26)

For two different registration methods A and B, we define the voxel-wise deviation gain of A
over B (denoted by SA,B) as

(27)

For the ADNI baseline dataset (in which patients are scanned twice with MRI, two weeks
apart), two distinct types of t tests are used, a within-subject paired t test and a group paired t
test. A within-subject paired t test is conducted for each subject by pooling all voxels inside a
region of interest, as defined by the ICBM whole brain mask (the ICBM brain is a standardized
population average image, defined by the International Consortium for Brain Mapping
(Mazziotta et al. (2001))). This determines whether two methods differ significantly inside the
whole brain (for each subject). A group paired t test, on the other hand, is performed across
subjects, by computing a voxel-wise t-map of deviation gains. In this case, to statistically
compare the performance of two registration methods, we rely on the standard t test on the
voxel mean of S. To construct a suitable null hypothesis, we notice that the following relation
would hold, assuming B outperforms A

(28)

Thus, the null hypothesis in this case would be testing if the mean deviation gain is zero
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(29)

To determine the ranking of A and B, we have to consider one-sided alternative hypotheses.
For example, when testing if B outperforms A, we use the following alternative hypothesis

(30)

For n subjects, the voxel-wise T statistic, defined as

(31)

where

(32)

and

(33)

thus follows the Student's t distribution under the null hypothesis and may be used to determine
the p-value that the null hypothesis is true. If the alternative hypothesis is accepted, we confirm
that sequence B outperforms A at point x. Otherwise, we would rank A and B equally if the null
hypothesis is not rejected.

5.2 Detecting Real Changes - Statistical testing on the mean log Jacobian
For both the ADNI follow-up dataset (in which patients are scanned twice with MRI, one year
apart) and ADNI baseline dataset, we create a voxel-wise t map using the local log Jacobian
values of the ten subjects, allowing us to test the validity of the zero mean assumption. To
simplify the notation, we introduce J to denote J = |Dg|. The following voxel-wise T statistic
compared to a two-tailed Student's t distribution may then be used to test the above null
hypothesis

(34)

where
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(35)

and

(36)

We reject the null hypothesis if the p value calculated above exceeds a preset threshold based
on a suitable confidence interval. Notice the voxel-wise variance of log J provides us with a
way to assess the repeatability of a deformation method, i.e., measuring the voxel-wise spread
of the given multiple observations (with higher variance corresponding to lower repeatability).

5.3 Permutation Testing to Correct Multiple Comparisons
To determine the overall global effects of different registration methods on the deviation of
log Jacobian maps throughout the brain, we performed permutation tests to adjust for multiple
comparisons (Bullmore et al. (1999); Nichols and Holmes (2001)). Following the analyses in

(Leow et al. (2006)), we resampled the observations by randomly flipping the sign of  (i
= 1, 2, …, n) under the null hypothesis. For each permutation, voxelwise t tests are computed.
We then compute the percentage of voxels inside the chosen ROI (in this case the ICBM mask)
with T statistics exceeding a certain threshold. The multiple comparisons corrected p value
may be determined by counting the number of permutations whose above-defined percentage
exceeds that of the un-permuted observed data. This is comparable to ‘set-level inference’ in
the widely-used SPM (Statistical Parametric Mapping) functional image analysis package
(Friston et al. (1995)). For example, we say that sequence B outperforms A on the whole brain
if this corrected p value is smaller than 0.05 (that is, less than 5% of all permutations have the
above-defined percentage greater than that of the original data). All possible (210 = 1024)
permutations were considered in determining the final corrected p value.

5.4 Cumulative Distribution Function (CDF)
To visually assess the global significance level of the voxel-wise t tests on deviation gains and
log-Jacobian values, we also employed the cumulative distribution function (CDF) plot, as in
several prior studies (Brun et al. (2007); Chiang et al. (2007); Lepore et al. (2007); Morra et
al. (2009)). In brief, we plot observed cumulative probabilities against the theoretical
distribution under the null hypothesis. These CDF plots are commonly created as an
intermediate step, when using the false discovery rate (FDR) method to assign overall
significance values to statistical maps (Benjamini and Hochberg (1995); Genovese et al.
(2002); Storey (2002); Zhu et al. (2007)). As they show the proportion of supra-threshold
voxels in a statistical map, for a range of thresholds, these CDF plots (sometimes called Q-Q
plots) offer a measure of the effect size in a statistical map. They also may be used to
demonstrate which methodological choices influence the effect size in a method that creates
statistical maps (Brun et al. (2007); Chiang et al. (2007); Lepore et al. (2007)).

In the case of deviation gains S of a worse technique A over a better technique B in the ADNI
baseline data, we expect a CDF curve to lie above the Null line, in the sense that a better
technique exhibits less systematic changes. In the case of log-Jacobian values, a better
registration technique, on the other hand, should be able to separate the CDF curves between
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ADNI baseline and follow-up phases (this is what we refer to as the separation of CDF curves
in the presence of real physiological changes).

6 Computational Considerations
In Sections 7 and 8, we tested the Asymmetric Unbiased and Symmetric Unbiased models and
compared the results to those obtained using the Fluid registration model (Christensen et al.
(1996); D'Agostino et al. (2003)) and inverse-consistent linear elastic registration (Christensen
and Johnson (2001); Leow et al. (2005)). Of note, even though Asymmetric Unbiased and
Symmetric Unbiased methods minimize different energy functionals, our experiments showed
that they generate very similar maps. For each regularization technique, we employed both
L2 and mutual information matching functionals (see equations (22)-(25)).

