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Listeria monocytogenes is a Gram-positive bacterium responsible for a severe infection
associated with different clinical features (gastroenteritis, meningoencephalitis, and abor-
tion in pregnant women). These pathologies are caused by the unusual capacity of the
bacterium to cross three host barriers during infection and to invade nonphagocytic cells.
To invade host cells, Listeria uses two proteins, InlA and InlB, which have specific receptors
on the host-cell surface, E-cadherin and Met, respectively. Here, we discuss the specificity of
the InlA–E-cadherin interaction, the signaling cascade activated on E-cadherin engagement
by InlA, and the role of InlA and E-cadherin in the breaching of host barriers and the
dissemination of the infection.

Listeriosis is a potentially lethal food-borne
infection with a mortality rate up to 30%.

It has emerged as a significant human infection
in industrialized countries along with the
development of large-scale agro-industrial
plants and refrigerated food. Opposite to most
food-borne infections, listeriosis is rare but
potentially very severe, because it remains often
under-diagnosed at its early stages (Lecuit
2007). The etiological agent of listeriosis is
Listeria monocytogenes, a Gram-positive bacter-
ium that contaminates meat, dairy products,

and ready to eat food. Upon ingestion of con-
taminated food, L. monocytogenes can colonize
the intestine and gives rise to gastroenteritis in
case of the absorption of a high inoculum.
Strikingly, L. monocytogenes has the capacity to
cross the intestinal barrier and disseminate to
the mesenteric lymph nodes, spleen, and liver.
In immunocompromised individuals, L. mono-
cytogenes may replicate in the spleen and liver,
cause prolonged and sustained bacteremia,
cross the blood–brain barrier and the placental
barrier, and disseminate to the brain and
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placenta, causing meningitis, encephalitis, abor-
tion in pregnant women, and neonatal infec-
tions (Hamon et al. 2006; Bonazzi et al. 2009).

The capacity of L. monocytogenes to cross
multiple host barriers relies on the ability of
the bacterium to invade nonphagocytic cells,
such as epithelial cells, by interacting with host
cell-surface receptors. Adhesion to host cells is
a key step underlying bacterial pathogenicity
and it is required to counteract the mechanical
clearance at tissue surfaces provided by intestinal
peristaltism and blood flow. Internalization
allows persistence in a shielded niche, away
from the soluble effectors of the host immune
system (Cossart and Sansonetti 2004; Pizarro-
Cerda and Cossart 2006), and access to target
organs, as illustrated by L. monocytogenes
(Bonazzi et al. 2009).

Bacterial surface proteins that engage host
receptors are generally called adhesins, although
it is now clear that many of them not only
mediate adhesion, but also bacterial internali-
zation (Boyle and Finlay 2003; Hauck et al.
2006; Pizarro-Cerda and Cossart 2006). Adhe-
sion to and internalization of L. monocytogenes
within epithelial cells is mainly mediated by
two bacterial surface protein members of the
internalin family, namely internalin (InlA)
and InlB, that use E-cadherin and Met as recep-
tors, respectively, on the surface of host cells
(Hamon et al. 2006; Pizarro-Cerda and Cossart
2006; Bonazzi et al. 2009). Upon receptor-
mediated internalization, L. monocytogenes is
engulfed into the cell and becomes surrounded
by a tight phagocytic vacuole that the bacterium
can lyse by means of the pore-forming toxin lis-
teriolysin O (LLO). Once free in the cytoplasm
of the host cell, L. monocytogenes uses the
protein ActA to harness the actin polymeriz-
ation machinery and facilitate its intracellular
movement via the formation of so-called actin
“comet tails.” Actin-based motility is funda-
mental for L. monocytogenes direct cell-to-cell
spread, a typical feature that allows the dis-
semination of the infection to neighboring
cells via the formation of plasma membrane
protrusions. Once internalized by neighboring
cells, L. monocytogenes is confined in a
double-membrane vacuole from which it

escapes to restart its life cycle (Fig. 1) (Hamon
et al. 2006).

