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Cell–cell junctions continue to capture the interest of cell and developmental biologists,
with an emerging area being the molecular means by which junctional signals relate to
gene activity in the nucleus. Although complexities often arise in determining the direct
versus indirect nature of such signal transduction, it is clear that such pathways are essential
for the function of tissues and that alterations may contribute to many pathological outcomes.
This review assesses a variety of cell–cell junction-to-nuclear signaling pathways, and
outlines interesting areas for further study.

The evolution of multicellular life forms
has to a significant extent involved refine-

ments of each cell’s capacity to sense the state
of its directly contacting neighbors. This
exchange of information often occurs within
tissues, with the result that gene activity in the
nucleus is altered or maintained accordingly.
In this article, we focus on how signals arise
at cell–cell junctions and are transduced to
the nucleus; we do not include discussion of
mechanical/cytoskeletal signals influencing
nuclear decisions, and the reader is directed to
a recent review of this topic (Ingber 2008).

An issue that arises when addressing
cell–cell junction(s), referred to as CCJ(s),
-to-nuclear signals, is that homotypic or

heterotypic junctional proteins responsible for
conferring adhesive activity are often in a
much larger complex of proteins. These inter-
actions may be either in cis (interacting within
the plasma membrane of the cell) or trans
orientations (interacting through ectodo-
main contacts extended between cells). Most
of these transmembrane proteins are likely to
have the potential to contribute to downstream
signaling events, and many may associate with
one another only under specific physiological
conditions. For example, certain receptor tyro-
sine kinases (RTKs) associate with particular
cadherins, and when associated are relevant
to that cadherin’s functions (Wheelock and
Johnson 2003; Andl and Rustgi 2005). In this
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article, we discuss relationships such as these in
the context of CCJ-nuclear signaling. A topic
not represented here is the CCJ signaling of
immune surveillance cells, for example, path-
ways activated following leukocyte–endothelia
contact. This area is of great basic and bio-
medical interest, but is addressed elsewhere
(Dustin 2007).

We focus on signaling by a select number
of junction types, including adherens, desmo-
somal, and tight junctions, and to a lesser
extent, gap junctions. Details of the structure
and function of each of these junctions
are presented in other articles (see Meng and
Takeichi 2009, Delva et al. 2009, Furuse 2009,
and Goodenough and Paul 2009, respectively).
These junctions are often represented in text-
books as distinct entities in the context of
epithelial tissues, but their structures and how
they respond to or generate signaling cues
vary according to cellular context. Select com-
ponents within these junctions may be shared,
for example between desmosomal, adherens,
and tight junctions, and in some instances,
intimate physical proximities are likely to ad-
vance these junctions’ functional interrelation.
Further, different cell types show less common
junctional organizations (Straub et al. 2003;
Wuchter et al. 2007), such that the total spec-
trum of CCJ signals is likely to be impressive,
and far beyond what is currently known or
understood. Given the interdependence of cell
neighbors in forming and maintaining cell
groupings, high diversity and sophistication
arose in complex organisms, both in CCJ struc-
tures themselves and their associated nuclear
signaling pathways. Compared with the knowl-
edge accumulated over the past two decades on
cell–extracellular matrix signaling via integrins
(Abram and Lowell 2009), we know less about
signals initiated from forming or mature cell–
cell contacts in epithelial, neural, or endothelial
tissues. Thus, as the field moves forward, there
is the potential to achieve a deepened under-
standing of how the cell–extracellular matrix
and cell–cell adhesion systems are coupled in a
signaling context, and how they collectively
relate to the adhesion, motility, and differen-
tiation of cells and tissues.

ADHERENS AND DESMOSOMAL
JUNCTIONS

Adherens junctions are comprised of a number
of transmembrane proteins, including the clas-
sic cadherins (see Meng and Takeichi 2009)
and nectins, which are members of the distinct
Ig (immunoglobulin) family of adhesion
proteins/receptors (Fig. 1) (Takai et al. 2008a;
Takai et al. 2008b). In some cases, cadherins
and nectins associate through intracellular
proteins, including p120-catenin bound to
the juxtamembrane domain of cadherin and
afadin bound to nectin (Ogita and Takai 2008).
RTKs are also present at adherens junctions,
although unlike cadherins and nectins, they are
not viewed as adhesion proteins, but rather as
signaling entities instructing, responding, or
working in parallel with other signal generators
within the cadherin/nectin macromolecular
complex.

Desmosomal junctions contain additional
members of the cadherin superfamily, rep-
resented in the transmembrane polypeptides
of the desmocollin and desmoglein subfamilies
(Fig. 2) (Green and Simpson 2007; Holthofer
et al. 2007; Garrod and Chidgey 2008) (see
also Delva et al. 2009). Desmosomal cadherins
bind catenins that are different from those
found in complex with classic cadherins at
adherens junctions (Hatzfeld 2007). There are,
however, catenins such as plakoglobin that are
found at more than one junction (Zhurinsky
et al. 2000). This may occur more often than
realized as b-catenin, which is generally
thought to bind only cadherins at adherens
junctions, is also found at desmosomes under
certain conditions (Bierkamp et al. 1999). In
addition, p120-catenin has been identified at
desmosomal junctions (Kanno et al. 2008),
and ZO-1, generally found at tight junctions,
associates with adherens junctions during
their assembly (Itoh et al. 1993; Muller et al.
2005). Finally, p0071-catenin was first charac-
terized in association with desmosomal
cadherins but also localizes to adherens
junction (Hatzfeld et al. 2003; Calkins et al.
2003). Such examples of catenins being shared
across junctional types may reflect a means to
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coordinately regulate distinct cell–cell contacts,
to enhance cross talk between junctions, or
to provide additive junctional signals directed
to other cellular compartments such as the
nucleus.

How signals cross the membrane following
trans-cadherin ectodomain contact is not well
understood. The relevance of cadherin cis-
dimerization to subsequent trans interactions
is proposed in some but not all models

(Brieher et al. 1996; Yap et al. 1997; Yap et al.
1998; Patel et al. 2003; Yap and Kovacs 2003;
Troyanovsky 2005; Troyanovsky et al. 2007;
Nelson 2008), with higher order clustering
possibly correlating with raised levels of inter-
acting phosphatases, kinases, or small GTPases
(see also Watenabe et al. 2009). This may be
similar to models of RTK clustering and acti-
vation in which cytoplasmic kinase domains
come in closer proximity to initiate signaling.
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Figure 1. Adherens junction signaling to the nucleus. Proteins binding to the intracellular regions of cadherins
include catenins, with b-catenin further associating with a-catenin and perhaps indirectly/dynamically with
actin microfilaments. The structurally related p120-catenin subfamily is proposed to modulate cadherin
lateral clustering, cadherin endocytosis, and activities of Rho-family GTPases. b-catenin acts in various
ways within the nucleus, including as a transcriptional coactivator in conjunction with LEF/TCF, whereas
p120-catenin relieves Kaiso-mediated gene repression. Other catenins have also been observed in the nucleus,
where they have putative or shared roles in transcriptional regulation. Signaling from the nectin/afadin
complex to the nucleus may occur indirectly through Ras or Rho, or more directly through afadin’s potential
association with chromatin or transcriptional modulators. Some evidence has indicated that receptor
tyrosine kinases/growth factor receptors, or the frizzled/LRP complex, modulate signals initiated from the
adherens junction and vice versa. Dotted circles highlight select signaling entities where research has been
focused over the past decade.
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Following ectodomain engagement, transmem-
brane signaling might occur through dis-
placement of adhesion molecules relative to
the plasma membrane, perhaps exposing or
removing an intracellular binding site, or dis-
placements relative to other transmembrane
polypeptides, analogous to that occurring
between the a- and b-integrin subunits on
binding extracellular matrix.