To obtain a fair comparison, re-gridding was not employed. Re-gridding is a method to relax
the energy computed from the linear elasticity prior after a certain number of iterations, which
allows large-deformation mappings to be recovered without any absolute penalty on the
displacement field (other than via the smoothness constraint on the velocity field which is
integrated to give the displacement) (Christensen et al. (1996)). It is essentially a memory-less
procedure, as how images are matched after each re-gridding is independent of the final
deformation before the re-gridding, rendering the comparison of final Jacobian fields and cost
functionals problematic. Moreover, we consider the strategy of re-gridding, through the
relaxation of deformation fields over time, to be less rigorous from a theoretical standpoint, as
the imposition of a regularizer can be used to secure distributional properties in the resulting
statistics (e.g., symmetric log-Jacobian).

For the experiments in this paper, different values of parameter σ (the standard deviation) in
equation (21) were chosen. The values we used were σ = 7.0, 9.0, 12.0. Also, different values
of parameter λ were employed. For example, in our MI-Unbiased experiments, λ was chosen
to be 1.0, 2.0, 5.0, 10.0. As will be shown in the experimental sections, Fluid registration yielded
best results with σ = 9.0 and 12.0, and therefore, all fluid registration results were visualized
with σ = 9.0, unless otherwise mentioned. As will be shown in the experimental sections, for
all values of λ, the unbiased registration outperformed the fluid registration with statistical
significance when comparing the value of the data term at convergence (for the 10 subjects
used) using a t-test to compare the results of one set of parameters versus the other. Unless
otherwise mentioned, MI-Unbiased registration results were generated using values of σ = 9.0
and λ = 5.0. A similar procedure was employed to choose the parameters for L2-based methods.
Notice that our procedure for selecting the parameters closely follows the approach employed
in (Cachier et al. (2003)), who compared algorithms over a range of regularization constants
and picked the best constant for each algorithm. Alternatively, parameters may be selected as
in (Yeo et al. (2008)), where the best regularization constant was found using cross-validation.

7 ADNI Baseline Scan Experiments
In this section, nonlinear registration was performed on a dataset that we shall refer to as the
“ADNI Baseline” dataset, collected during the preparatory phase of the ADNI project, which
includes serial MRI images of ten normal elderly subjects acquired two weeks apart. Each of
the ten pairs of scans is represented on a 220 × 220 × 220 grid. Here, the foundation of
calibrations is based on the assumption that, by scanning normal control human subjects serially
within a two-week period using the same MRI protocol, no systematic structural changes
should be recovered.

Yanovsky et al. Page 12

Med Image Anal. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7.1 L2 matching
In our first experiment, we compared methods based on L2 matching (L2-Fluid, L2-Asymmetric
Unbiased, and L2-Symmetric Unbiased). Uniform values of λ = 500 and λ = 1000 were used
for all deformations using L2-Symmetric Unbiased and L2-Asymmetric Unbiased algorithms,
respectively. Since the Asymmetric Unbiased model quantifies only the forward deformation,
the weight of the corresponding regularization functional is half the magnitude of that of the
Symmetric Unbiased model, and hence, a weighting parameter twice as large should be used.

Registering Serial MRI Scans—Figures 1-4 show the results of registering a pair of serial
MRI images for one of the subjects (subject 3). The deformation was computed in both
directions (time 2 to time 1, and time 1 to time 2) using methods based on L2 matching. In
Figure 1, Jacobian maps of deformations are superimposed on brain volumes. Both
Asymmetric Unbiased and Symmetric Unbiased methods generate less noisy Jacobian maps
with values closer to the identity mapping, which shows the superior stability of the Unbiased
approach in the absence of physiological changes. We also visually assessed the inverse
consistency of the mappings (Christensen and Johnson (2001)) by concatenating forward and
backward Jacobian maps (in an ideal situation, this operation should yield the identity). Again,
we observe noticeable visual differences between the results obtained using the unbiased
methods and Fluid registration. Figure 2 shows the L2-norm decrease per iteration for all L2-
based models. Figure 3 plots the KL divergence and SKL distance measures for each of the
L2-based methods. For L2-Fluid method, both KL and SKL measures increase with increasing
numbers of iterations. On the other hand, even though the Asymmetric Unbiased method
minimizes the KL divergence and the Symmetric Unbiased model minimizes the SKL distance,
these two measures stabilize for both unbiased methods. Figure 4 shows the histograms of
voxel-wise deviation gains of L2-Fluid over L2-Asymmetric Unbiased as well as L2-Fluid over
L2-Symmetric Unbiased. The histograms are skewed to the right, indicating the superiority of
both unbiased registration methods over Fluid registration.

Of note, we have also considered a different deviation map, defined as ,
in place of (26). We performed statistical analyses with this definition of deviation gain, which
yielded very similar results. These results are therefore not shown in this paper.

In Figure 5, we compared L2-Fluid and L2-Symmetric Unbiased methods, conducting a within-
subject paired t test inside the ICBM mask for each of the ten subjects. In this case, p < 0.0001
for all subjects, indicating that the Symmetric Unbiased registration, when coupled with L2

matching cost functional, produces more reproducible maps with less variability.