Its remarkable adaptation to the cellular
environment and its capacity to exploit cellular
receptor-mediated signaling pathways and the
actin polymerization machinery have made
L. monocytogenes an exceptional tool for the
study of a wide array of cellular functions
(Cossart and Sansonetti 2004; Bonazzi and
Cossart 2006; Hamon et al. 2006; Pizarro-
Cerda and Cossart 2006; Veiga and Cossart
2005a; Bonazzi et al. 2009). Here, we review
the interaction of InlAwith E-cadherin, the sig-
naling pathway initiated by this interaction that
results in the internalization of L. monocyto-
genes, and the role of InlA-E-cadherin inter-
action during listeriosis.

THE L. MONOCYTOGENES SURFACE
PROTEIN InlA

As introduced above, internalization of L.
monocytogenes within nonphagocytic cells is
mediated by the two bacterial surface proteins
InlA and InlB. In vitro, these bacterial proteins
are sufficient to mediate adhesion and internal-
ization into host cells, as bacteria expressing
either one of these proteins as well as beads
coated with either InlA or InlB are efficiently
internalized in nonphagocytic cells as long as
their respective receptor is expressed (Lecuit
et al. 1997; Pizarro-Cerda et al. 2002).

The targets of InlA and InlB on the surface
of the host cell are the adhesion molecule
E-cadherin and the hepatocyte growth factor
(HGF) receptor Met, respectively (Hamon
et al. 2006). Met is ubiquitously expressed,
allowing InlB to mediate bacterial internali-
zation in a large number of cell types, whereas
InlA shows a more stringent cell tropism, as
E-cadherin is only expressed by a limited
number of cells of epithelial origin.

InlA and InlB are part of a large family of
proteins, the internalin family, composed of
25 proteins sharing a common architecture that
includes a signal peptide at the amino-terminal
and a number of 22 amino acid leucine-rich
repeats (LRR) that can vary from three in the
case of Lmo2445 to 28 in the case of InlI.
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LRR repeats are common to a large number of
proteins and are involved in protein–protein
interactions (Kobe and Deisenhofer 1994).
Downstream of the LRR, internalins display
several other regions that are less conserved
within the family and can confer specific
functions to different members of the family
(Bierne et al. 2007). InlA is an 800 amino-acid
protein containing 15 LRRs. Downstream of
the LRR region, InlA has an inter-repeat (IR)
region that has been shown fundamental for
the binding of the LRR repeats domain to
E-cadherin (Lecuit et al. 1997). An LPXTG
motif for the anchoring of InlA at the bacterial
cell wall is present at the carboxy-terminal fol-
lowed by a sorting peptide (Hamon et al. 2006).

