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Common fragile sites (CFSs) represent large, highly unstable regions of the human genome. CFS sequences
are sensitive to perturbation of replication; however, the molecular basis for the instability at CFSs is
poorly understood. We hypothesized that a unique epigenetic pattern may underlie the unusual sensitivity
of CFSs to replication interference. To examine this hypothesis, we analyzed chromatin modification patterns
within the six human CFSs with the highest levels of breakage, and their surrounding non-fragile regions
(NCFSs). Chromatin at most of the CFSs analyzed has significantly less histone acetylation than that of their
surrounding NCFSs. Trichostatin A and/or 5-azadeoxycytidine treatment reduced chromosome breakage at
CFSs. Furthermore, chromatin at the most commonly expressed CFS, the FRA3B, is more resistant to micro-
coccal nuclease than that of the flanking non-fragile sequences. These results demonstrate that histone
hypoacetylation is a characteristic epigenetic pattern of CFSs, and chromatin within CFSs might be relatively
more compact than that of the NCFSs, indicating a role for chromatin conformation in genomic instability at
CFSs. Moreover, lack of histone acetylation at CFSs may contribute to the defective response to replication
stress characteristic of CFSs, leading to the genetic instability characteristic of this regions.

INTRODUCTION

Chromosomal common fragile sites (CFSs) are specific loci
that show non-random gaps, breaks, or rearrangements in
metaphase chromosomes when cells are cultured under con-
ditions that inhibit or impair DNA replication, such as in the
presence of aphidicolin (APH) (1). CFSs are highly unstable
regions of the genome, and molecular deletions and rearrange-
ments within CFSs have been identified in a variety of human
tumors. Moreover, a high frequency of loss of heterozygosity
at known CFSs, likely mediated by replication stress, occurs
during the pre-malignant and pre-invasive stages of many
types of human tumors (2). These features have led us and
others to hypothesize that CFSs play a mechanistic role in
the recurring chromosomal rearrangements, deletions and
somatic recombination observed in tumor cells.

Although extensive effort has been invested in cloning
CFSs and characterizing genetic rearrangements of CFSs in
cancer cells, little progress has been made in elucidating the
mechanism(s) of fragile site induction. To date, 89 CFSs
have been identified in humans, among which 13 have been
cloned and characterized at the molecular level (1). On the
basis of sequence analysis of the cloned CFSs, a number of
molecular features have been identified, including high A/T
content, low gene content, high-flexibility, and high content
of Long Interspersed Nuclear Elements (LINE) and Medium
Reiterated (MER) repeats. Several lines of evidence suggest
that DNA replication is involved in the induction of fragile
sites (3). We and other investigators have shown that CFSs
replicate in mid-late S phase, and that exposure to APH
further delays the timing of replication (3—5). Furthermore,
expression of CFSs is induced by conditions that impair
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replication, such as culturing cells in the presence of the DNA
polymerase inhibitor, APH, and expression is enhanced by G,/
M checkpoint inhibitors, such as caffeine. By examining the
location of APH-induced breaks, CFSs have been demon-
strated to lie at the interface of R- and G-bands, suggesting
that CFSs are regions of unusual chromatin conformation,
that replicate late in S phase (6).

Chromatin conformation influences DNA replication in at
least two ways. First, as demonstrated in the Xenopus egg
extract system, binding of the origin recognition complex to
DNA is negatively regulated by DNA methylation (7).
Second, replication origin activity, including origin assembly
and origin activation timing, can be positively regulated by
histone acetylation in a variety of systems (8,9). However,
whether histone acetylation is required for origin selection
or replication-timing specification remains an open
question (10).

On the basis of these observations, we hypothesized that
CFSs represent sequences that are inherently difficult to repli-
cate. Moreover, perturbation of DNA replication within CFSs
by APH treatment may be mediated, in part, by specific epige-
netic patterns at CFSs, resulting in incomplete DNA replica-
tion and, ultimately, leading to the formation of gaps,
breaks, or rearrangements in metaphase chromosomes
(referred to as ‘CFS expression’ in this report). To test these
hypotheses, we examined the chromatin modification pattern
within six of the most highly expressed human CFSs in a
human lymphoblastoid cell line, using a Chromatin immuno-
precipitation (ChIP)-on-chip assay described previously (11).
Here, we show that the majority of these CFSs are character-
ized by less acetylation, a feature typical of a more condensed
chromatin structure, than their flanking non-fragile sequences
(NCFSs). By using FRA3B as an example, we demonstrate
that chromatin within the fragile site sequences is relatively
more compact than that of the flanking NCFSs. Furthermore,
we demonstrate that modifying chromatin structure at CFSs
by treatment with trichostatin A (TSA) and/or 5-
azadeoxycytidine (5-Aza) increases histone acetylation,
decreases CpG methylation at CFSs and, notably, reduces
fragile site expression. Taken together, our results demonstrate
that histone hypoacetylation is a feature of the chromatin at
CFSs, and that there is a link between histone acetylation,
chromatin compaction, and the level of chromosome breakage
observed at CFSs.

RESULTS

Most CFSs have features of condensed/repressive
chromatin

To examine the potential role of chromatin modification in
fragile site expression, we analyzed several epigenetic modifi-
cations associated with open versus condensed chromatin at
six CFS and their flanking NCFS sequences.