Group Differences—Figure 6 shows the mean Jacobian maps obtained using L2-Fluid, L2-
Asymmetric Unbiased, and L2- Symmetric Unbiased registration algorithms. Jacobian maps
generated using unbiased models have values closer to 1, whereas L2-Fluid model generated
noisy mean maps. Figure 7, shows the results when performing 3D voxel-wise paired t tests
for the deviation gain of L2-Fluid over L2-Asymmetric Unbiased and L2-Fluid over L2-
Symmetric

Unbiased. T maps for the deviation gains are empirically thresholded at 2.28 (p = 0.005 on the
voxel level with 9 degrees of freedom) to show statistical significance.

Figure 8 shows results obtained using Multiple Comparison Analysis using permutation testing
on deviation gains of L2-Fluid over L2-Symmetric Unbiased. The results indicate that out of
1024 permutations, no permutation yields a larger percentage of voxels with p < 0.05 than the
observed data, which indicates that L2-Symmetric Unbiased method outperforms L2-Fluid with
p < 0.001.
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To emphasize the differences between the distributions of log Jacobian values for Fluid and
unbiased (both asymmetric and symmetric) methods, in Figure 9, we plotted the cumulative
distribution function of the p-values in deviation gains as defined in (27). In these plots, the
interval p ∈ [0, 0.005] is the most important. For a null distribution, this cumulative plot falls
along the line y = x in xy-plane, as represented by the dashed black line. Larger upward
inflections of the CDF curve near the origin are associated with significant deviation gains,
indicating that both Asymmetric Unbiased and Symmetric Unbiased methods outperform Fluid
method in being less likely to exhibit structural changes in the absence of systematic biological
changes.

7.2 MI matching
In our second experiment, we compared the performance of methods based on mutual
information matching (MI-Fluid, MI-Asymmetric Unbiased, and MI-Symmetric Unbiased).
Uniform values of λ = 5 and λ = 10 were used for all deformations using MI-Symmetric
Unbiased and MI-Asymmetric Unbiased algorithms, respectively. Since the Asymmetric
Unbiased model quantifies only the forward deformation, the weight of the corresponding
regularization functional is half the magnitude of that of the Symmetric Unbiased model, and
hence, a weighting parameter twice as large should be used.

Registering Serial MRI Scans—Figures 10-13 show the results of registering a pair of
serial MRI images for one of the subjects (subject 3). The deformation was computed in both
directions (time 2 to time 1, and time 1 to time 2) using methods based on Mutual Information
matching. In Figure 10, Jacobian maps of deformations are superimposed on brain volumes.
Both Asymmetric Unbiased and Symmetric Unbiased methods generate less noisy Jacobian
maps with values closer to the identity mapping, which shows the superior stability of the
Unbiased approach in the absence of physiological changes. We also observed that MI-
Asymmetric Unbiased and MI-Symmetric Unbiased methods to produce inverse consistent
maps with less variability. Figure 11 shows the mutual information decrease per iteration for
all MI-based models. Figure 12 plots the KL divergence and SKL distance measures for each
of the MI-based methods. For MI-Fluid method, both KL and SKL measures increase with
increasing numbers of iterations. On the other hand, these two measures stabilize for both
unbiased methods. Figure 13 shows the histograms of voxel-wise deviation gains of MI-Fluid
over MI-Asymmetric Unbiased as well as MI-Fluid over MI-Symmetric Unbiased. The
histograms are skewed to the right, indicating the superiority of both unbiased registration
methods over Fluid registration.

In Figure 14, we compared MI-Fluid and MI-Symmetric Unbiased methods, conducting a
within-subject paired t test for each of the ten subjects. In this case, p < 0.0001 for all subjects,
indicating that the Symmetric Unbiased registration, when coupled with mutual information
matching cost functional, produces more reproducible maps with less variability.

Group Differences—Figure 15 shows the mean Jacobian maps obtained using MI-Fluid,
MI-Asymmetric Unbiased, and MI- Symmetric Unbiased registration algorithms. Jacobian
maps generated using unbiased models have values closer to 1, whereas MI-Fluid model
generated noisy mean maps. Figure 16, shows the results when performing 3D voxel-wise
paired t tests for the deviation gain of MI-Fluid over MI-Asymmetric Unbiased and MI-Fluid
over MI-Symmetric Unbiased. T maps for the deviation gains are empirically thresholded at
2.28 (p = 0.005 on the voxel level with 9 degrees of freedom) to show statistical significance.

Figure 17 shows results obtained using Multiple Comparison Analysis using permutation
testing on deviation gains of MI-Fluid over MI-Symmetric Unbiased. The results indicate that
out of 1024 permutations, no permutation yields a larger percentage of voxels with p < 0.05
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than the observed data, which indicates that MI-Symmetric Unbiased method outperforms MI-
Fluid with p < 0.001.

In Figure 18, we plotted the cumulative distribution function of the p-values in deviation gains.
Larger upward inflections of the CDF curve near the origin are associated with significant
deviation gains, indicating that both Asymmetric Unbiased and Symmetric Unbiased methods
outperform Fluid method in being less likely to exhibit structural changes in the absence of
systematic biological changes.