The first evidence that indicated that InlA
might act as a L. monocytogenes virulence
factor derived from studies on the L. monocyto-
genes strain LO28, in which it has been observed
that it harbors a frameshift mutation in the inlA
gene that results in a nonsense codon at position
1729. This generates a truncated open reading
frame encoding a protein of 63 kDa that lacks
the LPXTG motif (Jonquieres et al. 1998). As
a consequence, in the LO28 strain, InlA can
not be detected on the surface of the bacteria
but is found released in the supernatant
(Jonquieres et al. 1998), and LO28 invasion
of epithelial cell lines is far lower than
other strains expressing a functional InlA.
Epidemiological studies performed on 300
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Figure 1. The cell cycle of L. monocytogenes. (1) L. monocytogenes adheres to the surface of epithelial cells via the
interactions of the surface proteins InlA and InlB with E-cadherin and the Met receptor, respectively. (2) On
internalization, L. monocytogenes is engulfed in a phagocytic vacuole. (3) L. monocytogenes lyses vacuolar
membranes by means of the toxin LLO. (4) L. monocytogenes uses the protein ActA to harness the actin
polymerization machinery and facilitate its intracellular movement via the formation of so-called actin
“comet tails.” (5) L. monocytogenes exploits actin-based motility for direct cell-to-cell spread to allow the
dissemination of the infection to neighboring cells via the formation of plasma membrane protrusions.
(6) Once internalized by neighboring cells, L. monocytogenes is confined in a double-membrane vacuole
from which it escapes to restart its life cycle.
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clinical strains obtained in France and 150
strains from food isolates showed that, at least
in food isolates, the truncation in the InlA
gene is not a rare event (Jonquieres et al.
1998). More recently, a thorough epidemiologi-
cal study showed that full length internalin was
identified in 96% of the clinical strains and in
65% of the strains derived from food isolates
(Jacquet et al. 2004). These observations indi-
cated that InlA might serve as a virulence deter-
minant of L. monocytogenes in humans, a
hypothesis that has now been confirmed in
humanized animal models (see the following).
The crystal structure of InlA, alone or in
complex with the EC1 domain of E-cadherin,
has been solved (Schubert et al. 2002). The
LRR domain of InlA consists of fifteen and a
half 22-residue repeats that form a right-handed
curved solenoid structure. Each repeat begins
with a b strand of five residues and these
strands combine to form a 16-stranded b

sheet that is twisted out of a central plane to
form a pseudo-helical surface. The cavity thus
created forms the binding site for the EC1
domain of E-cadherin (Fig. 2B).

E-CADHERIN, THE RECEPTOR FOR INLA,
MEDIATES L. MONOCYTOGENES ENTRY
INTO HOST CELLS

E-cadherin belongs to the family of classical
cadherins that mediate the formation of adhe-
rens junctions, Ca2þ-dependent intercellular
adhesion sites that develop between polarized
epithelial cells (Troyanovsky 2005; Meng and
Takeichi 2009). Cadherins have been classified
into several subfamilies on the basis of shared
properties and sequence similarities. Type I
cadherins, also called “classical” cadherins, all
possess five 110-amino-acid immunoglobulin-
like extracellular domains (EC1 to EC5) with a
conserved tryptophan in position 2 and interact
with actin through their intracellular domain
(Shapiro and Weis 2009). This subfamily
includes E-cadherin, which is found in epi-
thelial cells, N-cadherin that was first detected
in neuronal cells, C-cadherin expressed in the
Xenopus embryo, and P-cadherin on the pla-
centa and other cell types. T-cadherins are still

classified as members of the type I subfamily,
although they lack the transmembrane and
cytoplasmic domain and are tethered to the
plasma membrane via a GPI-anchor (Ranscht
and Dours-Zimmermann 1991; Patel et al.
2003). Type II cadherins differ from members
of the type I subfamily in that they have two
conserved tryptophan residues in position 2
and 4. They also interact with the actin cyto-
skeleton via specific adaptors and the most
common member of this subfamily is VE-
cadherin, which is expressed by endothelial
cells (Vestweber et al. 2009; Delva et al. 2009).
Desmosomal cadherins form another subfamily
of proteins: they share with type I cadherins the
presence of 5 EC repeats and a conserved trypto-
phan in position 2. Nevertheless, members of
this family differ in the cytoplasmic region
that allows the interaction with intermediate
filaments instead of actin. Desmoglein and
Desmocollin belong to this family and as their
names indicate are localized at the level of
desmosomes (Green and Gaudry 2000). The
Protocadherins subfamily can be further
divided in a, b, and g protocadherins. They
all present six EC repeats and they are expressed
at the level of synaptic complexes in neurons
(Kohmura et al. 1998; Patel et al. 2003).