Our focus here is on the nuclear signal-
ing pathways that are initiated at cell–cell junc-
tions. From a conceptual perspective, it seems
that evolution would favor signals passing in
both directions, thereby informing nuclear
as well as cell–cell contact decision-making
in a reciprocal manner. This would include
still incompletely understood concepts such
as contact inhibition, where chromosomal
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Figure 2. Desmosome junction signaling to the nucleus. Desmosomes are adhesive plaques containing the
transmembrane cadherin superfamily members desmocollin and desmoglein, as well as intracellular binding
partners such as plakoglobin (g-catenin), plakophilins (Pkps), and desmoplakin. A number of desmosomal
catenins have been localized to the nucleus although the functional relevance remains to be elucidated.
Plakophilin-2, for example, has been found to reside within the PolIII complex and to associate with RPC155
and the transcription factor TFIIIB.
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replication/cell division slows with increased
cell–cell association or, conversely, the lessen-
ing or remodeling of cell–cell contacts in
cells initiating gene programs that favor a
migratory phase or epithelial-to-mesenchymal
transitions.

CATENIN SIGNALING

A signaling trajectory that might at first seem
obvious between cell–cell junctions and
downstream nuclear events is that involving
b-catenin. b-catenin binds the distal (carboxy-
terminal) domain of cadherin cytoplasmic
tails via b-catenin’s central Armadillo domain
(Huber and Weis 2001; Xu and Kimelman
2007). Concomitantly, b-catenin binds to
a-catenin via its amino-terminal domain
(Pokutta and Weis 2000). A recent model pro-
poses that the cadherin–b-catenin complex
may locally enrich a-catenin (Yamada et al.
2005; Drees et al. 2005; Weis and Nelson
2006), which when released forms homo-
dimers capable of lowering Arp 2/3 activity
(Yamada and Nelson 2007). This is then
expected to reduce actin branching and cellu-
lar protrusive activity within the microenvi-
ronment, facilitating contact formation and
stability.

Another major role of b-catenin is in the
canonical Wnt signaling pathway (Clevers
2006; Gavert and Ben-Ze’ev 2007; Huang
and He 2008; Barker 2008; Mosimann et al.
2009) (see also Heuberger and Birchmeier
2009; Cadigan and Peifer 2009). Following
Wnt-ligand association with the plasma
membrane receptor–coreceptor complex of
Frizzled–Lrp, a signaling pool of b-catenin is
formed that is not bound to cadherin. This
process involves Wnt-ligand-directed inacti-
vation of an intracellular b-catenin destruc-
tion complex (involving components such
as GSK3b, CK1a, Axin, and APC), that in
the absence of Wnt ligand would otherwise
basally suppress the Wnt pathway (see
Cadigan and Peifer 2009 for details). Once
stabilized, a number of poorly understood
events allow b-catenin to enter the nucleus
to activate Wnt target genes important

in many developmental and pathological
contexts (Suh and Gumbiner 2003; Gottardi
and Gumbiner 2004; Mosimann et al. 2009).
Activation occurs on b-catenin’s association
with TCF/LEF transcription factors resident
at TCF/LEF consensus binding sites within
Wnt target gene promoters.

It was envisaged that b-catenin released
from the cadherin complex, perhaps in re-
sponse to specific phosphorylation events
(Daniel and Reynolds 1997; Potter et al. 2005;
Sallee et al. 2006; Alema and Salvatore 2007),
might also enter a signaling pool and activate
Wnt target genes (Perez-Moreno et al. 2003;
Nelson and Nusse 2004; Bienz 2005; Perez-
Moreno and Fuchs 2006). However, unless Wnt
signals are already active, it remains reasonable
to ask how b-catenin released from cadherin
escapes the destruction complex. Indeed, in a
number of contexts, it appears that cadherin
loss alone may not be sufficient to activate
b-catenin signaling (Caca et al. 1999; van de
Wetering et al. 2001; Herzig et al. 2007), even
as cadherin loss increases Wnt signals activated
by other means (Gottardi et al. 2001; Kuphal
and Behrens 2006).

Evidence has accumulated over the past
decade that b-catenin released from cadherin
is associated with increased Wnt pathway
activity in some experimental contexts, such
as in response to RTK or Src activity (Nelson
and Nusse 2004; Bienz 2005; Lilien and
Balsamo 2005; Brembeck et al. 2006; Gavert
and Ben-Ze’ev 2007; McLachlan and Yap
2007). Src is capable of phosphorylating
b-catenin at tyrosine 654, and reducing its
association with cadherin (Roura et al. 1999).
Most studies have been correlative, with the
dissociation of b-catenin from cadherin occur-
ring concurrent with increased transcriptional
activity from endogenous Wnt gene targets
or luciferase reporters. However, the kinases
examined may well have produced effects
beyond b-catenin release from cadherin. For
example, activation of Akt and/or inhibition
of GSK3b could result inb-catenin stabilization
and modulation of the Wnt endogenous genes
or reporter constructs by an alternative
upstream path (Larue and Bellacosa 2005).

Junctional Music that the Nucleus Hears

Cite this article as Cold Spring Harb Perspect Biol 2009;1:a002923 5



Just as kinases bind and act on the cadherin–
catenin complex, so too do a variety of phos-
phatases that dephosphorylate both cadherins
and catenins (Lilien et al. 2002; Sallee et al.
2006; McLachlan and Yap 2007). The phospha-
tases involved are numerous and include
membrane-spanning receptor-type phospha-
tases such as DEP-1, PTPmu, LAR, and
VE-PTP, as well as cytoplasmic phosphatases
including PTP1B and Shp-2. In addition to
the opposing impact of kinases and phospha-
tases on catenin signaling, a further means of
promoting b-catenin’s displacement from the
larger cadherin–catenin complex toward a
nuclear signaling pool involves the b-catenin-
binding protein BCL9-2, a homolog of
the human protooncogene product BCL9
(Brembeck et al. 2004; Brembeck et al. 2006).
In response to RTK activation, direct or indirect
b-catenin phosphorylation at tyrosine 142
occurs (e.g., via the RTK Met versus the
cytoplasmic tyrosine kinases fer or fyn), dec-
reasing b-catenin’s association with a-catenin
in favor of BCL9, and promoting b-catenin
nuclear entry and activity. Such examples have
brought attention to the likely interrelation of
adherens junction states, inclusive of secondary
protein modifications, with transcriptional
outcomes (see also Heuberger and Birchmeier
2009).

Because the Wnt pathway impinges directly
or indirectly on multiple classes of genes and
produces various cellular responses (prolifer-
ation, differentiation, stem-cell maintenance),
the impact of increased b-catenin signaling
cannot be predicted without knowing the
molecular details of the tissue or larger de-
velopmental programs involved (Clevers 2006;
Gavert and Ben-Ze’ev 2007; Huang and He
2008; Barker 2008; Mosimann et al. 2009).
However, in the case of RTK effects on the
cadherin–catenin complex in particular, assess-
ments have generally been made of endogenous
b-catenin gene targets such as cyclin-D1 and
c-myc, whose increased expression in many
cases correlates with increased cell-cycle pro-
gression under normal and pathological con-
ditions. Even though a large number of factors
are contributory, decreased E-cadherin levels

or function in many carcinomas is correlated
with increased proliferation. Thus, the field
will continue to be interested in the biological
roles of catenin nuclear signals originating
from the cadherin–catenin macromolecular
complex in future studies of normal or diseased
cells and tissues.

OTHER CATENINS

Cadherins bind a number of other catenins dis-
tinct from b-catenin that may be involved in
CCJ signaling to the nucleus. One of these is
plakoglobin (g-catenin), which being very
similar in structure to b-catenin, competes
with b-catenin for binding to the membrane-
distal region of cadherin tails, and can associate
with a-catenin (Zhurinsky et al. 2000). In
common with b-catenin, signaling pools of
plakoglobin have been found to respond to
signals initiated by Wnt ligands (thereby es-
caping destruction), although plakoglobin’s
nuclear role has been characterized as either
activating, repressive, or relatively neutral
in nature probably because of context issues
(Merriam et al. 1997; Kodama et al. 1999;
Kolligs et al. 2000; Williams et al. 2000;
Charpentier et al. 2000; Shtutman et al. 2002;
Maeda et al. 2004; Garcia-Gras et al. 2006;
Dusek et al. 2007; Shimizu et al. 2008; Martin
et al. 2009). Although less studied than
b-catenin, it is possible that plakoglobin once
dissociated from the cadherin complex might
also represent a signaling entity arising from
cell–cell junctions. Interestingly, plakoglobin
is further present in association with the
desmoglein and desmocollin cadherin family
members (Garrod and Chidgey 2008), the
principal transmembrane proteins conferring
adhesive activity at desmosomal junctions.
Thus, a signaling pool of plakoglobin could
conceivably arise from either of these cell–cell
junctions, or perhaps coordinately from both.