Histone acetylation pattern at CFSs. We first examined the
acetylation level of the chromatin, a mark that correlates
with the level of compaction of the chromatin. We analyzed
a human Ilymphoblastoid cell line (11365) with a
normal female karyotype using ‘ChIP-on-chip’ technology to

determine the distribution of acetylated histone H3K9/14
(Ac-H3K9/14) within six CFSs (FRA3B, FRA16D, FRAT7G,
FRAXB, FRA2G, FRA7H), and their flanking NCFS
sequences, covering almost 20 Mb of the human genome
(Table 1 and Supplementary Material, Tables S1 and S2)
(11). The iso-Tm oligonucleotide (45—65 nt) array platform
we designed was highly tiled with a 35 nt start-to-start dis-
tance of the immediately adjacent probes. Repetitive
sequences that were represented more than 35 times in the
human genome were masked during the probe design. These
six CFSs have been previously mapped by fluorescence in
situ hybridization (FISH) with BAC and PAC clones to
define the regions of highest breakage, designated as CFS
sequences and the flanking NCFS sequences (12—18). Break-
age studies have shown that these six CFSs are among the
most commonly expressed CFSs induced by APH, among
which, the FRA3B has the highest breakage frequency of all
known CFSs, followed closely by the FRA16D. The level of
fragile site expression in this cell line, and in other cells is
FRA3B > FRA16D > FRA7G = FRAXB > FRA2G =
FRAT7H (19,20).

To identify the enriched regions of H3K9/14 acetylation, we
used a permutation algorithm that was described previously
(11). In a recent report, this algorithm was found to be one
of the three most robust approaches in analyzing ChIP-on-chip
data from NimbleGen tiling arrays hybridized with unampli-
fied DNA samples mixed with spiked-in genomic DNA
sequences (average length of 497 bp corresponding to pre-
dicted promoters in the human genome) (21). We applied
this peak finding process to four data sets from two indepen-
dent experiments, each containing two replicates, and obtained
the map of the acetylated domains in the regions examined
(Fig. 1A and C-E, and Supplementary Material, Fig. S1,
panels iii—vi).

To compare the acetylation level of the different regions
arrayed, we calculated the ‘acetylation coverage’, which corre-
sponds to the sum of the width of all of the acetylated chroma-
tin domains within a given region divided by the total length
of the region, for each data set of each experiment (Table 1,
Fig. 2A, the fragile sites are arranged in order of descending
frequency of breakage in this and subsequent figures).
Because of the large variation in acetylation coverage across
the regions analyzed (0.3—40.5%), we asked whether there
was a relationship between gene density and gene coverage
(a measure of how much of a region is covered by genes) of
the six fragile site regions studied here and their acetylation
coverage (Table 1). No statistically significant correlation
was found either between gene density and acetylation cover-
age (CFS: r=0.20, P = 0.380; NCFS: r = 0.65, P = 0.053),
or between gene coverage and acetylation coverage (CFS:
r=0.51, P=0.11; NCFS: r=0.10, P=0.54). Histone
acetylation at H3K9/14 has been shown to be a hallmark of
the promoters of actively transcribed genes (22). To examine
whether the acetylation peaks we identified are biased
toward promoter regions, we calculated the extent of the
acetylation coverage represented by promoters (2 kb upstream
and downstream of the transcription start site). We found that
although 65.5 + 12.3% of the promoters were acetylated, they
accounted for only 8.3 + 3.7% of the total observed acetylated
regions in untreated cells, suggesting that the majority of the
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independent experiments (‘Shared’ row). The shared acetylated chromatin domains correspond to the loci observed in a minimal of three of the four data sets. U: untreated; A: APH; T: TSA. Gene Coverage is

defined as the percent of a region is covered by genes.

The acetylation coverage is displayed as the average of the acetylation coverage for all four data sets of both experiments combined (‘Average’ row), and the acetylation domains shared between the two

Table 1. Summary of the Ac-H3K9/14 mapping results

Region size (Mb)
Gene density (/Mb)
Acetylation coverage

Gene coverage (%)
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H3K9/14 acetylation-enriched sequences are not promoter
sequences (Supplementary Material, Fig. S2). Interestingly,
five of the CFSs, FRA3B, FRA16D, FRA7G, FRAXB and
FRA2G, were characterized by a relatively low acetylation
coverage (0.30—8.47%) as compared with the level of acety-
lation estimated for the human genome based on the results
of the ENCODE project ChIP-on-chip experiments (11.88%)
(22) (Table 1, Fig. 2A). Of note is that the location of the
acetylated sequences we identified is consistent with that of
the acetylated domains mapped by the ENCODE project
within the same chromosome region (Supplementary Material,
Fig. S3A).

In addition, we analyzed our data with TAMAL (23), a
method that has also been shown to be very robust in analyz-
ing data from NimbleGen tiling arrays hybridized with unam-
plified DNA samples (21). In comparison, TAMAL identified
fewer peak regions and the size of individual peaks was
smaller. However, the peaks mapped by TAMAL represent a
subset of peaks mapped by the permutation algorithm, and
were completely contained within the latter set, indicating
that the discrepancy in peak number and size is a result of
different stringencies set by these algorithms (Supplementary
Material, Fig. S3B). TAMAL is designed to locate discrete
transcription factor binding sites; thus, its ‘peak calling’ cri-
teria is highly stringent requiring continuous runs of consecu-
tive probes above a cutoff, such as 98th percentile threshold at
P < 0.0001, to call a peak. In contrast, we sought to detect
continuous regions that are enriched in Ac-H3K9/14. Hence,
we applied several criteria with a lower stringency in our per-
mutation method, such as a percentage of probes (not necess-
arily continuous) above the cutoff within a given window, and
we combined peaks that were <2 kb apart. Nonetheless, both
methods gave comparable results when we compared the
acetylation coverage between the CFS and NCFS sequences
as described below (Supplementary Material, Fig. S3C).