7.3 L2 versus MI matching
Lastly, we compared L2 and mutual information cost functionals for both Fluid and Symmetric
Unbiased regularization. (Since Asymmetric Unbiased and Symmetric Unbiased
regularizations produce similar results, we do not show the results for the asymmetric version).
We again conducted within-subject paired t tests (Figure 19) as well as group paired t tests
(Figure 20) on the voxel-wise deviation gains for all voxels inside the ICBM brain mask. We
showed that MI-Fluid outperforms L2-Fluid with p < 0.0001. However, the result of the
comparison of L2-Symmetric Unbiased and MI-Symmetric Unbiased is inconclusive.

8 ADNI Follow-up Scan Experiments
In this section, we analyze a dataset we shall call the “ADNI Follow-up” phase dataset, which
includes serial MRI images (220 × 220 × 220) of ten subjects acquired one year apart. These
data were collected as part of a larger study to track degenerative brain changes in MRI in 800
subjects, ages 55 to 90, including 200 elderly controls, 400 subjects with mild cognitive
impairment, and 200 patients with AD. As the images are now one year apart, real anatomical
changes are present, which allows methods to be compared in the presence of true biological
changes.

In Figures 21 and 22, nonlinear registration was performed using Fluid, Asymmetric Unbiased,
and Symmetric Unbiased methods. Visually, the Fluid method generates noisy mean Jacobian
maps, while maps generated using unbiased methods suggest a volume reduction in gray matter
as well as ventricular enlargement. Here, both Asymmetric Unbiased and Symmetric Unbiased
methods perform equally well. Figure 23 displays the cumulative distribution of p-values for
the voxel-wise log Jacobian t-maps for both ADNI Baseline and ADNI Follow-up datasets.
We expect a better method to separate these two CDF curves, indicating that a real biological
change has occurred between the two time points. A greater separation is accomplished when
Asymmetric Unbiased and Symmetric Unbiased methods are used, while the Fluid method
does not differentiate between the two datasets.

In Figures 24 and 25, we further compared different registration methods by matching images
artificially corrupted with Gaussian noise (zero mean; variance 12.0). Figure 25 displays the
cumulative distribution of p-values for the voxel-wise log Jacobian t-maps for both ADNI
Baseline and ADNI Follow-up datasets. A greater separation is accomplished when Unbiased
methods are used.

We also compared Fluid registration and Unbiased registration methods using different values
for the two parameters σ and λ (Figure 26). We used λ = 1.0, 2.0, 5.0, 10.0 (for the Unbiased
registration), and σ = 7,9,12 (for both Fluid and Unbiased registration). In general, Fluid
registration and Unbiased registration with smaller λ values generated noisier mean maps,
while maps generated using Unbiased registration with larger λ values suggest a volume
reduction in gray matter as well as ventricular enlargement. As the value of the smoothing
parameter σ increased, the resulting Jacobian maps became smoother, making the biological
effects, such as reduction in gray matter, harder to detect.
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In Figures 27 and 28, we compared Unbiased registration methods with the inverse-consistent
linear elastic matching of (Christensen and Johnson (2001); Leow et al. (2005)). Figure 28
displays the cumulative distribution of p-values for the voxel-wise log Jacobian t-maps for
both ADNI Baseline and Follow-up datasets for Unbiased technique with different values of
λ, Fluid registration, and inverse-consistent linear elastic matching. Unbiased methods,
especially with larger values of parameter λ, show a bigger separation between the baseline
and follow-up curves than Fluid and inverse-consistent linear elasticity methods do, indicating
that Unbiased methods, with any λ value, were able to better differentiate between the two
datasets.

9 Discussion
This is the first paper which aims to provide quality calibrations for different non-rigid
registration techniques in TBM. We systematically investigated and compared the
performances of different non-rigid registration techniques including common matching
functionals (L2-metric and mutual information), and regularization techniques (fluid
registration, inverse-consistent linear elastic matching, Asymmetric Unbiased, and Symmetric
Unbiased techniques). Experiments were conducted to determine which registration method
is more reproducible, more reliable, with less artifactual variability in regions of homogeneous
image intensity. We also introduced a novel asymmetric unbiased registration model (the
Asymmetric Unbiased model) and for the first time, analyzed unbiased models with mutual
information based matching functionals.

We showed that both Asymmetric and Symmetric Unbiased models generate very similar
results. Although in theory, the asymmetric KL regularization may potentially favor voxel
expansion over the identity transformation, this is not the case globally. Indeed, given a body
force of zero everywhere, the deformation with minimum asymmetric KL energy is still the
identity transformation. Thus, expansion in some regions would induce contraction in others,
driving overall asymmetric KL energy upwards and away from zero. Here we show that in
practice, the asymmetric unbiased method does not seem to perform much differently than its
symmetric version. This further supports our conclusion that the log transformation may be a
more fundamental operation than symmetrization in understanding Jacobian maps in the
context of medical imaging.

We compared Fluid registration and Unbiased registration methods with different values of
parameters σ and λ. Fluid registration, as well as Unbiased registration with smaller values of
λ, generated noisier mean maps, while maps generated using Unbiased registration with larger
values of λ suggest a volume reduction in gray matter as well as ventricular enlargement. As
the value of smoothing parameter σ increased, the Jacobian map became smoother, making the
biological effects, such as reduction in gray matter, harder to detect.

Our analyses showed that both Asymmetric Unbiased and Symmetric Unbiased models
perform significantly better than the fluid registration technique and demonstrated that the
Unbiased registration, with any choice of parameters, has more power differentiating between
regions of change and no change than the inverse-consistent linear elastic matching of
(Christensen and Johnson (2001); Leow et al. (2005)).