Loss of desmosome-associated desmopla-
kin in mouse cardiomyocytes was associated
with increased levels of plakoglobin in the
nucleus and a reduction in b-catenin-mediated
Wnt signaling. This led to fibroadipocytic
replacement of cardiac myocytes that mimics
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the human genetic condition arrhythmogenic
right ventricular dysplasia/cardiomyopathy
(ARVC) (Garcia-Gras et al. 2006). Additional
evidence showed that plakoglobin entered the
nucleus to modulate some Wnt/b-catenin
target genes (Maeda et al. 2004), and that it
might modulate cellular Src activity (Yin et al.
2005). Correlative links have also been made
between misdirected desmocollin (3a and 3b)
expression in transgenic mice and altered kera-
tinocyte differentiation, with altered b-catenin
stability and, thereby, Wnt activity being a
possible basis of the phenotype (Hardman
et al. 2005). Thus, desmosome-to-nuclear com-
munication occurs in pathologic/experimental
contexts, and presumably also under physio-
logic conditions.

a-Catenin, which is structurally unrelated
to the other catenins (Kobielak and Fuchs
2004; Pokutta et al. 2008), binds to b-catenin
within the cadherin–catenin complex, and
independently modulates, and associates with
the actin cytoskeleton (Yamada et al. 2005;
Drees et al. 2005). Phosphorylation of a-
catenin at tyrosine 148 increases its affin-
ity for b-catenin (Burks and Agazie 2006),
whereas b-catenin phosphorylation at tyrosine
142 lowers its affinity for a-catenin (Piedra
et al. 2003). Just as the absence or presence
of these secondary modifications represent
points that might assist b-catenin release into
a signaling pool, so might a-catenin be released
in response to upstream kinases/phosphatases
to modulate cytoskeletal or perhaps nuclear
outcomes. a-Catenin has been observed in
the nucleus (Giannini et al. 2004; El-Bahrawy
et al. 2002), and reports suggest it may modulate
b-catenin nuclear signaling (Giannini et al.
2004). Although the mechanisms are uncertain,
genetic ablation of a-catenin alters NFkB, HH,
MAPK, and Wnt signaling pathways (Kobielak
and Fuchs 2006; Lien et al. 2006; Vasioukhin
et al. 2001; Merdek et al. 2004; Hwang et al.
2005). Further studies may reveal activities of
a-catenin that strengthen its position as a
nuclear signaling entity, whereas additional
work will be needed to determine if a-catenin
originating from the cadherin–catenin com-
plex contributes to CCJ-nuclear signaling.

p120 Subfamily

The p120-catenin subfamily includes p120, and
the ARVCF-, d-, and p0071-catenins (Hatzfeld
2005; Reynolds 2007; McCrea and Park 2007).
Each binds weakly to the membrane proximal
tail region of classic cadherins, and some
members, such as p120, also interact with des-
mosomal cadherins (desmoglein 3) (Kanno
et al. 2008). Interestingly, p120 subfamily mem-
bers have a prominent role in determining the
rate of cadherin endocytosis (Kowalczyk and
Reynolds 2004; Xiao et al. 2007), and thus in
determining the state of cadherin-mediated
contacts.

p120 subfamily members directly or indi-
rectly modulate small GTPases such as Rac1
and RhoA (Anastasiadis et al. 2000; Noren
et al. 2001; Yap and Kovacs 2003; Wolf et al.
2006; Anastasiadis 2007) (see also Watanabe
et al. 2009). This activity functionally dis-
tinguishes p120 family members from b-
catenin and plakoglobin. An open question is
the extent to which p120 members modulate
small GTPases in the immediate molecular
vicinity of the cadherin complex (Braga 2002).
Although cadherin association appears to
lower their capacity to modulate Rac1 or
RhoA, p120 subfamily members may cycle on-
and-off cadherins to modulate local GTPases
and thereby cytoskeletal structures. Once fully
dissociated from cadherin, p120 subfamily
members could diffuse elsewhere to activate
small GTPases whose downstream impact
may include the modulation of gene activity
via effects on cell-cycle progression (Villalonga
and Ridley 2006; Wolf et al. 2006).

The most established outcome of p120
entry into the nucleus is loss of gene repres-
sion conferred by Kaiso, a POZ/zinc-finger
family member. This outcome is conceptually
analogous to b-catenin relieving TCF/LEF
mediated repression, although the underlying
mechanism involving p120 is different (Kelly
et al. 2004; Daniel 2007). Although results
relating to Kaiso’s functions in Wnt signaling
and TCF/LEF differ (Ruzov et al. 2009a;
Ruzov et al. 2009b; Iioka et al. 2009), other
evidence suggests that p120-catenin assists in
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de-repressing select Wnt/b-catenin target
genes whose promoters have both TCF/LEF
and Kaiso binding sites (Kim et al. 2004; Park
et al. 2005; Spring et al. 2005; van Roy and
McCrea 2005; Park et al. 2006). In addition to
Kaiso, recent work revealed that the tran-
scriptional repressor Glis2 associates with
p120 (Hosking et al. 2007). Glis2 and Src pro-
mote p120’s localization to the nucleus, and
functional studies suggest that Glis2 parti-
cipates in neuronal differentiation. Thus, as
for b-catenin, we should consider the possi-
bility that p120 has a nuclear function on
its dissociation from cadherin. A recent report
documented the nuclear- and p120-catenin-
dependent entry of a cadherin cyto-domain
fragment generated by presenilin, with con-
sequent effects on Kaiso-mediated gene repres-
sion (Ferber et al. 2008). Recent results further
indicate that, in common with b-catenin
and plakoglobin, p120 subfamily members are
stabilized in response to upstream Wnt signals
(Park et al. 2006; JY Hong and PDM, un-
published results). This suggests an integrated
network of catenin downstream effects, includ-
ing those involving gene regulation. Such
integrated responses could arise on Wnt-
ligand signaling (Wnt-ligand–Frizzled–LRP
complex formation), or in response to local
kinase or other activities at CCJs. More work
is required to address the validity of this latter
possibility, as the graphic dissociation of mul-
tiple catenins into signaling pools is not often
reported in response to stimuli.

It is intriguing to consider that activities of
the cadherin and Wnt pathways may be more
closely linked than presently recognized.
For example, in addition to reports of Wnt
pathway activation having effects on cadherin
function (Bradley et al. 1993; Hinck et al.
1994b; Hinck et al. 1994a; Yanagawa et al. 1997;
Shariatmadari et al. 2005; Ulrich et al. 2005;
Wodarz et al. 2006), there are indications
of physical associations between Wnt and
cadherin/protocadherin pathway components
(Medina et al. 2004; Qin et al. 2005; Hay et al.
2009), suggesting that cadherins are likely
to modulate canonical (b-catenin mediated)
or noncanonical (alternative) Wnt pathways.

As cadherin-mediated adhesion is required
for neighboring cells to engage in multiple
ligand–receptor interactions, for example
those occurring at varied cell synapses or
contacts, cadherins contribute to quite indirect
yet essential effects on downstream/nuclear
signaling. Although not addressed in this
article in detail, it is also important to note
that the cadherin superfamily is diverse in
structure and thus function, with the unify-
ing element being the presence of cadherin-
like repeats within the extracellular domain
(Hulpiau and van Roy 2009). Some members
appear to act more as signaling receptors (or
ligands), as opposed to combined adhesion/
signaling receptors. Interesting examples in-
clude the Dachsous and FAT cadherins (see
also McNeill et al. 2009), the putative ligand
and receptor of the newly characterized Hippo
pathway, which shows a central and conserved
role in tissue growth and size control in both
vertebrates and invertebrates (Zhao et al.
2008). A further interesting subgroup of cad-
herins covered elsewhere is the protocadherins
(Morishita and Yagi 2007). Protocadherins
are expressed in multiple cell types but most
prominently in neural tissues, and appear to
regulate a number of signaling pathways rel-
evant to cytoskeletal functions or gene activity
(Medina et al. 2004; Unterseher et al. 2004;
Yang et al. 2005; Chen and Gumbiner 2006;
Wang et al. 2008).