Exact permutation tests were used to compare acetylation
coverage between CFSs and their flanking NCFSs. We
found that the acetylation coverage at FRA3B, FRA7G and
FRA2G were significantly lower within the CFS in compari-
son to their flanking regions (Fig. 2A). The converse was
observed at FRAXB and FRA7H. However, it is notable that
the acetylation level within FRAXB was very low within
both the NCFS and CFS sequences, with the exception of
five large acetylated domains (8—19 kb) within the CFS
region overlapping with the HDHDIA gene, which is tran-
scriptionally active in lymphoblastoid cells (Supplementary
Material, Fig. S1J). Indeed, the acetylation coverage within
the FRAXB CFS is only 2%, when the acetylated domains
within HDHDIA are excluded, which is then comparable to
that observed at FRA2G and FRA7G. Although the acetylation
coverage at FRA16D (the second most highly expressed CFS)
was not significantly lower than the flanking NCFS sequences,
we observed a very low acetylation coverage (~2%) within
the entire arrayed region, indicating that the whole region is
hypoacetylated. In addition, the majority of the acetylated
domains were significantly smaller within the FRA3B,
FRA7G and FRA2G, in comparison to those within their
flanking regions (Fig. 2B). Of note, the size of the acetylated
domains within all of the CFSs was also smaller (median size
of 0.7-2.9 kb) than those of the ENCODE project (median
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Figure 1. Genomic map, and results of chromatin structure analysis within FRA3B. (A) Chromosome coordinates corresponding to the NCBI build 35, chromo-
some band and location of the annotated genes. The position of the CFS within the arrayed region is represented by the burgundy box. (B) Screenshot from the
UCSC genome browser showing ChIP-Seq data with antibody for H3K4mel. (C) Screenshot from the UCSC genome browser showing ChIP-on-chip data for the
lymphoblastoid cell line, 11 365, using anti-Ac-H3K9/14 antibody, displayed as the linear ratio of ChIP-on-chip sample fluorescence to input DNA fluorescence.

The location of the mapped acetylated chromatin domains shared between

two independent ChIP experiments is represented by vertical bars under the

ChIP-on-chip data. (D, E) Screenshot of ChIP-on-chip data of zoomed-in sections within the CFS (left panels) or the NCFS sequences (right panels), with

shared peaks (black bars) shown underneath.
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Figure 2. Acetylation coverage at CFSs and flanking NCFS regions. (A) The
graph illustrates the fold change in acetylation coverage of flanking NCFS
regions versus each respective CFS. The arrow indicates those CFSs with
less than 4% acetylation coverage. The order of the CFSs on the X-axis is
shown in decreasing order of the frequency of fragile site expression, which
is used in the figures throughout. (B) The distribution of the size of the acetyl-
ated chromatin domains (in kb) is represented as a box plot for each CFS (light
gray plots) and NCEFS (dark gray plots) region. The circles correspond to out-
lying data points, i.e. more than 1.5 times the inter-quartile range higher than
the third quartile value. Of note, for presentation purposes, one outlier data
point corresponding to a 55 kb domain within FRA7H CFS is not represented
on the graph. The asterisks indicate a significant difference in the distribution
of the size of the acetylated chromatin domains between CFSs and NCFSs
(*, P <0.05; **, P < 0.01).

FRA 3B 16D 7G XB 2G 7H FRA 3B 16D 7G XB 2G 7H

size of 4.9 kb) (22). A caveat is that although both our study
and the ENCODE project employed the same antibody for
the ChIP DNA preparation, the array used by the ENCODE
project was composed of probes that were 1024 bp (average)
in length, significantly longer than the probes in our array
(45—65 bp). Whether this variation introduces a difference in
the results of the array experiments is unknown.

Overall, these results indicate that, with the exception of the
FRA7H, which is expressed at low levels, hypoacetylated
chromatin is a common characteristic of CFSs. Similar
results were observed in APH-treated cells. Although APH
treatment resulted in a statistically significant increase in
acetylation coverage at several of the CFSs examined
(FRA16D and FRA7H), and at the NCFS sequences of the
FRA16D and FRA2G, the increase was one-half fold, indicat-
ing that APH treatment does not have a strong effect on the
acetylation level of the chromatin in CFS and NCFS sequences
(Supplementary Material, Fig. S4).

Histone methylation pattern at CFSs. To assess the chromatin
structure at CFSs and NCFSs further, we examined the distri-
bution of several histone methylation patterns characteristic of



active chromatin by using the extensive epigenetic data
analysis performed by Barski ef al. (24). This large genome-
wide study was performed using CD4% human T cells,
which also express CFSs (20). We aligned our acetylation
maps with their methylation maps of lysine modifications
that are markers of active chromatin, e.g. high levels of
H3K4mel (Fig. 1B and Supplementary Material, Fig. SIA—
L, panels ii). Overall, the distribution of the active lysine
methylation patterns observed within the six CFSs was very
consistent with the Ac-H3K9/14 results obtained from our
‘ChIP-on-chip’ experiments.

In summary, analysis of histone acetylation and methylation
patterns indicated that four of the most highly-expressed CFSs,
FRA3B, FRA16D, FRA7G and FRA2G, are characterized by
lower acetylation than their flanking NCFSs. The chromatin
within the FRAXB CFS was also hypoacetylated for most of
the region, with the exception of the HDHDIA gene located
in the center of the CFS. Moreover, chromatin at these five
CFSs has substantially lower acetylation than the average of
the genome as predicted by the ENCODE project. Unexpect-
edly, we observed features of open chromatin structure
within FRA7H, which corresponds to a gene-free region,
and has the lowest level of expression of the six CFSs ana-
lyzed in this study. Taken together, these observations
suggest that histone hypoacetylation may play a role in CFS
expression by slowing or perturbing the replication process,
making these regions more sensitive to APH-induced replica-
tion stress. Whether there are multiple subtypes of CFSs based
on their chromatin conformation remains to be determined.