E-cadherin is a protein of 882 amino acids
with a 555-amino-acids-long amino-terminal
extracellular domain, a transmembrane do-
main, and a relatively short cytoplasmic
domain of 152 amino acids. The extracellular
portion is comprised of five 110-amino-acid
repeats (EC1 to EC5), immunoglobulin-like
domains involved in intercellular homotypic
interactions and in intracellular clustering
(Troyanovsky 2005). The analysis of their
crystal structure revealed that multiple cadherin
domains form Ca2þ-dependent rodlike struc-
tures with a Ca2þ-binding pocket at the inter-
face between two contacting EC domains
(Shapiro and Weis 2009). Besides E-cadherin
itself, the only known eukaryotic E-cadherin
ectodomain interactor identified is aEb7 in-
tegrin (Karecla et al. 1996), which is solely
expressed in epithelial lymphocytes, and has
E-cadherin as its unique binding partner.
E-cadherin is also the receptor for Listeria

M. Bonazzi, M. Lecuit, and P. Cossart

4 Cite this article as Cold Spring Harb Perspect Biol 2009;1:a003087



Signal peptide 
LRR domain 
LRR adjacent IR region (Ig-like fold) 
B repeats 
PKD repeats (Ig-like fold) 
BIG 3 (Ig-like fold)
Muc BP repeats 
GW repeats 
WxL domains
Sorting signal 

LPXTG motif 

InlG Lmo0262 490 

A 

B 

InlE Lmo0264 499 
Lmo1136 539 

4 
9 1 

11 
InlH Lmo0263 548 8 2 

Lmo0610 589 8 2 
Lmo1289 593 7 2 
Lmo1290 598 8 2 
Lmo0514 605 6 2 
Lmo2026 626 6 2 1 
Lmo0331 633 11 1 
Lmo0732 638 8 2 1 
Lmo0801 646 

InlI Lmo0333 1778

InlF Lmo0409 821 

11 2 
InlA Lmo0433 800 15 

13 
3 
4 

Lmo0171 832 10 3 1 1 
InlJ Lmo2821 851 15 4 

Lmo2396 940 10 7 
Lmo0327 1349 5 

28 8 3 

InlB Lmo0434 630 
GW GW GW 

WxL WxL 

7 1 

14 

2 

Lmo0549 673 5 1 

InlC Lmo1786 296 6 
Lmo2445 300 3 
Lmo2027 367 5

6Lmo2470 

InIA 

E-cad Pro16

388 

Figure 2. The internalin family and InlA. (A) Schematic representation of the internalin family of proteins of
L. monocytogenes. Homologous regions are color coded as indicated in the legend. Numbers within different
domains indicate the number of repeats (Bierne et al. 2007). (B) Crystal structure of InlA in complex with
the EC1 domain of E-cadherin. The LRR domain of InlA consists of fifteen and a half 22-residue repeats that
form a right-handed curved solenoid structure. Each repeat begins with a b strand of five residues: these
strands combine in a 16-stranded b sheet that forms a pseudo-helical surface. The presence of a proline in
position 16 of E-cadherin allows the terminal loop of E-cadherin to be hydrophobic and uncharged,
therefore strengthening the interaction with InlA.
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InlA (Mengaud et al. 1996), and the Candida
albicans invasin Als3 (Phan et al. 2007) and it
is the target for the Bacterioides fragilis metallo-
protease toxin BFT (Wu et al. 1998).

The cytoplasmic domain of E-cadherin is
divided into a juxtamembrane domain that
spans from aa 734 to aa 770, approximately and
a distal domain from aa 770 to 882. Phosphory-
lation of the cytoplasmic domain regulates the
binding of E-cadherin to its interactors
(Fig. 3) (McCrea et al. 2009). The nonreceptor
tyrosine kinase Src phosphorylates E-cadherin
juxtamembrane domain at residues 753 and
754. This post-translational modification trig-
gers the release of the E-cadherin direct interac-
tor p120 catenin and the recruitment of the
ubiquitin-ligase Hakai (Fujita et al. 2002; Rey-
nolds 2007). In its E-cadherin bound state,
p120 stabilizes E-cadherin at the plasma mem-
brane by sterically impeding the binding of
Hakai to E-cadherin. In its cytosolic form,
p120 regulates cell motility by activating Rac1
and Cdc42 and inhibiting RhoA (Reynolds
2007). Upon E-cadherin phosphorylation,
Hakai binds to and ubiquitinates E-cadherin,