Plakophilin Subfamily

A third class of catenins are the plakophilins
(PKPs) (Hatzfeld 2007). Plakophilins contain
a central Armadillo domain, similar to the
b-catenin and p120-catenin subfamilies. In
the case of plakophilins, however, the amino-
terminal domains mediate interactions with
desmogleins or desmocollins. A number of pla-
kophilins have been localized to the nucleus
(Mertens et al. 1996; Schmidt et al. 1997). For
example, PKP2 associates with desmosomal
cadherins and components of the PolIII tran-
scriptional complex, such as RPC155 and
the transcription factor TFIIIB (Mertens et al.
2001), and has been found to influence b-
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catenin-mediated Wnt signaling (Chen et al.
2002). The intracellular localization of PKP2
is modulated through phosphorylation by
the serine kinase Cdc25C-associated kinase 1,
which promotes the association of PKP2 with
14-3-3 proteins and localizes PKP2 to junctions
rather than the nucleus (Muller et al. 2003).
Another PKP family member, PKP1b, is
mostly localized to the nucleus, whereas the
alternatively spliced isoform PKP1a is mostly
at junctions, suggesting that RNA processing
of PKP family members affects PKP nuclear
functions (Schmidt et al. 1997). Thus, plako-
philins appear to function at both the des-
mosome and nucleus, although it remains
unknown if plakophilins enter a signaling pool
as a consequence of dissociating from desmo-
somal cadherins (bona fide junctional–nuclear
signaling).

Another Perspective Relating to
Junctional–Nuclear Catenin Signaling

As presented above, catenins may transduce
signals to the nucleus on their dissociation
from cell–cell junctions. An alternative view,
not incompatible with the first, is that cell–
cell junctions and nuclear components com-
pete for catenin binding. Thus, when the level
of cadherin is relatively high, catenins may
be sequestered away from nuclear complexes
(Choi et al. 2006). In experimental contexts,
this has been shown to occur for b-catenin in
which downstream Wnt pathway activity (e.g.,
transcription from endogenous Wnt gene
targets or luciferase reporters) is suppressed
upon cadherin cyto-domain sequestration of
b-catenin (Heasman et al. 1994; Sanson et al.
1996; Orsulic et al. 1999). In such a case, the
degree of catenin nuclear signaling might be
modulated by the expression of cadherin, or
through changes in cadherin–catenin affinity
states or physical access. For example, in
epithelial-to-mesenchymal transitions, the tran-
scriptional repressors Snail and Slug repress E-
cadherin expression (Peinado et al. 2007; Alves
et al. 2009). If another cadherin does not
sequester the population of catenin that would
become available, and this population escapes

metabolic destruction, effects on gene expres-
sion or small GTPase activity may result.
Whether increased junctional–nuclear signal-
ing results from catenin dissociation from
cadherins (initial control at the protein level)
and/or from increased catenin signaling pools
that arise because of reduced cadherin ex-
pression (initial control at the transcriptional
level), nuclear decisions are sensitive to the
state of cadherin–catenin cell–cell contacts.

Receptor Tyrosine Kinases (RTKs)/Growth
Factor Receptors

Cadherins and Ig-family adhesion receptors
such as nectins (see the following) have been
linked to the functions of growth factor recep-
tors/RTKs (Comoglio et al. 2003). Examples
include the roles of N-cadherin in neurite out-
growth (Williams et al. 1994; Sanchez-Heras
et al. 2006) and of the Ig-family member
N-CAM in tumor cell adhesion (Cavallaro
et al. 2001). In the context of neural cells,
N-caherin is thought to facilitate FGF receptor
dimerization and signaling in a manner that
is independent of FGF ligand (Doherty et al.
2000; Skaper et al. 2001). This relationship
also appears to be independent of N-cadherin
adhesive activity (Utton et al. 2001) and to
involve N-cadherin and FGF receptor clustering
(Williams et al. 2002). Work in epithelial and
endothelial cells has indicated physical and
functional interactions between N-cadherin
or another classic cadherin, with the FGF
receptor (Nieman et al. 1999; Kim et al.
2000; Suyama et al. 2002; Erez et al. 2004).
N-cadherin–FGF-receptor interactions appear
to involve interactions through their ecto-
domains (Kim et al. 2000; Suyama et al. 2002;
Sanchez-Heras et al. 2006), although in some
contexts this association is difficult to detect
at the biochemical level (Kim et al. 2005).
Enhanced MAPK-ERK signaling correlates
with N-cadherin-mediated cell surface reten-
tion and clustering of the FGF receptor, as well
as an increase in FGF ligand responsiveness
(Suyama et al. 2002). Regardless of the spe-
cific molecular underpinnings, N-cadherin’s
interaction with RTKs is likely relevant to
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its functional association with more dynamic/
motile cell states in physiologic and pathologic
contexts (Wheelock et al. 2008), and shows
the role of cadherin signaling both in the
context of localized phenomena such as cyto-
skeletal rearrangement and proliferative sig-
naling by gene activity.

Cell–cell contact, presumably mediated by
cadherins, has been shown to reduce cell pro-
liferation promoted by the EGF ligand (Qian
et al. 2004). E-cadherin has been found in
complex with the EGF, FGF, and cErbB2 recep-
tors (Ochiai et al. 1994; Fedor-Chaiken et al.
2003; Qian et al. 2004; Bryant et al. 2005).
E-cadherin ligation reduces Stat 5b proliferative
signaling downstream of the EGF receptor
(Perrais et al. 2007), and FGF-induced MAPK
signaling and receptor internalization (Bryant
et al. 2005). In keratinocytes and mammary
epithelial cells, however, E-cadherin was found
to activate the EGF receptor (Fedor-Chaiken
et al. 2003), which on cell–cell contact occurred
even in the absence of EGF ligand (Pece
and Gutkind 2000). In endothelial cells, VE-
cadherin associates with, and reduces VEGF
receptor activity, an effect that may occur with
the cell-density dependent phosphatase PTP1
(Grazia Lampugnani et al. 2003). This VE-
cadherin–RTK interaction appears to occur
indirectly via cytoplasmic domain interac-
tions, requiring b-catenin as reported also
for the E-cadherin–EGF-receptor interaction
(Hoschuetzky et al. 1994). Analogous to some
cadherin–RTK contexts, VE-cadherin limits
VEGF-receptor internalization, thereby lower-
ing PLCg/MAPK downstream signaling in
response to growth signals (Lampugnani et al.
2006). This is similar to the effects of the E-
cadherin–FGF-receptor complex, but not the
N-cadherin–FGF-receptor complex. Several
possibilities have been proposed for how cad-
herins might alter RTK (or other receptor)
signaling, such as lateral receptor clustering
to facilitate RTK auto-activation, alteration of
ligand–RTK interactions, or modulation of
RTK endocytosis.

In summary, although cadherin and Ig-
family adhesion protein interactions with RTKs
(as well as phosphatases) are incompletely

understood, they represent a link between
adhesive junction components and signaling
pathways that modulate cell growth and a
host of other processes. Further, although
some of these relationships may not be depen-
dent on cell–cell adhesion per se, others
appear adhesion- or contact-responsive, such
as E-cadherin-mediated growth arrest via
effects on EGF-receptor interactions (Perrais
et al. 2007). Interestingly, the FGF receptor
appears to associate more with nonjunctional
cadherins or Ig-family (N-CAM) adhesion
proteins in cell lines derived from a number
of sources (e.g., epithelial, myoblastic, and fibro-
blastic) (Sanchez-Heras et al. 2006). Further,
N-cadherin and the PDGF receptor associate
to promote cell movements at the leading
edge of cells, with their cytoplasmic domain
interactions occurring indirectly via b-catenin
and NHERF (Theisen et al. 2007). These
considerations indicate that much remains to
be learned about how adhesive-protein–RTK
signaling is engineered within cells, while al-
ready suggesting an intimate cell-surface inter-
play that ultimately modulates gene activity.

Small GTPases

We will discuss briefly junction-mediated
effects on small GTPases (see by Watanabe
et al). Cadherin-mediated adhesion has been
shown to modulate Rac and less directly Rho
and Cdc42, with these GTPases reciprocally
contributing to determining cell–cell junction
states (Anastasiadis 2007; Yap and Kovacs
2003; Braga and Yap 2005; Yap et al. 2007).
Junctional effects on small GTPases (or the
reverse) are complex, as differences are apparent
as a function of cell type and context. Most
of the effects studied have been within the
junctional area itself, or cytoplasmic effects
that largely relate to cytoskeletal structure–
function.