TSA decreases chromosomal breaks induced
by APH/Caffeine

To examine whether increasing histone acetylation at fragile
site sequences alters the frequency of chromosomal breaks
and gaps, we treated phytohemagglutinin-stimulated periph-
eral blood lymphocytes (PHA-PBLs) isolated from three
healthy individuals with a histone deacetylase (HDAC) inhibi-
tor, TSA, in addition to the fragile site-inducing chemicals,
APH and Caffeine, and analyzed metaphase cells for chromo-
somal breaks and gaps. We observed a dramatic decrease of
fragile site expression in cells treated with TSA (Fig. 3).
PHA-PBLs treated with TSA in addition to APH/Caffeine
showed an average of 82 + 14% decrease in total breaks in
three human subjects as compared with cells treated with
APH/Caffeine (P =0.09) (Table 2 and Supplementary
Material, Table S3). When we focused on individual fragile
sites, we noted the same trend, i.e. an average of 82 + 8%
decrease for FRA3B (P = 0.02). We also performed similar
studies on the 11 365, Blin (B cell ALL) and Molt-4 (T cell
ALL) cell lines. Comparable with the observations in lympho-
cytes, TSA treatment resulted in a significant increase in
acetylation on H3K9/14 (data not shown), and decreased
fragile site expression (Table 2 and Supplementary Material,
Table S3).

ChIP-on-chip analysis of the 11 365 lymphoblastoid cell line
revealed that TSA treatment significantly increased acetylation
coverage within the CFS portions of four of the six CFSs exam-
ined (FRA3B, FRA16D, FRA7G and FRA2G), and marginally
increased acetylation coverage in one additional CFS (FRAXB)
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(Fig. 4A). Similarly, in cells treated with both TSA and APH,
three of these CFSs (FRA3B, FRA16D and FRA7G) had an
increase of Ac-H3K9/14 within the CFS portions, as compared
with APH treatment alone. Although there was an increase of
histone acetylation at the NCFS regions following treatment,
the magnitude of the increase was lower than that of the CFS
regions (Fig. 4A, right panel). The overall increase of acety-
lation coverage seen after TSA treatment was not due to the
increase of Ac-H3K9/14 at the promoters, since there was no
significant increase of promoter acetylation in cells treated
with TSA. Moreover, promoter Ac-H3K9/14 accounted for sig-
nificantly less of the total Ac-H3K9/14 in TSA-treated cells as
compared with untreated cells (5.4 +2.9% in TSA versus
8.3 + 3.7% in untreated, P = 0.01, Supplementary Material,
Fig. S2B). Further comparison of the acetylated peaks at these
CFSs revealed that, although the median length of the acety-
lation peaks was comparable in the TSA plus APH-treated
cells as compared with cells treated with APH alone, the distri-
bution of acetylated peak size in TSA plus APH-treated cells
was shifted towards larger peak size indicated by the increased
size of the box plot (i.e. greater range) for the FRA3B (P <
0.05), and by the large peak size of the outliers in the
FRA16D (Fig. 4B). We also observed a substantial increase in
the number of acetylated peaks in the FRA2G and FRA7G.
Thus, the increase of acetylation coverage following TSA treat-
ment is the result of the combined effects of an increase in the
number of acetylation peaks and an increase in the size of
large peaks within CFS sequences. Taken together, our results
indicate that histone modification and, by extension, chromatin
conformation likely play a role in fragile site induction.

5-Aza decreases chromosomal breaks induced
by APH/Caffeine

Chromatin conformation is thought to be regulated not only by
histone modifications, but also by DNA methylation. To assess
whether DNA methylation affects fragile site expression in a
manner similar to histone acetylation, we treated Blin and
Molt-4 cells with 5-Aza, an inhibitor of DNA methylation,
and examined the frequency of chromosomal breaks at
CFSs. These cell lines were selected because expression of
fragile histidine triad gene (FHIT), which contains the
FRA3B, is undetectable due to CpG methylation of its promo-
ter region (25). Treatment with 5-Aza alone induced about 0.6
breaks per 25 metaphase cells for both Blin or Molt-4 cells,
which is less than that reported previously in T lymphoblasts
(three breaks per metaphase cells using a 10-fold higher con-
centration of 5-Aza) (19). Treatment with 5-Aza reduced chro-
mosomal breakage at CFSs in APH-treated Blin and Molt-4
cells by 52 and 65%, respectively (Table 2). Moreover, Blin
and Molt-4 cells treated with both 5-Aza and TSA were
further protected from APH-induced chromosomal breaks
with an 87 and 68% decrease in breaks, respectively.

To investigate whether this reduction of chromosomal
instability was associated with an effect of 5-Aza on DNA
CpG methylation at CFSs, we examined the genomic CpG
methylation pattern within the FRA3B using bisulfite-
sequencing with six sets of primers amplifying 43 CpG
dinucleotides (Fig. 5). CpG methylation was significantly
reduced by 5-Aza treatment within most of the regions
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Figure 3. TSA treatment decreases fragile site expression. PHA-stimulated lymphocytes were treated either with 0.4 um APH for the last 24 h (left panel), or
with 1.0 wM TSA and 0.4 um APH for the last 24 h (right panel). Caffeine (1.5 um) was added 4 h prior to metaphase cell preparation. Arrows identify breaks at

CFSs.