The fluid registration is indeed a useful nonrigid registration technique for many applications
since it generates a close alignment between the images being registered. Even so, as we showed
in this paper, the fluid registration has its limitations in tensor-based morphometry. Unbiased
regularization, however, ensures that the resulting deformations have intuitive axiomatic
properties by penalizing any bias in the corresponding statistical maps. With Unbiased
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registration, we can generate accurate alignment while ensuring that deformations have
intuitive axiomatic properties.

This also leads to a key issue in the field of non-linear registration, as validation studies have
been relatively difficult to perform as ground truth is not generally available. Even in cases
where test images were transformed using simulated deformations and thus the ground truth
is known a priori, one may still wonder whether these simulated deformations correspond to
anatomically plausible brain changes. As a result, efforts such as the ADNI project are
important, as it provides a platform for researchers to compare nonlinear registration techniques
using standardized imaging data. Along this direction, here we reported one of the first studies
using the ADNI dataset, and with potentially interesting results for the rest of the registration
community.

Importantly, the proposed Unbiased framework, though a novel concept in medical image
registration, can be easily adapted and combined with any non-rigid registration algorithm. In
this paper, we implemented the unbiased registration by adapting a fluid regularization
algorithm in order to show its advantages in measuring biological deformations. The
construction of Unbiased nonlinear elastic registration algorithm (Yanovsky et al. (2008a,b))
is another example of how an arbitrary nonrigid registration algorithm can be extended to
compute unbiased deformations.

In addition to investigating various regularizers, we compared L2 and Mutual Information
matching functionals in detecting changes in tensor-based morphometry. When applied to
serial scans obtained using the same protocol, the results were inconclusive when comparing
L2-Unbiased and MI-Unbiased (both asymmetric and symmetric) models. However, L2-Fluid
performs less favorably than MI-Fluid. In other words, mutual information performs better as
a fidelity metric when coupled with Fluid registration, but not in the case of unbiased
registration.

To explain this result, we postulate that by not constraining the final deformations (as in Fluid
registration), assuming intensity 1-to-1 correspondence (i.e., matching using L2) may lead to
local oscillations of the deformation maps, as minimizing L2 forces a local search for the
smallest intensity differences. One result of this is a Jacobian map with locally extreme values,
translating into spurious signals and, in our case, less reproducibility. On the other hand, the
Unbiased method eliminates local oscillations, allowing better realization of true physiological
signals even when L2 is used as a data fidelity term. Again, this supports our conclusion that
unbiased framework is fundamental in the understanding and realization of physiological
signals.

Although various techniques have been extensively applied to detect disease effects and
monitor brain changes with TBM, this paper is the first calibration study to systematically
compare registration models for tensor-based morphometry. We believe our results are
important, as they provide greater insight into the interpretation of TBM results in the future.
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A Derivations of Gradient of R(u) in Two Spatial Dimensions
In this Appendix, we derive explicit expressions for ∂uR(u) in (18) when Ω ⊂ ℝ2. Let us denote
the components of vector x to be (x1, x2) and the components of vector u be (u1, u2). We also
denote ∂jui = ∂ui/∂xj.

To simplify the notation, we let J = |Dg| = |D(x – u)|. Also, denote L(J) = LKL(J) = − log J,
when R = RKL and L(J) = LSKL(J) = (J – 1) log J, when R = RSKL. Note that J : 2×2(ℝ) → ℝ,
where M2×2(ℝ) is the set of 2 × 2 matrices with real elements, and L : ℝ → ℝ. Jacobian J is
a function of ∂jui, for i,j = 1,2, and is given by

We would like to minimize the functional

We find the first Euler-Lagrange equation. For some :

(A.1)

With notation L' = dL/dJ, the first Euler-Lagrange equation becomes:

(A.2)

Thus, minimizing the energy R(u) with respect to u1, for fixed u2, yields the first component
of ∂uR(u):

(A.3)

Note that L'KL(J) = −1/J and L'SKL(J) = 1 + log J – 1/J.

Similarly, the Euler-Lagrange equation for the second component of ∂uR(u) can be found to
be:

(A.4)
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B Derivations of Gradient of R(u) in Three Spatial Dimensions
In this Appendix, we derive an explicit expression for ∂uR(u) in (18) when Ω ⊂ ℝ3. Let us
denote the components of vector x to be (x1, x2, x3) and the components of vector u be (u1,
u2, u3). Here, we will use the same notation we used in Appendix A.

Jacobian J is a function of ∂jui, for i, j = 1, 2, 3, and is given by

(B.1)

We would like to minimize the functional

(B.2)

For some η, we have

(B.2)

Hence, the first Euler-Lagrange equation becomes:

(B.3)

Thus, minimizing the energy R(u) with respect to u1, for fixed u2 and u3, yields the first
component of ∂uR(u):

(B.4)

Similarly, the other two Euler-Lagrange equations can be found to be:

(B.5)
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and

(B.6)

C Derivation of equations for maximization of Mutual Information
In this Appendix, we derive the gradient ∂uFMI(u) of the mutual information matching
functional in (14), adopting the approach of (Chefd'Hotel et al. (2001); Hermosillo et al.

(2001)), modeling the joint intensity distribution  of deformed image I2(x − u) and
image I1(x) as a continuous function using the Parzen windowing method.