Although GTPase effects are thought
to be compartmentalized, including a pro-
portion of those acting at cell–cell contact
sites, it is likely that some GTPase signals
contribute directly to longer-range signaling
to the nucleus. Future studies might address,
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for example, the impact of junctionally acti-
vated (or inhibited) small GTPases on cell cycle
progression. In such cases, it is likely that
p120-catenin subfamily members (Anastasiadis
2007), or other molecular players such as PI3
kinase or Akt (Yap and Kovacs 2003; Yap
et al. 2007) (see the following), would act as
intermediates. Importantly, Rho, Rac, and
Cdc42 are known to play roles in cell cycle
progression (Coleman et al. 2004; Villalonga
and Ridley 2006), and each is responsive to
cadherin-mediated cell–cell contact in context-
dependent manners (Yap and Kovacs 2003;
Burridge and Wennerberg 2004; Yap et al.
2007; Anastasiadis 2007). Thus, as we learn
more from future studies, small GTPases are
likely to become recognized players in CCJ-
nuclear signaling.

PI3 Kinase and Akt

In addition to small GTPase signals arising
from CCJs, other signaling mediators such as
PI3K and Akt have attracted attention (Larue
and Bellacosa 2005; Giehl and Menke 2008).
For example, the survival of melanoma cells
is enhanced by N-cadherin through an Akt-
dependent mechanism (Li et al. 2001),
whereas reduced N- or VE-cadherin function
in endothelial, granulose, or hepatocellular
carcinoma cells results in apoptosis (Peluso
et al. 1996; Makrigiannakis et al. 1999; Erez
et al. 2004; Gwak et al. 2006; Jiang et al. 2007).
E-cadherin also promotes cell survival, inclu-
sive of cancer contexts (St Croix and Kerbel
1997; Kantak and Kramer 1998; Kang et al.
2007). As junctional molecules such as cadher-
ins allow for multiple ligand–receptor inter-
actions, it is not possible in many cases to
conclude that cell survival effects are mediated
as a direct consequence of cadherin cytoplasmic
domain interactions. However, the involvement
of cadherin–catenin complexes in producing
intracellular signals suggest that direct cadherin
effects are contributory and perhaps even pre-
dominant in some instances. In this regard,
strong evidence has accumulated that PI3
kinase and Rac activation results following
cadherin–cadherin trans interactions, and that

the cadherin cytoplasmic domain is involved
(Kovacs et al. 2002; Goodwin et al. 2003).
Future work will be required to determine the
relative impact of such signals locally, relative
to those that might quickly reach the nucleus
to modulate gene programs.

NECTIN BASED SIGNALING

Thus far, our discussion has largely taken place
from a cadherin-centric perspective. However,
it is clear that other adhesive transmembrane
polypeptides, such as the Ig-family member
N-CAM, also modulate signaling pathways
reaching the nucleus (Williams et al. 1994;
Choi et al. 2001; Little et al. 2001). Although
we will not discuss N-CAM further, we will
summarize evidence that the nectin Ig-family
of adhesion receptors have important roles in
junction formation in epithelia, fibroblasts,
and neurons (Takai and Nakanishi 2003;
Takai et al. 2008a; Sakisaka et al. 2007). Hetero-
philic trans interactions between nectin1 and
nectin3 occur at synaptic junctions (Mizoguchi
et al. 2002; Togashi et al. 2006), whereas homo-
philic N-cadherin trans interactions are from
both sides of the synapse. Nectins bind several
cytoplasmic proteins including afadin, which
binds actin, and the cell polarity protein
Par3. Indirectly, nectins associate with a-
catenin, annexin II, IQGAP1, and ZO1. This
latter ZO1 interaction is relevant to nectin’s
roles in tight junction formation (Ooshio
et al. 2007). With respect to signaling, nectin3
associates in cis with the integrin a(v)b(3),
which appears important for peripheral
cytoskeletal organization and activity, and for-
mation of adherens and tight junctions (Saka-
moto et al. 2006; Ozaki et al. 2007; Sakamoto
et al. 2008). PKC, FAK, and c-Src participate
in nectin function downstream of a(v)b(3)
(Ozaki et al. 2007; Sakamoto et al. 2008). The
fact that nectins interact with components
of both the adherens junction (cadherins
through a-catenin–afadin associations), tight
junctions (ZO1), and a(v)b(3) integrin,
appears to provide an example of junctional
cross talk. Nectin3 has also been found in
cis association with the PDGF, but not the
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EGF receptor, raising the question whether
nectin modulates RTK signaling or vice-versa,
and if this nectin complex might also include
cadherin or a(v)b(3) integrin (unpublished
in Sakisaka et al. 2007). A number of studies
have further established functional links
between nectins and the activation of the
small G proteins Rap1, Cdc42, and Rac
through c-Src (Ogita and Takai 2006; Kawa-
katsu et al. 2005).

It has been proposed that distinct nectin-
like (Necl) transmembrane molecules link
nectin pathways directly with the nucleus.
Much of the focus has been on Necl5, which
appears to contribute to contact-mediated inhi-
bition of cell growth, and is capable of binding
in trans to nectin3 in confluent cell culture. In
nonconfluent cells, however, Necl5 associates
in cis with the PDGF receptor, and a(v)b(3)
integrin. These binary associations appear
to influence Rap1 and Rac signals involved in
cell movements, and Ras signals that induce
cell proliferation (H. Amano et al. unpublished;
Sakisaka et al. 2007; Minami et al. 2007;
Kakunaga et al. 2004). Once cells reach higher
densities, Necl5 is thought to engage in hete-
rotypic interactions with nectin3, reducing Ras-
mediated proliferative signaling and enhancing
signals that strengthen junctions through cad-
herin and cytoskeletal reorganization. Necl5
is also associated with Sprouty, a negative
regulator of growth factor signaling through
inhibition of Ras (Kajita et al. 2007). In subcon-
fluent cells, Necl5 appears to block Sprouty
inhibition of Ras, favoring a proliferative cell
state. In confluent cells, Necl5 is endocytosed
more rapidly, and this reduction in Necl5
levels is proposed to allow Sprouty to inhibit
Ras, leading to slowed cell proliferation.
Finally, recent work indicates that the nectin–
afadin complex contributes to PDGF-induced
cell survival through the PI3K-Akt signaling
pathway (Kanzaki et al. 2008). Cadherins have
also been linked to cell survival signaling
(Peluso et al. 1996; Kantak and Kramer 1998;
St Croix and Kerbel 1997; Makrigiannakis
et al. 1999; Gwak et al. 2006; Jiang et al. 2007;
Wheelock et al. 2008), and as above noted,
associate with RTKs. Prosurvival effects arise

from Akt and b-catenin signaling in the case
of N-cadherin (Li et al. 2001), and Akt signal-
ing upon E-cadherin association with ErbB4
(Kang et al. 2007). Given the previously noted
associations that have been resolved between
cadherins and nectins, it may well be that
their respective downstream signals are coordi-
nated or interdependent.

GAP JUNCTIONS

Among CCJs, gap junctions represent a unique
nonadhesive connection formed from the
docking of two hemichannels (or connexon,
a hexameric cluster of various connexin iso-
forms), allowing direct intercellular commu-
nications between adjacent cells (Fig. 3) (see
Goodenough and Paul 2009). Such an ex-
change of chemical or electrical signals has been
implicated in a broad spectrum of biological
events, including metabolic and ion homeo-
stasis, synchronization of muscle contraction,
and cell proliferation, survival, differentiation,
and migration (Wong et al. 2008; Harris 2007;
Mese et al. 2007).

Unlike many classical outside-in signaling
pathways, in which ligands bind receptors to
trigger events such as phosphorylation or oligo-
merization and ultimately alter gene expres-
sion, gap junctions or hemichannels function
as gate keepers to permit molecular diffusion in
their opened conformation and prevent such dif-
fusion in closed states (Harris 2007). Entering
signaling entities include calcium and other
critical metabolites or second messengers that
may alter gene expression through known
(e.g., CxRE dependent) or unknown mechan-
isms (Rodriguez-Sinovas et al. 2007).