triggering its clathrin-mediated internalization
(Fujita et al. 2002). Deletion of the last 35 amino
acids of the cytoplasmic tail of E-cadherin
impairs the binding to b-catenin (Ozawa et al.
1990; Lecuit et al. 2000) that binds a-catenin,
a key regulator of actin dynamics (Fig. 3).

Binding of E-cadherin to b-catenin plays a
fundamental role in the regulation of adherens
junction dynamics and is negatively regulated
by phosphorylation of both E-cadherin and
b-catenin. Casein-kinase-1-mediated serine
phosphorylation of E-cadherin at residue 846
has been reported to impede binding to
b-catenin (Dupre-Crochet et al. 2007).
Constitutively phosphorylated E-cadherin at
serine 846 fails to localize at adherens junctions
and to bind b-catenin efficiently (Dupre-
Crochet et al. 2007). Similarly, b-catenin can
be phosphorylated by Src at tyrosine 654
(Roura et al. 1999) and by Met at tyrosine 142
(Brembeck et al. 2004), which induces the dis-
sociation of b-catenin from both E-cadherin
and a-catenin. Phosphorylation of b-catenin
at tyrosine 489 has been reported in neuronal
cells, it is mediated by the tyrosine kinase Abl
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L.monocytogenes
InIA
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Als3 Invasin

E-cadherin
EC repeats

B.fragilis
BFT

b-catenin

Actin
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Figure 3. E-cadherin interactors. E-cadherin is a single-pass transmembrane protein with a 152-amino-acid
intracellular domain and a 555-amino-acid extracellular domain. The intracellular domain of E-cadherin
interacts with proteins of the catenin family. p120 catenin binds to the juxtamembrane domain of
E-cadherin and stabilizes E-cadherin at the plasma membrane. On E-cadherin phosphorylation by the
tyrosine kinase Src p120 is released and the ubiquitin-ligase Hakai can bind and ubiquitinate E-cadherin.
b-catenin binds to the carboxy-terminal domain of E-cadherin and mediates the interaction with the actin
cytoskeleton via a-catenin. The extracellular domain of E-cadherin interacts with the EC domains of
E-cadherin molecules from neighboring cells, it serves as the receptor for the L. monocytogenes surface
protein InlA and the C. albicans invasin Als3, and is the target of the B. fragilis metalloprotease toxin BFT.
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on activation of the surface receptor Robo, and,
it induces the dissociation of b-catenin from
E-cadherin (Rhee et al. 2007). Most cellular
b-catenin is associated with E-cadherin at adhe-
rens junctions. Cytoplasmic pools of b-catenin
can be either phosphorylated at tyrosine 412 or
nonphosphorylated and are rapidly translo-
cated to the nucleus. Here, Wnt signaling can
induce a conformational change in nonphos-
phorylated b-catenin, whereby its carboxyl ter-
minus folds into a close conformation that
impedes binding to E-cadherin and favors the
binding to the T-cell factor (TCF) in a tran-
scription complex (Gottardi and Gumbiner
2004; see Heuberger and Birchmeier 2009).
Alternatively, in its phosphorylated form,
b-catenin regulates transcription by binding
BCL9–2, a homolog of the human oncogene
product BCL9 (Brembeck et al. 2004).