Table 2. TSA and/or 5-Aza treatment decreases fragile site expression

Breakes per PHA stimulated human lymphocytes 11365 Blin Molt-4
25 cells Subject 1 Subject 2 Subject 3
T A/ T/A/ T A/ T/A/ T A T/A T A T/A T A T/IA/ Z ZIAN T/IZIA T Al TIAI Z Z/Al TIZIA/

Cc C c cC c cC c cC c cC C C Cc C C C
Total 1 219 44 2 767 25 6 298 94 11 111 21 2 109 65 19 52 14 12 68 13 15 24 22
FRA3B (3p142) 0 18 4 0 33 3 0 26 6 0 10 2 0 2 0 1 0 0 0 0 0 0 0 1
FRA16D(16g23.2) 1 17 3 017 0 09 3 0 23 5 03 0 1 0 0 0 1 1 0 0 0
FRA7G (7q31.2) 0 11 O 014 0 0 6 1 0 6 0 0 3 0 0 0 0 0 1 1 0 0 1
FRAXB (Xp22.3) 0 5 3 0 32 2 0 14 4 0 12 0 0 1 2 0 0 1 0 0 0 0 0 1
FRA2G (2q31) 0 1 0 0 4 0 03 2 0 3 0 0 1 0 0 0 0 0 0 0 0 1 0
FRA7H (7¢32.3) 0 5 1 0 8 0 05 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0

Fragile site breaks were scored in 25 Trypsin—Giemsa banded metaphase cells from PHA-stimulated lymphocytes, 11365, Blin, and Molt-4 cells cultured under
various conditions (A: APH; C: Caffeine; T: TSA; Z: 5-Aza). The Molt-4 cell line is tetraploid, and both Molt-4 and Blin contain structural chromosomal
abnormalities. Treatment with 5-Aza alone induced ~0.6 breaks/metaphase cell for both Blin and Molt-4 cells, which is less than that reported previously
(3 breaks/metaphase cell using a 10-fold higher concentration of 5-Aza) (18). Note that the number of breaks observed in untreated cells is typically zero.

examined (P < 0.05, Fig. 5). FRA3B is embedded within the
FHIT gene, raising the possibility that FHIT transcription
interferes with DNA replication within the FRA3B, leading
to impaired replication at CFSs. We found that the level of
fragile site expression after 5-Aza treatment was unrelated to
the level of FHIT expression, since we observed a reduction
of FRA3B breaks rather than an increase, whereas 5-Aza
alone or with TSA only minimally reactivated FHIT
expression in Blin cells, but not in Molt-4 cells (Supplemen-
tary Material, Fig. S5).

Taken together, our results suggest that altering the epige-
netic pattern by increasing histone acetylation and/or decreas-
ing DNA methylation results in a reduction in the incidence of
breakage at CFSs.

FRA3B chromatin is less sensitive to micrococcal nuclease

Given our observation that histones within the CFS sequences
are less acetylated than those of the NCFS sequences, and
since hypoacetylation is a mark for condensed chromatin
structure, we sought to determine whether chromatin at
CFSs is more compact than that of the NCSFs. To address

this question, we examined the micrococcal nuclease
(MNase) sensitivity of chromatin from the FRA3B and its
flanking NCFSs. Loss of the high molecular weight (MW,
>3 kb) DNA of the selected regions within either the
FRA3B or its flanking sequences after treatment with
various doses of MNase was assessed by Southern blotting fol-
lowed by quantification using ImagelJ (Fig. 6A). The average
loss of the high MW DNA of the four FRA3B regions
(regions A—D) and the four control regions (regions E—H)
were similar when 11365 nuclei were treated with high
doses of MNase (>20U/ml) (Fig. 6B). However, the
FRA3B regions exhibited a smaller loss of the high MW
DNA as compared with that of the control regions when
11365 nuclei were treated with low doses of MNase
(Fig. 6B). Although the differences were not statistically sig-
nificant (two-tailed student #-test), we noted that compared
with the control regions, three regions within the FRA3B
(regions A, C and D) showed substantially less loss of the
high MW DNA at 12 and 16 U/ml MNase treatments
(Fig. 6C), indicating that the majority of the chromatin
within the FRA3B sequences were less sensitive to MNase
treatment and, hence, had a relatively more compact
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Figure 5. 5-Aza treatment decreases CpG methylation of FRA3B sequences. Bisulfite sequencing of the FHIT/FRA3B locus in untreated Blin and Molt-4 cells,
and cells treated with 0.2 um 5-Aza for 72 h, or 5-Aza and APH (added 24 h prior to harvest). Each row presents a clone. Filled squares indicate methylated
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FHIT/FRA3B locus is illustrated at the top of the panel, and the regions examined are indicated by arrows. Stars indicate regions that had a significant decrease

(P < 0.05) of CpG methylation in treated cells.

chromatin structure than the chromatin of the flanking NCFSs.
Interestingly, chromatin at region B within the FRA3B dis-
played a similar MNase sensitivity to that of the control
regions (Fig. 6C), raising the possibility that there are
pockets of comparatively more open chromatin within the
more compact FRA3B locus.

DISCUSSION

CFSs are characterized by histone hypoacetylation
and compact chromatin structure

The cloned CFSs have characteristics of G-bands, i.e. they
are gene-poor, AT-rich, high in LINE and MER repeats.