A number of connexins appear to localize
to the nucleus. For example, on immunostain-
ing, connexin 43 has been observed in the
nuclei of magnocellular neurons (Eisner and
Colombo 2002), whereas its carboxy-terminal
fragment localizes to cardiomyocyte and
HeLa cell nuclei and correlates with decreased
cell proliferation (Dang et al. 2003). Further
experimentation is needed, however, to deter-
mine if physiologic gap junction–nuclear
signaling occurs as a function of connexin
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or connexin-fragment entry to the nucleus, or
through other proteins originally associated with
plasma membrane-associated gap junctions.

TIGHT JUNCTIONS

Tight junctions (TJs) are areas of close contact
between neighboring plasma membranes,
where intramembrane strands at the contact
sites can be visualized by freeze-fracture
electron microscopy (Tsukita et al. 2001; see
Furuse 2009). Tight junctions act as barriers
that show both gating and fencing functions:
Gating determines the paracellular diffusion
of molecules according to size and charge,
whereas fencing restricts lipid diffusion
between the apical and basolateral intramem-
brane domains (Balda and Matter 2008;
Cereijido et al. 2008; Paris et al. 2008; see
Anderson and Van Itallie 2009). Certain

proteins of the epithelial TJ show cellular local-
izations other than the TJ. These proteins
localize to both nuclei and TJ, and tend to be
involved in the regulation of cell prolifera-
tion, gene expression, and cell differentiation
(Fig. 4) (Balda and Matter 2003; Matter and
Balda 2007). Here, we discuss TJ proteins
having both junctional and nuclear localiza-
tions, and summarize what is known about
their functions, regulation, and expression.

Six TJ-associated transmembrane proteins
have been identified: occludin, claudins, tricel-
lulin, JAMs (Junction Adhesion Molecules),
CRB-3 (a human homolog of Drosophila
Crumbs), and Bves (blood vessel/epicardial
substance) (Lemmers et al. 2004; Osler et al.
2005; Furuse and Tsukita 2006; Wang and
Margolis 2007; Chiba et al. 2008). It remains
unclear how each of these proteins interacts
with components of the TJ cytoplasmic plaque

Connexon

Connexon

ions cAMP IP3

Connexins

?

?

CxRE

Figure 3. Gap junction signaling to the nucleus. Gap junctions are nonadhesive channels that allow
regulated intercellular transmission of electrical or small molecule signals. Connexin 43, a gap junction
structural component, has been observed in the nuclei of certain cells and associated with decreased cell
proliferation.
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and how these interactions result in a protein
network that controls paracellular permea-
bility, gene expression, junctional dynamics,
proliferation, and polarity. The TJ cytoplasmic
plaque is formed by multiple adaptor and scaf-
folding proteins (e.g., ZO-1/2/3, PATJ, Pals1,
PAR-3, and PAR-6), different types of signal-
ing components such as GTP-binding proteins,
protein kinases, and phosphatases, as well as
transcriptional and post-transcriptional regula-
tors (Matter and Balda 2007; Paris et al. 2008).
Several proteins have dual localizations at TJs
and the nucleus, including ZONAB, cdk4, sym-
plekin, ZO-2, PAR-6, huASH1, and ubinuclein.
Most of these proteins have been linked to cell
proliferation, gene expression, and/or cell
differentiation, and interact with and regulate
transcription factors.

ZO-1 AND ZONAB IN CELL PROLIFERATION
AND GENE EXPRESSION

ZO-1, the first TJ protein identified (Stevenson
et al. 1986), contains distinct protein–protein
interaction domains including three PDZ, an
SH3 domain, and a domain homologous to
yeast guanylate kinase (GUK domain) (Willott
et al. 1993). ZO-1 belongs to the same protein
family as DlgA (Discs large A), a Drosophila
tumor suppressor (Tsukita et al. 1993; Woods
and Bryant 1993; Fanning et al. 2007). ZO-1 is
present not only in epithelial TJs, but also in
fibroblasts, neurons, and astrocytes (Howarth
et al. 1992), suggesting it has more general func-
tions in cells that do not have tight junctions.
Although ZO-1 has been observed in the
nucleus of certain cells and conditions, some
of the data is conflicting (Gottardi et al. 1996;

Hsp70

Tight Junction

ZO-1

ZONAB

ZONAB

Apg-2

Symplekin

ZO-2

SAF-B

Cingulin

RhoA

GEF-H1

c-myc

Cdk4/D1

PAR6

Cyclin D1

smurf1

cdc42

aPKC

erbB2

PCNA

PAR3

HSF-1?

?

Claudin-2

?

ZO-1

ZO-1

ZONAB

PAR6

PAR6

ZO-2

ZO-2

Symplekin

Symplekin

?

Cdk4
ZONAB

AML1

Figure 4. Tight junction signaling to the nucleus. Displayed are pathways associated with tight junctions
and suggested or showed to regulate gene expression. Arrows refer to positive functional interactions that
could be because of either indirect positive effects or direct physical interactions. Conversely, lines ending
with a “T” are negative functional interactions reflecting indirect effects or direct physical inter-
actions. Although most of the junctional proteins depicted associate with junctional membrane proteins,
many of the transmembrane entities relevant to the indicated pathways are not known and therefore not
indicated.
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Balda and Matter 2000; Reichert et al. 2000;
Glaunsinger et al. 2001; Matter and Balda
2003; Traweger et al. 2003). Moreover, the
known signaling functions of ZO-1 do not
require a nuclear pool of ZO-1, but involve
interactions that occur in the cytoplasm and
lead to the cytoplasmic sequestration of the
dual localization protein ZONAB.

ZONAB is a Y-box transcription factor
that belongs to a small family of multifunc-
tional regulators of transcription and post-
transcriptional processes (Gallia et al. 2000;
Kohno et al. 2003). The Y-box factor family
includes DbpA/ZONAB, DbpB/YB-1, and
DbpC/contrin (Sakura et al. 1988; Lloberas
et al. 1995). ZONAB controls expression of the
growth factor coreceptor erbB2, cell cycle regula-
tors such as cyclin D1 and PCNA, and regulates
epithelial morphogenesis (Balda and Matter
2000; Balda et al. 2003; Sourisseau et al. 2006).
Knockout experiments in mice have shown
that mice deficient in DbpA/ZONAB (also
called MSY3 in mice) develop normally.
However, functional redundancy is indicated as
DbpA/ZONAB and DbpB/YB-1 double knock-
out mice die earlier than animals knocked out
for DbpB/YB-1 alone (Lu et al. 2006).

ZONAB binds to the SH3 domain of ZO-1,
which contributes to ZONAB’s regulation
(Balda and Matter 2000; Balda et al. 2003). In
MDCK cells, ZO-1 and ZONAB expression
are inversely regulated by cell density, and
results from different experimental approaches
indicate that ZO-1 suppresses proliferation by
inhibiting ZONAB’s nuclear accumulation
(Balda and Matter 2000; Balda et al. 2003).
Indeed, the SH3 domain of ZO-1 that binds
to ZONAB is necessary and sufficient to seques-
ter ZONAB in the cytoplasm and reduce
proliferation (Balda et al. 2003). ZONAB
associates with the cell division kinase (CDK)
4, which also has a TJ-nuclear localization;
thus, reduction of nuclear ZONAB levels
results in reduced nuclear CDK4. Hence, the
cell-density dependent accumulation of ZO-1
at TJs works to inhibit the proliferation-
promoting ZONAB and CDK4 pathways.

The relative expression levels of ZONAB
and ZO-1 are tightly regulated. ZO-1 is

expressed at low levels in sparse cultures of
MDCK cells, and its levels rises as a function
of increased cell density (Balda and Matter
2000). As ZO-1 interacts with many junctional
proteins and its half-life increases with greater
cell–cell contact, its up-regulation seems to
involve junctional stabilization (Gumbiner
et al. 1991). Transcriptional mechanisms also
affect ZO-1 expression. ZO-1 levels are
decreased during corneal wound repair (Cao
et al. 2002), in response to b–catenin (Mann
et al. 1999), on experimental cell transfor-
mation and in a variety of cancers (Miettinen
et al. 1994; Chen et al. 2000; Tian and Phillips
2002; Eger et al. 2004; Harten et al. 2009).
Analysis of the ZO-1 promoter revealed re-
sponse elements targeted during EMT (Venkov
et al. 2007), as well as by signaling networks
activated in neoplastic, metabolic, and viral
diseases (Chen et al. 2008). In contrast to
ZO-1, ZONAB/DbpA expression increases in
contexts that favor proliferation, such as
transcriptional regulation by E2F1, and thus is
a prognostic marker for hepatocellular carci-
nomas (Yasen et al. 2005).