We compute the first variation of FMI(u) by perturbing u in the following way

(C.1)

Thus, we have

(C.2)

However, note that

(C.3)

and

(C.4)

Hence, the second term on the right hand side of the equality in (C.2) reduces to
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(C.5)

Equation (C.1) becomes

(C.6)

The joint intensity distribution estimated from I2(x − u) and I1(x) is given by

(C.7)

where |Ω| is a volume of Ω and ψ(ξ1,ξ2) is a two-dimensional Parzen windowing kernel.

The derivative of (C.7) can also be computed:

Let us denote

If we let ε = 0, equation (C.6) gives the first variation of FMI(u):

Here, * denotes a convolution. Thus,

(C.8)
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Fig. 1.
Nonrigid registration was performed on an image pair from one of the subjects from the ADNI
Baseline study (serial MRI images acquired two weeks apart) using L2-Fluid (row 1), L2-
Asymmetric Unbiased (row 2), and L2-Symmetric Unbiased (row 3) registration methods.
Jacobian maps of deformations from time 2 to time 1 (column 1) and time 1 to time 2 (column
2) are superimposed on the target volumes. The unbiased methods generate less noisy Jacobian
maps with values closer to 1; this shows the greater stability of the approach when no volumetric
change is present. Column 3 examines the inverse consistency of deformation models. Products
of Jacobian maps generated using all three models are shown, for forward direction (time 1 to
time 2) and backward direction (time 2 to time 1). For the L2-based unbiased methods, the
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products of the Jacobian maps are less noisy, with values closer to 1, showing better inverse
consistency.
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Fig. 2.
Values of the L2 matching functional are shown per iteration for the L2-Fluid (solid red), L2-
Asymmetric Unbiased (solid blue), and L2-Symmetric Unbiased (dashed green) methods. All
methods cause the intensity mismatch measure to decrease and converge in a similar way.
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Fig. 3.
(a) KL divergence and (b) SKL distance per iteration are shown for L2-Fluid (solid red), L2-
Asymmetric Unbiased (solid blue), and L2-Symmetric Unbiased (dashed green) methods. For
L2-Fluid, both KL and SKL measures increase, while for Asymmetric Unbiased and Symmetric
Unbiased models both measures stabilize.
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Fig. 4.
Histograms of voxel-wise deviation gains (a) L2-Fluid over L2-Asymmetric Unbiased and (b)
L2-Fluid over L2-Symmetric Unbiased for one of the subjects for the forward direction (time
2 to time 1) and backward direction (time 1 to time 2). The histograms are skewed to the right,
indicating the superiority of Asymmetric Unbiased and Symmetric Unbiased registration
methods over Fluid registration. A paired t test shows significance (p < 0.0001). The histogram
of the null distribution is centered at the point where the deviation gain S = 0, designated in
blue.
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Fig. 5.
Global T statistics for all ten subjects testing whether Symmetric Unbiased registration (method
B) outperforms Fluid registration (method A) when coupled with L2. Here, p < 0.0001 for all
subjects, indicating that the Symmetric Unbiased registration, when coupled with L2 cost
functional, outperforms Fluid registration with confirmed statistical significance, producing
more reproducible maps with less variability.
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Fig. 6.
Nonrigid registration was performed on the ADNI Baseline study (serial MRI images acquired
two weeks apart) of ten normal elderly subjects using L2-Fluid (column 1), L2-Asymmetric
Unbiased (column 2), L2-Symmetric Unbiased (column 3) registration methods. For each
method, the mean of the resulting 10 Jacobian maps is superimposed on one of the brain
volumes. Visually, L2-Fluid generates a noisy mean map, while maps generated using L2-
Asymmetric Unbiased and L2-Symmetric Unbiased methods are less noisy with values closer
to 1. For all deformation models, regions with least stability, due to both spatial distortion and
intensity inhomogeneity, are the brain stem, thalamus, and ventricles.
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Fig. 7.
Voxel-wise paired t test for the deviation gain S empirically thresholded at 2.82 (p = 0.005 on
the voxel level with 9 degrees of freedom), showing where L2-Asymmetric Unbiased and L2-
Symmetric Unbiased registration outperform L2-Fluid registration (regions in red) with
statistical significance on a voxel level. In contrast, there are no voxels with T values smaller
than -2.82, indicating that Fluid registration does not outperform unbiased methods at any
voxel. Hence, the visualization of voxel-wise paired t test with a threshold of -2.82 is omitted.
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Fig. 8.
Multiple Comparison Analysis using permutation testing on the deviation gain S of L2-Fluid
over L2-Symmetric Unbiased for baseline ADNI dataset. Each permutation randomly assigns