A direct interaction between b-catenin and
Met has also been documented and the regu-
lation of such interaction depends on tyrosine
residues 654 and 670 on b-catenin (Zeng et al.
2006). Of note, InlB, the other major L. mono-
cytogenes internalin, is a potent activator of
Met, suggesting a possible link between the
two signaling pathways exploited by the bacte-
rium for its internalization. Concerning the
interactions of b-catenin with the actin cyto-
skeleton, it has been reported that a-catenin
switches from a monomeric form with a high
affinity for b-catenin to a dimeric form that
has a higher affinity for actin: This equilib-
rium would regulate actin dynamics at adherens
junctions (Drees et al. 2005; Yamada et al. 2005).
It has been recently shown that in Drosophila
embryos, where homophilic E-cadherin inter-
actions generate the so-called spot adherens
junctions (SAJ), a-catenin-mediated inter-
action of E-cadherin with actin is not required
at the SAJ itself but rather at its sides to maintain
the mosaic distribution of homo-E-cadherin
clusters (Cavey et al. 2008).

DOWNSTREAM EFFECTORS OF
InlA-E-CADHERIN INTERACTION

The observation that a- and b-catenin, as well
as actin and p120 catenin, are efficiently

recruited at the site of InlA-mediated bacterial
entry (Lecuit et al. 2000), suggested not only
that E-cadherin serves as a receptor for InlA,
but also that on ligand/receptor engagement,
L. monocytogenes is able to exploit the ma-
chinery involved in the formation of adherens
junctions. A link between E-cadherin and the
actin cytoskeleton is also fundamental: InlA-
mediated infection is impaired in cells express-
ing an E-cadherin mutant that lacks either
the complete intracellular domain or the b-
catenin-binding domain (Lecuit et al. 2000),
which is in agreement with the previous obser-
vation that inhibiting actin polymerization by
cytochalasin D impairs bacterial internalization
(Gaillard et al. 1987). Interestingly, the deletion
of the juxtamembrane domain of E-cadherin,
important for p120 catenin binding, and
E-cadherin endocytosis (Fujita et al. 2002), has
no effect on the internalization of L. monocyto-
genes (Lecuit et al. 2000), which suggests the
presence of an alternative pathway exploited by
the bacterium. Indeed, our recent data indicate
that in the case of the InlA pathway of L. mono-
cytogenes, caveolin also participates in bacteria
internalization and this pathway is independent
of the presence of the E-cadherin juxtamem-
brane domain (Bonazzi et al. 2008).

Myosins were previously identified as im-
portant players in the stabilization of E-
cadherin-mediated cell–cell junction and it
has been proposed that their activity as actin-
based motor proteins was necessary to generate
the force that maintains mature adherens
junctions (Vasioukhin and Fuchs 2001). Non-
conventional myosin VIIa is also involved in
InlA-mediated internalization of L. monocyto-
genes (Sousa et al. 2004). Myosin VIIa and the
ubiquitous transmembrane protein vezatin
were found to be recruited at the bacterial
entry site when L. monocytogenes follows the
InlA-mediated entry pathway and the inhibition
of either protein severely affects bacterial inter-
nalization by the InlA pathway (Sousa et al.
2004). A relevant role of a-catenin in the
recruitment of vezatin and myosin VIIa was
shown, stressing the relevance of catenins
during InlA-mediated infections, not only as
regulators of actin dynamics but also as
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scaffolding proteins for the recruitment of other
components of the adherens junction machin-
ery (Sousa et al. 2004).