ZONAB activity is also regulated by other
proteins that control its interaction with
ZO-1. One such protein is Apg-2, a heat shock
protein that like ZONAB binds the SH3
domain of ZO-1 (Tsapara et al. 2006). Apg-2
is a member of the Hsp110 family of chaperones
in the cytosol, the nucleus, and to a lesser
extent at the cell–cell junctions in MDCK cells
(Tsapara et al. 2006). In response to heat
shock, Apg-2 is recruited to junctions and
binds ZO-1, leading to ZONAB dissociation,
nuclear localization, and activation. Apg-2
depletion retards TJ assembly in calcium
switch experiments using two-dimensional
cultures, and affects the development of well-
organized polarized cysts in three-dimensional
cultures (Aijaz et al. 2007), similar to the
effects of ZO-1 depletion (Aijaz et al. 2006;
Sourisseau et al. 2006). However, whether
this effect is due solely to Apg-2’s relation-
ship with ZO-1 and ZONAB is not clear.
Nevertheless, a functional interaction of these
components is further suggested by Apg-2’s
over-expression in hepatocellular carcinomas
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(Gotoh et al. 2004), where ZONAB/DbpA is a
prognostic marker (Yasen et al. 2005), and
ZO-1 is down-regulated (Orban et al. 2008).
Thus, it seems that liver cancer correlates with
increased ZONAB activity either because of
increased expression of ZONAB itself or of
Apg-2, or because of down-regulation of ZO-1.

SYMPLEKIN IN mRNA PROCESSING
AND CELL PROLIFERATION

Symplekin, a nuclear protein that can associate
with TJs, has been linked to the machinery
involved in 30-end processing of pre-mRNA
and polyadenylation (Keon et al. 1996; Takagaki
and Manley 2000; Hofmann et al. 2002). In
stressed cells, symplekin interacts with HSF-1
(heat shock inducible transcription factor one)
to regulate hsp70 mRNA polyadenylation
(Xing et al. 2004). In Xenopus, symplekin
and an unusual poly(A) polymerase, GLD-2,
are required for cytoplasmic polyadenylation
(Barnard et al. 2004). Furthermore, symplekin
and the polyadenylation factor CPSF-73 are
targets of the small ubiquitin-like modifier
SUMO (Vethantham et al. 2007). Thus, symple-
kin has a role in mRNA processing.

Whether symplekin’s junctional localiza-
tion reflects a regulatory role of cell–cell
adhesion in polyadenylation is not known.
As symplekin appears to bind transcription
factors, it may localize to sites where those inter-
acting transcription factors are found. This
possibility is supported by the finding that sym-
plekin interacts with ZONAB. Symplekin
depletion by RNA interference reduces
ZONAB nuclear accumulation, transcriptional
activity, cell proliferation and expression of
cyclin D1 in a ZONAB-dependent manner
(Kavanagh et al. 2006). Furthermore, symplekin
cooperates with ZONAB to negatively regulate
intestinal goblet cell differentiation, acting
via repression of the AML1 transcription
factor (Buchert et al. 2009). As ZONAB is a
Y-box factor, a family of multifunctional
proteins that can interact with DNA as well
as RNA (Kohno et al. 2003), it is tempting to
speculate that the interaction between symple-
kin and ZONAB is not only functionally

important for transcription but also for RNA
processing, stability, and/or localization.

ZO-2 IN CELL PROLIFERATION AND
GENE EXPRESSION

ZO-2 has the same domain structure as ZO-1
and was identified because of its interaction
with ZO-1 (Gumbiner et al. 1991; Jesaitis and
Goodenough 1994). ZO-2 shuttles from the
cell periphery to the nucleus (Islas et al. 2002;
Traweger et al. 2003; Kausalya et al. 2004),
interacts with the nuclear ribonucleopro-
tein scaffold attachment factor-B (SAF-B)
(Traweger et al. 2003) and several transcrip-
tion factors (Betanzos et al. 2004; Huerta et al.
2007). ZO-2 inhibits cell proliferation by
affecting transcription, translation, and degra-
dation of cyclin D1 (Huerta et al. 2007; Tapia
et al. 2009), coincident with observations
that its expression is reduced in certain
tumors (Chlenski et al. 2000; Fink et al. 2006;
Paschoud et al. 2007). ZO-2 binds and inacti-
vates oncogenic viral proteins (Glaunsinger
et al. 2000; Lee et al. 2000; Glaunsinger et al.
2001), and its degradation is induced by
HIV type 1 gp120 (Nakamuta et al. 2008).
Conversely, in some epithelial and endothelial
cells, ZO-2 has been reported to increase
proliferation and regulate the expression of
M2 pyruvate kinase (Traweger et al. 2008).

In mice, ZO-2 deficiency is embryonic
lethal; embryos show decreased proliferation
at embryonic day 6.5, and increased apoptosis
at embryonic day 7.5, indicating an arrest in
early gastrulation (Xu et al. 2008). Depletion
of ZO-2 protein by RNA interference in
two-cell embryos delays blastocoel cavity for-
mation with normal cell proliferation and
morphogenesis. In contrast, ZO-1 knockdown,
or combined ZO-1 and ZO-2 knockdown,
produces a more severe inhibition of blastocoel
formation, indicating distinct but possibly
overlapping roles for ZO proteins in blastocyst
morphogenesis (Sheth et al. 2008). Further
studies are needed to address these contra-
dictions in ZO-2’s role in cell proliferation,
possibly because of different experimental
systems/contexts, and to identify genes regulated
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by ZO-2 in association with SAF-B or other
transcription factors.

HuASH1 AND UBINUCLEIN IN CHROMATIN
REMODELING AND GENE EXPRESSION

HuASH1, the human homolog of Drosophila
ASH1 (absent, small, or homeotic discs 1),
belongs to the trithorax group of transcription
factors. It was found to colocalize with TJ
markers by immunofluorescence (Nakamura
et al. 2000). HuASH1 functions as a histone
methyltransferase, an enzymatic activity in-
volved in chromatin remodeling and gene
expression (Beisel et al. 2002; Gregory et al.
2007), and interacts with HDAC1 repression
complexes (Tanaka et al. 2008). It remains
unknown how huASH1 is recruited to inter-
cellular junctions, or the functional relevance
of its junctional association in chromatin
remodeling and gene expression.

Ubinuclein belongs to a novel family of
histone chaperones conserved throughout
eukaryotes (Balaji et al. 2009), and has been
found to interact with viral transcription
factors in the nucleus and ZO-1 at epithelial
TJs (Aho et al. 2008). When overexpressed,
ubinuclein prevents MDCK cells from go-
ing through cytokinesis (Aho et al. 2008).
Whether and how ZO-1 might regulate the
function and localization of ubinuclein, or
the specifics of ubinuclein’s interactions with
other proteins in the nucleus, remain open
questions.

TIGHT JUNCTION-ASSOCIATED
REGULATION OF SMALL GTPases

TJs also participate in the regulation of small
GTPases (see also Watanabe et al. 2009).
RhoA activation affects actin organization and
stimulates epithelial cell proliferation, gene
expression, and differentiation (Jaffe and Hall
2002; Sahai and Marshall 2002; Nelson 2008).
RhoA is down-regulated when epithelial cells
reach confluence, resulting in inhibition of
signaling pathways that stimulate proliferation.
GEF-H1/Lfc, a guanine nucleotide exchange
factor specific for RhoA, is involved in the

regulation of paracellular permeability and
cell proliferation (Benais-Pont et al. 2003;
Aijaz et al. 2005). GEF-H1/Lfc directly inter-
acts with cingulin, a junctional adaptor,
resulting in its inhibition and thus reduced
RhoA activity. In MDCK cells with reduced
cingulin levels, increased claudin-2 expression
is RhoA-dependent, suggesting it might be
mediated by GEF-H1 signaling (Guillemot
and Citi 2006).