a positive or negative sign to each of the 10 log-Jacobian maps. Here, results are plotted with
respect to the number of positive signs (from 0 to 10) with 10 positive signs indicating the
observed data. Dark blue, light blue, and green colors indicate the minimum, average, and
maximum percentage of voxels with p < 0.05 of all possible permutations with a given number
of positive signs. There is only one observation for the observed data, and thus, minimum,
maximum, and average values are equal for the rightmost bar. The result indicates that out of
1024 permutations, no permutation gives a greater percentage of voxels with p < 0.05 than the
observed data does. This indicates that unbiased regularization technique outperforms Fluid
method with p < 0.001. Since the results obtained using Asymmetric Unbiased method are
similar to those obtained using Symmetric Unbiased method, they are not shown here.
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Fig. 9.
Cumulative distribution of p-values for the deviation gain S of (a) L2-Fluid over L2-Asymmetric
Unbiased and (b) L2-Fluid over L2-Symmetric Unbiased. Here, the ADNI baseline dataset is
used. In both (a) and (b), the CDF line is well above the Null line (y = x), indicating that both
asymmetric and symmetric unbiased methods outperform Fluid method (i.e. less deviation) in
being less likely to exhibit structural change in the absence of biological change. Note that the
interval p ∈ [0, 0.005] is of most importance for observation.
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Fig. 10.
Nonrigid registration was performed on an image pair from one of the subjects from the ADNI
Baseline study (serial MRI images acquired two weeks apart) using MI-Fluid (row 1), MI-
Asymmetric Unbiased (row 2), and MI-Symmetric Unbiased (row 3) registration methods.
Jacobian maps of deformations from time 2 to time 1 (column 1) and time 1 to time 2 (column
2) are superimposed on the target volumes. The unbiased methods generate less noisy Jacobian
maps with values closer to 1; this shows the greater stability of the approach when no volumetric
change is present. Column 3 examines the inverse consistency of deformation models. Products
of Jacobian maps generated using all three models are shown, for the forward direction (time
1 to time 2) and backward direction (time 2 to time 1). For the mutual information-based
unbiased methods, the products of the Jacobian maps are less noisy, with values closer to 1,
showing better inverse consistency.
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Fig. 11.
Values of the mutual information matching functional are shown per iteration for the MI-Fluid
(solid red), MI-Asymmetric Unbiased (solid blue), and MI-Symmetric Unbiased (dashed
green) methods. Again, all methods cause the intensity mismatch measure to decrease and
converge in a similar way.
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Fig. 12.
(a) KL divergence and (b) SKL distance per iteration are shown for the MI-Fluid (solid red),
MI-Asymmetric Unbiased (solid blue), and MI-Symmetric Unbiased (dashed green) methods.
For MI-Fluid, both KL and SKL measures increase, while for Asymmetric Unbiased and
Symmetric Unbiased models both measures stabilize.
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Fig. 13.
Histograms of voxel-wise deviation gains (a) MI-Fluid over MI-Asymmetric Unbiased and (b)
MI-Fluid over MI-Symmetric Unbiased for one of the subjects, for the forward direction (time
2 to time 1) and backward direction (time 1 to time 2). The histograms are skewed to the right,
indicating the superiority of Asymmetric Unbiased and Symmetric Unbiased registration
methods over Fluid registration. Paired t test shows significance (p < 0.0001). The histogram
of the null distribution is centered at the point where the deviation gain S = 0, designated in
blue.
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Fig. 14.
Global T statistics for all ten subjects testing whether Symmetric Unbiased registration (method
B) outperforms Fluid registration (method A) when coupled with mutual information. Here,
p < 0.0001 for all subjects, indicating that the Symmetric Unbiased registration, when coupled
with MI matching cost functional, outperforms Fluid registration with confirmed statistical
significance, producing more reproducible maps with less variability.
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Fig. 15.
Nonrigid registration was performed on the ADNI Baseline study (serial MRI images acquired
two weeks apart) of ten normal elderly subjects using MI-Fluid (column 1), and MI-
Asymmetric Unbiased (column 2), and MI-Symmetric Unbiased (column 3) registration
methods. For each method, the mean of the resulting 10 Jacobian maps is superimposed on
one of the brain volumes. Visually, MI-Fluid generates a noisy mean map, while maps
generated using MI-AU and MI-Symmetric Unbiased methods are less noisy with values closer
to 1. For both deformation models, regions with least stability, due to both spatial distortion
and intensity inhomogeneity, are the brain stem, thalamus, and ventricles.