Furthermore, the analysis of the flexibility of DNA based on
the twist angle of the double helix has revealed that CFSs
contain regions of high flexibility and low DNA stability
(26,27). A number of observations have linked DNA replica-
tion to CFS expression; however, the precise mechanism of
CFS expression remains unclear. We hypothesized that a
unique chromatin modification pattern at CFSs may slow or
perturb the normal progression of replication forks, contribut-
ing to the high sensitivity of CFSs to DNA replication stress.
By using a ChIP-on-chip assay to examine the epigenetic
characteristics of six well-characterized, cloned CFSs, we
demonstrate that the chromatin of five of six CFSs assayed
is hypoacetylated, and potentially more compact than the
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flanking NCFSs (as in the example of the FRA3B), further
supporting the observation made by El Achkar et al. (6) that
CFSs lie at the interface of R- and G-bands with unusual chro-
matin structure.

Two of the CFSs examined in this study, the FRA3B and
FRA16D, are embedded within large genes, FHIT and
WWOX, respectively. Each of these genes spans more than
1 Mb; however, their transcripts are only ~1 kb in length.
Similar features are found in several other CFSs, including
the FRA2F (LRPIB), FRA4G (GRID2), FRAGE (PARKIN),
FRA13A (NBEA) and FRA15A (RORA), raising the possi-
bility that CFSs may be associated with large genes (28).
We examined the Ac-H3K9 acetylation pattern of large
genes (>1 Mb) in the genome by using the publicly-available
ENCODE ChIP-Seq data (Bernstein Lab, ENCODE Chroma-
tin Group, Massachusetts General Hospital/Harvard Medical
School and Broad Institute), and found that the acetylation
coverage of these genes is substantially lower than that of
the human genome on average (Supplementary Material,
Fig. S6). This result suggests that the location of CFSs may
affect their histone acetylation pattern, and that a proportion
of the CFSs that have not yet been cloned may be embedded
within large genes. However, more than half of the CFSs
cloned to date are not located within large genes, yet the
chromatin of these CFSs (e.g. the FRA7G, FRAXB and
FRA2G) is predominantly hypoacetylated as compared with
the genome on average, and to their flanking NCFSs. These
observations suggest that hypoacetylation is an inherited
characteristic of the majority of CFSs, and that physical
location within large genes further exacerbates the effect of
hypoacetylation on CFS expression, exemplified by the
FRA3B and FRA16D.

We examined the compaction of the chromatin at the
FRA3B more directly by measuring its sensitivity to MNase.
Three of four randomly-selected regions within the FRA3B
demonstrated greater resistance to MNase treatment than
control regions within the flanking NCFSs. Together with
the observation of histone hypoacetylation within the
FRA3B, these results clearly indicate that chromatin structure
of the FRA3B is relatively more compact than that of the
flanking NCFSs. Although the difference is subtle, tighter
chromatin structure may affect the access of the DNA replica-
tion and/or DNA repair machinery to fragile site sequences,
especially under replication stress, resulting in incomplete
DNA replication at CFSs and, ultimately, contributing to the
expression of CFSs.

CFS expression is influenced by epigenetics

Our results suggest that CFS expression is influenced by epi-
genetic marks. In the FRA16D, AT-repeats have been impli-
cated in CFS expression by stalling replication forks (29).
We observed that all 12 AT-repeat-rich sequences in the
FRA16D, identified by the TwistFlex program were located
in regions with low acetylation in untreated cells; however,
there was a 78% decrease of FRA16D expression after TSA
treatment, even though only one AT-repeat-rich sequence
became acetylated (Table 2, data not shown). These results
raise the possibility that in addition to AT-repeats, other
factors such as histone hypoacetylation may impact on
genetic instability at CFSs, with the common theme that all
of these factors affect DNA replication within CFSs.

High levels of acetylation have been associated with increased
permissiveness for DNA replication (30). For example, the Hbo1



histone acetyltransferase associates with both origin recognition
complexes and mini-chromosome maintenance complexes to
promote access of pre-replication complexes to origins (31).
Studies in Drosophila have also revealed histone hyperacetyla-
tion at active origins, a modification that is conserved among
different Drosophila species (32). Histone acetylation may
also facilitate DNA double strand break (DSB) repair by creating
a binding platform to promote recruitment of remodeling
complexes at the sites of DSBs [reviewed in (33)]. Similarly,
decreasing CpG methylation can reduce/eliminate the recruit-
ment of the methyl-CpG-binding proteins and other chromatin
remodeling complexes, such as HDACs and H3K9 methylase
which mediate chromatin compaction (34). Hence, the increase
of histone H3 acetylation at CFSs after TSA treatment, and
the decrease of CpG methylation after 5-Aza treatment, would
be expected to relax chromatin at CFSs, potentially alleviating
the structural effects that result in CFS expression during
DNA replication stress, and/or facilitating the repair of the
DSBs occurring within CFSs in response to APH treatment.
However, we cannot exclude the possibility that TSA may
increase expression and/or acetylation of certain non-histone
proteins, which may also facilitate replication or repair
processes, leading to a protective effect on CFS expression
induced by replication stress.

It has also been hypothesized that the collision of transcrip-
tion and replication complexes may result in replication fork
stalling, DSBs and, ultimately, chromosome breaks at CFSs.
Although we did not address this question directly, our data
suggested that transcription does not play a role in fragile
site expression. In general, treatment with TSA and 5-Aza
augments transcription. Instead of an increase of CFS break-
age, we observed a significant decrease of CFS breakage in
all cell lines examined. Furthermore, we found that the level
of FRA3B expression after 5-Aza treatment was unrelated to
the level of FHIT expression (Table 2, Supplementary
Material, Fig. S5). The issue of whether transcription com-
plexes colliding with DNA replication complexes plays a
role in inducing CFS expression is only relevant if genes con-
taining CFSs are transcribed in S phase. Therefore, further
studies are needed to address whether the genes in CFSs are
transcribed during S phase, and whether there is a correlation
between the expression levels of these genes and CFS
expression.