JACOP/paracingulin, a TJ plaque protein
with sequence similarity to cingulin (Ohnishi
et al. 2004), interacts with GEF-H1 as well as
the Rac GEF Tiam1, thereby influencing
junction assembly (Guillemot et al. 2008).
Tiam1 and Cdc42 have been linked to the
assembly of the TJ-associated, evolutionarily
conserved cell polarity signaling pathway that
includes the PAR3/PAR6/aPKC complex,
and is required for the formation of distinct
tight and adherens junctions (Ebnet et al.
2004; Assemat et al. 2008; Iden and Collard
2008; Macara and Mili 2008).

PAR6 itself is a protein with multiple inter-
action partners and also shows dual localiza-
tion. In different experimental systems, PAR6
was shown to interact with small GTPases
such as cdc42, Rac2, Rin, Rit, and Wrch-1
(Johansson et al. 2000; Hoshino et al. 2005;
Macara and Mili 2008; Brady et al. 2009), as
well as p190RhoGAP (Zhang and Macara
2008). PAR6 is also part of the TGF-b-activated
pathway leading to ubiquitination and degra-
dation of RhoA (Wang and Margolis 2007).
PAR6 localizes to nuclear speckles and coloca-
lizes with Tax, a transcriptional activator of
the human T-cell leukemia virus type 1 long
terminal repeat (Cline and Nelson 2007).
Although its nuclear functions are not clear,
PAR6 does not seem to be directly involved
in transcription but likely instead plays an
architectural role.

TIGHT JUNCTION CROSS TALK WITH
GROWTH FACTORS AND EXTRACELLULAR
MATRIX PATHWAYS

The relationship of TJs with growth factor
and matrix signaling is an emerging area of
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research. Occludin regulates localization of
the TGF-b type I receptor and thus plays a
role in TGF-b-dependent dissolution of TJs
during epithelial-to-mesenchymal transitions
(Bose and Wrana 2006). FGF-2 fails to induce
angiogenesis in JAM-A-deficient mice (Cooke
et al. 2006), suggesting a role of JAM-A in
FGF-2 signaling, which might be mediated by
the PAR3/PAR6/aPKC complex (Ebnet et al.
2004). Additionally, EGF signaling seems
to affect the expression and localization of
several TJ proteins that regulate TJ assembly
and barrier functions (Van Itallie et al. 1995;
Basuroy et al. 2006; Wang et al. 2006;
Flores-Benitez et al. 2007; Singh et al. 2007),
suggesting that EGF signaling could have an
indirect role in regulating TJ-nuclear signaling
by modulating the activities of the PAR3/
PAR6/aPKC and/or ZO-1/ZONAB pathways.

It is generally accepted that integrin signal-
ing pathways regulate cell migration, junctional
complex stability, and cell–cell interactions
including those taking place at TJs (Ojakian
et al. 2001). There are also examples linking
TJ-ssociated proteins with integrins. For
example, claudin-11 forms a complex with
OAP-1, a tetraspan family protein, and with
b1 integrin to regulate proliferation and mig-
ration of oligodendrocytes (Tiwari-Woodruff
et al. 2001). JAMs regulate cell migration
through effects on b(1) integrin or, depending
on the cellular context, on a(v)b(3) integrin
(Mandell et al. 2005; Naik and Naik 2006;
Mandicourt et al. 2007). These results suggest
that transmembrane TJ proteins may influence
nuclear events through their effects on integ-
rins. It is tempting to speculate that such
relationships exist because down-regulation of
ZO-1 or manipulation of ZO-1 interactions
with ZONAB produce mild phenotypes in
monolayers but inhibit cyst formation in
three dimensional (collagen/matrigel) cultures
(Umeda et al. 2004; Aijaz et al. 2006; McNeil
et al. 2006; Sourisseau et al. 2006; Aijaz et al.
2007). Future studies will need to address
the specific molecular mechanisms involved;
for example, if/how the TJ affects gene ex-
pression profiles relevant to extracellular
matrix adhesion and signaling.

ADHERENS AND TIGHT JUNCTION
CROSS TALK

In revising earlier ideas in which junctions
may have been viewed as rather distinct func-
tional entities, it seems likely that in many
cases shared functions occur including those
involving signals directed to the nucleus. For
example, the p120- and ARVCF-catenins, tra-
ditionally viewed as components of adherens
junctions, also interact with ZO-1 and ZO-2
(Kausalya et al. 2004). In polarized epithelial
MDCK cells, ARVCF and ZO-1 partially co-
localize in the vicinity of the apical adhesion
complex. Disruption of cell–cell adhesion
releases ARVCF from the plasma membrane,
with an increased ARVCF fraction localizing
to the nucleus where it binds ZO-2 (Kausalya
et al. 2004). Thus, even as the nuclear roles
of ARVCF are not known, the interaction of
TJ and adherens junction proteins may allow
cooperation between junctions in regulating
gene expression.

Cyclin D1 is an example of a gene target
responsive to both TJ and adherens junction
function, and which is up-regulated in many
tumors (Coqueret 2002; Fu et al. 2004).
Several signaling pathways that regulate cell–
cell and cell–extracellular matrix adhesion
have an impact on cyclin D1 expression
(Shtutman et al. 1999; Tetsu and McCormick
1999; D’Amico et al. 2000; Amanatullah et al.
2001; Zhao et al. 2001; Balda and Matter
2003; Zhao et al. 2003). The identification of
other genes regulated by both adherens and
tight junctions should help us understand
downstream cross talk occurring between adhe-
rens and tight junctions, as well as appreciate
how these pathways interact with those acti-
vated by growth factors or the extracellular
matrix (Balda and Matter 2003).

Junctional cross talk involving nuclear sig-
nals is further reflected in roles of the adhe-
rens junction in transcriptional regulation of
TJ gene products. In endothelia, for example,
the level of VE-cadherin affects that of the TJ
protein claudin-5. This effect appears to occur
through Akt, which phosphorylates the fork-
head box factor FoxO1, and regulates the
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TCF4–b-catenin transcriptional repressor com-
plex (Taddei et al. 2008). It has been suggested
that potential TCF/LEF binding sites present
in the promoter of claudin-3 may account
for its down-regulation in response to reduced
b-catenin activity (Liebner et al. 2008). In
the future, it will be interesting to further ex-
amine whether signaling pathways downstream
of one junction have an impact on the ex-
pression of gene products comprising another
junction.

CONCLUDING REMARKS

Although it is clear that CCJ-nuclear signaling
takes place in cells and tissues, it is also apparent
that our present knowledge is not satisfactory
in understanding the larger roles of CCJs in
transcriptional modulation. Although we are
able to list a number of intriguing examples
for each junction type, we are far from having
a coherent picture of the networks involved
at the plasma membrane, cytoplasmic, or
nuclear levels. An inherent difficulty in iden-
tifying the network and its details is that
downstream signals originating from cell–cell
contacts are both direct and indirect, and are
likely to be concurrent. For example, signals
may be blocked or promoted by a component
being junctionally sequestered or released
from the adhesion complex to the nucleus
(direct) or, alternatively, mediated through
associated signaling molecules such as an
RTKs, or other ligand–receptor or adaptor/sig-
naling pairs dependent on the presence of the
junction (each indirect).

One approach that has been helpful is the
use of engineered contacts bearing puri-
fied adhesion receptors (coated beads, etc.).
Although this is not physiologic, it assure
that the physical interaction presented in trans
is defined and, if desired, singular. Such
methods, combined with the use of reagents
to report pathway activation in real time, can
also be useful in working out the temporal
sequence of pathway activation following
contact. In time, it may be that single molecule
tracking methods will be used to more firmly
establish the fate of individual molecules

putatively traveling between junctions and the
nucleus. This could assist, for example, in as-
certaining if a specific catenin molecule dis-
sociating from a cadherin complex is actually
capable of reaching transcriptional regulatory
regions in the nucleus. Although much work
remains, we can appreciate the findings that
have already been made, as they tell us of two
fascinating worlds that listen to one another,
one at the cell surface where cells meet and
touch, and the other internal where transcrip-
tional and proliferative/differentiation out-
comes are further processed.
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