Yanovsky et al. Page 40

Med Image Anal. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 16.
Voxel-wise paired t test for the deviation gain S empirically thresholded at 2.82 (p = 0.005 on
the voxel level with 9 degrees of freedom), showing where MI-Asymmetric Unbiased and MI-
Symmetric Unbiased registration outperform MI-Fluid registration (regions in red) with
statistical significance on a voxel level. In contrast, there are no voxels with T values smaller
than -2.82, indicating that Fluid registration does not outperform unbiased methods at any
voxel. Hence, the visualization of voxel-wise paired t test with a threshold of -2.82 is omitted.
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Fig. 17.
Multiple Comparison Analysis using permutation testing on the deviation gain S of MI-Fluid
over MI-Symmetric Unbiased, for baseline ADNI dataset. See caption of Figure 8 for
interpretation of the results.
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Fig. 18.
Cumulative distribution of p-values for the deviation gain S of (a) MI-Fluid over MI-
Asymmetric Unbiased and (b) MI-Fluid over MI-Symmetric Unbiased. Here, ADNI baseline
dataset is used. In both (a) and (b), the CDF line is well above the Null line, indicating that
both asymmetric and symmetric unbiased methods outperform Fluid method in being less
likely to exhibit structural change in the absence of biological change. Note that the interval
p ∈ [0, 0.005] is of most importance for observation.
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Fig. 19.
Global T statistics for all ten subjects testing (a) whether MI-Fluid (method B) outperforms
L2-Fluid (method A), and (b) whether L2-Symmetric Unbiased (method B) outperforms MI-
Symmetric Unbiased (method A). MI-Fluid outperforms L2-Fluid with p < 0.0001. However,
the result of the comparison of L2-Symmetric Unbiased and MI-Symmetric Unbiased is
inconclusive.
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Fig. 20.
Multiple Comparison Analysis using permutation testing on the deviation gain S of (a) L2-
Fluid over MI-Fluid and (b) MI-Symmetric Unbiased over L2-Symmetric Unbiased, both for
baseline ADNI dataset. Each permutation randomly assigns positive or negative sign to each
of the 10 log-Jacobian maps. Here, results are plotted with respect to the number of positive
signs (from 0 to 10) with 10 positive signs indicating the observed data. Dark blue, light blue,
and green colors indicate the minimum, average, and maximum percentage of voxels with p
< 0.05 of all possible permutations with a given number of positive signs. There is only one
observation for the observed data, and thus, minimum, maximum, and average values are equal
for the rightmost bar. The result in (a) indicates that out of 1024 permutations, no permutation
gives a greater percentage of voxels with p < 0.05 than the observed data does. This indicates
that MI-Fluid method outperforms L2-Fluid method with p < 0.001. However, the comparison
of MI-Symmetric Unbiased and L2-Symmetric Unbiased in (b) is inconclusive. Since the
results obtained using Asymmetric Unbiased method are similar to those obtained using
Symmetric Unbiased method, they are not shown here.
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Fig. 21.
Nonrigid registration was performed on the ADNI Follow-up study (serial MRI images
acquired 12 months apart) using L2-Fluid (column 1), L2-Asymmetric Unbiased (column 2),
and L2-Symmetric Unbiased (column 3) registration methods. For each method, the mean of
the resulting 10 Jacobian maps is superimposed on one of the brain volumes. Visually, L2-
Fluid generates a noisy mean map, while maps generated using the L2-Asymmetric Unbiased
and L2-Symmetric Unbiased methods suggest a volume reduction in gray matter as well as
ventricular enlargement.
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Fig. 22.
Nonrigid registration was performed on the ADNI Follow-up study (serial MRI images of
patients with Alzheimer's disease acquired 12 months apart) using MI-Fluid (column 1), MI-
Asymmetric Unbiased (column 2), and MI-Symmetric Unbiased (column 3) registration
methods. For each method, the mean of the resulting 10 Jacobian maps is superimposed on
one of the brain volumes. Visually, MI-Fluid generates a noisy mean map, while the map
generated using MI-Asymmetric Unbiased and MI-Symmetric Unbiased methods suggest a
volume reduction in gray matter as well as ventricular enlargement.
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Fig. 23.
Cumulative distribution of p-values for the voxelwise log Jacobian t-maps (as defined in
Equation (34)) for both ADNI Baseline (in blue) and Follow-up (in green) using (a) L2-Fluid,
(b) L2-Asymmetric Unbiased, and (c) L2-Symmetric Unbiased methods. Here, a better method
should separate these two CDF plots (see Section 5.4), indicating a real biological change has
occurred between these two time points. Hence, L2-Asymmetric Unbiased and L2-Symmetric
Unbiased methods outperform L2-Fluid method. Note that the interval p ∈ [0,0.005] is of most
importance for observation.
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Fig. 24.
Nonrigid registration was performed on the ADNI Follow-up study images artificially
corrupted with Gaussian noise (mean zero; variance 12.0). For each method, the mean of the
resulting 10 Jacobian maps is superimposed on one of the brain volumes.
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Fig. 25.
Random Gaussian noise (zero mean; variance 12.0) was added to ADNI Baseline and Follow-
up datasets. Cumulative distributions of p-values for the voxelwise log Jacobian t-maps for
Baseline (solid lines) and Follow-up (dashed lines) using Fluid and Unbiased methods are
displayed. Here, Unbiased methods show a bigger separation between the baseline and follow-
up curves, indicating that they were able to better differentiate between the two datasets.

Yanovsky et al. Page 50

Med Image Anal. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 26.
Nonrigid registration was performed on the ADNI Follow-up study using Fluid and Unbiased
registration methods with different values of λ and σ. For each method, the mean of the resulting
10 Jacobian maps is superimposed on one of the brain volumes. Fluid and Unbiased registration
with smaller λ values generate noisier mean maps, while maps generated using Unbiased
registration with larger λ values suggest a volume reduction in gray matter as well as ventricular
enlargement. As the value of the smoothing parameter σ increases, the resulting Jacobian maps
become smoother, making the biological effects, such as reduction in gray matter, harder to
detect.
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Fig. 27.
Inverse-consistent linear elastic registration was performed on the ADNI Follow-up study. The
mean of the resulting 10 Jacobian maps is superimposed on one of the brain volumes.
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Fig. 28.
Cumulative distributions of p-values for the voxelwise log Jacobian t-maps for both ADNI
Baseline (solid lines) and Follow-up (dashed lines) using Fluid, Inverse-Consistent Linear
Elasticity, and Unbiased methods with different sets of parameters of λ and (a) σ = 7, (b) σ =
9, and (c) σ = 12. Unbiased methods, especially with larger values of λ, show a bigger separation
between the baseline and follow-up curves than Fluid and Inverse-Consistent Linear Elasticity
methods do, indicating that Unbiased methods were able to better differentiate between the
two datasets.
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