Subtypes of CFSs

We observed a decrease in the frequency of chromosomal
breaks and gaps at each of the six CFSs analyzed following
TSA plus APH treatment as compared with APH treatment
alone, which was coincident with a significant increase in
Ac-H3K9/14 coverage within four of these CFSs. One excep-
tion, the FRA7H, has higher acetylation coverage than do the
other five CFSs, as well as higher acetylation coverage than its
flanking NCFSs. Thus, these observations raise the possibility
that the FRA7H differs mechanistically from other CFSs, such
as the FRA3B and FRA16D. Extensive analysis using FISH
revealed multiple breakage ‘hot spots’ within the FRA7H,
and some FISH signals showed an orientation that was the
opposite of that predicted by physical maps, prompting the
investigators to propose that the FRA7H may contain an
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unusual chromatin organization (16). Whether hyperacetyla-
tion contributes to this unusual chromatin organization
remains to be determined.

Nonetheless, it is also possible that other types of histone
modifications, such as acetylation on histone H4, may play a
more determinant role in chromatin conformation of the
FRA7H. In addition to the six CFSs examined extensively in
this study, there are seven other CFSs that have been cloned
(1). On the basis of the histone methylation map reported by
Barski et al. (24), the majority of these CFSs also lie within
predicted compact chromatin regions (data not shown).
However, further ChIP-on-chip studies are needed to verify
these observations.

Mechanism of CFS expression

In summary, we have demonstrated that histone hypoacetyla-
tion is a common feature of the subset of CFSs with the
highest expression frequency. Moreover, we have shown that
relaxing chromatin conformation at CFSs by TSA and/or
5-Aza treatments reduces fragile site expression. In addition,
our data suggest that the relatively compact chromatin struc-
ture of the FRA3B, and by extension other CFSs, may affect
the process of replication of CFS sequences, such as replica-
tion origin firing and replication fork progression, under
DNA replication stress. Thus, CFSs may represent sequences
with low histone acetylation that replicate very slowly, and
are unable to recover from a further delay in DNA synthesis
following replication stress.

MATERIALS AND METHODS

Cell culture and drug treatments

Cell lines (the human Epstein Barr Virus-transformed lympho-
blastoid cell line 11 365 with a normal 46,XX karyotype, and
leukemia cell lines, Blin and Molt-4) were maintained in
RPMI 1640 medium supplemented with 10 mm HEPES,
100 units/ml  Penicillin/100 pg/ml Streptomycin, and 10%
fetal bovine serum (all reagents from Invitrogen, CA, USA)
at 37°C in a humidified 5% CO,/95% air atmosphere. Periph-
eral blood lymphocytes from healthy individuals were cultured
in the same medium supplemented with phytohemagglutinin
(PHA, 0.09 mg/ml, Remel Inc., KS, USA) for 72 h. To
induce fragile site expression, cells were treated with 0.4 um
APH (Sigma, MO, USA) for 24 h with the addition of
1.5mm of caffeine (Sigma) during the last 4 h of culture.
Cells in log-phase growth were cultured with TSA (Sigma)
at a final concentration of 1.0 M for 24 h, or 5-Aza (Sigma)
at a final concentration of 0.2 pm for 72 h, with replenishment
of the media and the drug every 24 h.

Chromatin immunoprecipitation

ChIP assays were performed according to the protocol
described by the manufacturer (Millipore, http:/www
.millipore.com, MA, USA) with antibody against acetylated
histone H3 K9/14 (Millipore). Minor modifications of the pro-
tocol were described in Lucas ef al. (11).
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Cytogenetic analysis

Metaphase cells were prepared using standard cytogenetic
techniques, and air-dried slides were prepared and stained
using Trypsin—Giemsa banding techniques as described pre-
viously (35). For the analysis of fragile site expression,
chromosome breaks, gaps, rearrangements and aberrations
were scored in 25 metaphase cells for each culture condition.

Bisulfite treatment and DNA sequencing

DNA (1 pg) was diluted in 50 pl water, and incubated with
5.5l 2 N NaOH at 37°C for 10 min, followed by treatment
with 30 wl 10 mM hydroquinone and incubation with 520 wl
3.6 M Sodium Bisulfite at 50—55°C for 16—22 h (all chemicals
from Sigma). During incubation, 5—6 drops of mineral oil was
added to avoid evaporation. Bisulfite-treated DNA was col-
lected by using the Wizard™ DNA Clean-up system. The
eluted DNA was treated with 5.5 ul 3 N NaOH, incubated at
RT for 5 min, and precipitated by EtOH precipitation.

Touchdown PCR (95°C, 10 min; 10 cycles of 95°C for 30 s,
65°C for 30 s and 72°C for 45 s, with a decrease in the anneal-
ing temperature of one-half degree per cycle; 35 cycles of
95°C for 30's, 55°C or 50°C for 30 s and 72°C for 45s, 3.75
or 2.5mm final Mg®" concentrations) was performed on
bisulfite-treated DNA with primers designed using the
regions that flank the CpG-containing sequences. Primer
sequences, annealing temperatures and Mg”" concentrations
for each pair of primers are listed in the Supplementary
Material, Table S4. PCR products were TOPO TA cloned
and transformed into One-Shot cells (Invitrogen). Clones
were randomly picked and sequenced. Sequences were ana-
lyzed by the DNAStar MegAlign program to assess the CpG
methylation level.

MNase treatment and Southern blotting

Nuclei preparation and MNase (Worthington, NJ, USA) treat-
ment were performed as previously described (36). DNAs
were purified and fractionated on a 0.8% agarose gel in TPE
buffer (Sigma). Gels were transferred onto Hybond N (GE
Healthcare, NJ, USA) in 20 x SSC, and the subsequent mem-
branes were probed with *?P-labeled probes for either the
FRA3B regions or control regions. The coordinates of the
probes are listed in Supplementary Material Table S5. Probe
sequences were free of repetitive sequences as analyzed by
RepeatMasker.

Microarray construction and hybridization

To identify the CFS sequences assayed in this study, we used
previously published reports of FISH analysis of BAC or PAC
clones to determine the genomic sequences that exhibited the
highest level (peak) of split signal patterns relative to breaks
at the corresponding CFSs. The sequences surrounding these
CFS sequences were identified as the NCFS sequences. It has
been proposed that some CFSs, e.g. the FRA3B, may be
larger than predicted previously based on the observation of
split signals in a low percentage of cells using probes extending
several megabases from the peak region of breakage (37).

We classified these sequences as NCFSs in this study (Sup-
plementary Material, Table S1). In addition, some CFSs may
have an abnormal genomic structure, as suggested by the
unusual hybridization pattern observed by FISH of genomic
clones from the FRA7G (38), and the FRA7H (16), making it
difficult to define the boundaries of these CFSs. We also
included these sequences on our array, and categorized them
as NCFSs in this study (Supplementary Material, Table S1).
All regions were tiled with isothermal (Tm = 76°C) oligonu-
cleotides of variable length (45—65 bp). To avoid repetitive
regions, the set of probes were compared against a pre-
computed frequency histogram of all possible 15mer probes
in the human genome. For each probe, the maximum average
frequency of all of the 15-mers comprising the probe was set
at 35. The minimum and median tiling intervals were 35 nt
(start-to-start). The construction of the arrays (385 000 oligonu-
cleotides), the labeling of DNAs, the microarray hybridization,
and scanning were performed by the Roche NimbleGen, Inc.
Core Facility (WI, USA) as described previously (11,39).

Microarray data analysis

The microarray data analysis process was performed following
the protocol described previously (11). Briefly, after the Z-score
filtration (cutoff = 3) of the original data to eliminate the non-
reproducible replicates on the array, we applied a sliding-
window approach to identify potential enrichment regions.
Within the window, a probe was considered to ‘qualify’ if its
log, ratio was above a set cutoff r;. A peak was called when
the number of qualifying probes was above a set percentage
of the probes within the window. The start position of the first
qualifying probe and the end position of the last qualifying
probe were set as the start and end positions of the peak. This
procedure was repeated using a series of log, ratio cutoff
values, ry, 5, ... 1y, Wwhere r1 > r,> ... > r;, and r| equals the
‘hypothetical maximum (mean+-6 S.D.)’ for each data set of
each region to minimize the effects of outliers. To assess the
likelihood of any peak as representing a true enrichment
region, we estimated the false-positive rate (FPR) for each
identified region. The FPR was defined as the ratio of the
average number of peaks found using the log, ratio cutoff
value r; for the randomized (20 times) and the non-randomized
data. This FPR value was assigned to the peaks that were present
at the log, ratio cutoff value r;, but absent at the value r;_;. We
chose peaks that had an FPR less than 15% for further analysis.
After a set of enrichment regions were identified for each data
set of each arrayed region at each individual cutoff, we
merged any two peaks 2 kb or less apart on the same set and
then combined merged peaks from different cutoff sets to
obtain a final set of enrichment regions for each data set.
Because the added component of variability between exper-
iments was very low relative to the variation within exper-
iments, we used the four data sets of both independent
experiments to obtain the definitive map of the acetylated
domains in the regions examined.

Statistical analysis of the microarray data

For statistical purposes, the two data sets (FWD1 and FWD2)
were combined separately for each percentage of qualifying



probes (20—-100%), creating two new data sets, FWDI5o_
100%) and FWD250_100%), Which were used for the statistical
analysis. The data were also replicated across two separate
experiments. Due to the small sample sizes, acetylation cover-
age was analyzed using exact permutation tests. Acetylation
peak size and peak width were analyzed using two-sample
t-test for unequal variances (Satterthwaite approximation to
degrees of freedom).

TwistFlex

AT-repeat-rich regions were identified by analyzing the
FRA16D (Chrl6: 77,209,000-77,479,000, NCBI, Build 35)
sequences using the TwistFlex program online at http
://margalit.huji.ac.il/TwistFlex/Home.html using parameters
according to Mishmar et al. (16).

FHIT expression

RNA was isolated and cDNA was made following standard
protocols. Real-time PCR was performed using a StepOnePlus
(Applied Biosystems, CA, USA) thermocycler with primers
for either FHIT spanning exons 1-4 (Forward: 5'-CA
GCTGTCAACATCCTGGAA-3'; Reverse: 5'-CTCTTCGGA
GTCCTCAGTGG-3') or GAPDH (Forward: 5-CGGA
GTCAACGGATTTGGTCGTAT-3’; Reverse: 5-AGCCTT
CTCCATGGTGGTGAAGAC-3’). The expression level of
FHIT is normalized relative to the expression level of
GAPDH.

Data deposition

The data discussed in this publication have been deposited in
EMBL-EBI’s ArrayExpress (http://www.ebi.ac.uk/
microarray-as/aer/entry, accession number E-TABM-347).

SUPPLEMENTARY MATERIAL

Supplementary material is available at HMG online.
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