The study of L. monocytogenes interactions
with eukaryotic cells has also proven to be a
powerful tool to identify new proteins involved
in both bacterial internalization and adherens
junction dynamics. The Rho GAP protein
ARHGAP10 is a novel component of the adhe-
rens junction complex identified in a yeast two-
hybrid screen as an interactor of a-catenin
(Sousa et al. 2005). In cells that do not express
E-cadherin, ARHGAP10 is predominantly
localized at the Golgi complex, but in epithelial
cells expressing E-cadherin, a large fraction of
the protein colocalizes with E-cadherin, actin,
and a-catenin at adherens junctions (Sousa
et al. 2005). In these cells, the knockdown of
ARHGAP10 results in loss of a-catenin local-
ization at the adherens junctions, whereas
E-cadherin localization is unaffected (Sousa
et al. 2005). It has been proposed that
ARHGAP10 recruits a-catenin to newly
formed cell–cell contacts once “passive” trans-
cellular E-cadherin interaction has occurred, to
mediate the maturation of adherens junctions
(Sousa et al. 2005). In agreement with this
hypothesis, ARHGAP10 colocalizes with
a-catenin and actin at the bacterial entry site
during InlA-mediated infections. Furthermore,
the inhibition of ARHGAP10 impairs the
InlA-mediated internalization of L. monocyto-
genes (Sousa et al. 2005). ARHGAP10 has been
also identified as the binding partner of
GTP-bound Arf1 (and Arf6) at the Golgi
complex where it plays an important role as a
Cdc42-specific GAP protein that regulates actin-
mediated Golgi complex architecture (Dubois
et al. 2005). Of note, when ARHGAP10 was
identified as the binding partner for GTP-
bound Arf6, vezatin was also found among the
screened preys (Dubois et al. 2005).

LISTERIA TAKES CONTROL OF THE
PHAGOCYTIC AND ENDOCYTIC
MACHINERIES

As for other bacteria, actin rearrangements are
critical for internalization. In the case of

L. monocytogenes, the signaling that directly
orchestrates actin remodeling and bacterial
engulfment into host cells involves the Arp2/3
complex, a highly conserved actin nucleator,
which is recruited at the bacterial entry site.
Arp2/3 recruitment precedes actin cup for-
mation around bacteria, in agreement with the
idea that its function is required for actin
polymerization (Sousa et al. 2007). Indeed,
Arp2/3 inhibition impairs bacterial and
InlA-coated bead internalization. A search for
putative activators of Arp2/3 suggested that
cortactin could be a candidate for the activation
of Arp2/3, whereas WAVE and NWASP are not
involved (Sousa et al. 2007).

Cortactin modulation of the actin cyto-
skeleton is regulated by the combined activity
of Erk and Src kinases. It has been proposed
that an initial phosphorylation by Erk at
serines 405 and 418 liberates the SH3 domain
of cortactin, otherwise folded in a close confor-
mation on the proline-rich domain of cortactin
(Campbell et al. 1999). In this conformation,
cortactin is able to bind NWASP. Further phos-
phorylation of Src at tyrosines 421, 466, and 482
(Huang et al. 1998) impairs cortactin inter-
action with NWASP (Martinez-Quiles et al.
2004) and dramatically reduces the ability of
cortactin to crosslink F-actin (Huang et al.
1997). In its Src-phosphorylated state, cortactin
promotes cell migration (Huang et al. 1998). Of
note, InlA-mediated L. monocytogenes internal-
ization induces the activation of Src early during
infection and the pharmacological inhibition of
the Src family of tyrosine kinases inhibits entry
as well as cortactin recruitment at the bacterial
entry site (Sousa et al. 2007). Besides its possible
role in the activation of cortactin, Src has been
implicated in the initial phosphorylation of
E-cadherin that initiates the internalization of
the receptor from adherens junctions (Fujita
et al. 2002). Src-mediated phosphorylation of
E-cadherin is also triggered by InlA during
bacterial infections (Bonazzi et al. 2008). This
post-translational modification results in the
recruitment of the ubiquitin-ligase Hakai at
bacterial entry site and in the ubiquitination
of E-cadherin, which is necessary for efficient
bacterial internalization (Bonazzi et al. 2008).
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As mentioned above, Src-mediated phosphor-
ylation of E-cadherin also induces the release
of p120 catenin in the cytoplasm, where it acti-
vates Rac1 and Cdc42 (Reynolds 2007). The
activation of Rac1 has been shown to have a
key role in the recruitment of cortactin at the
plasma membrane (Weed et al. 1998).

Upon InlB interaction with the Met recep-
tor, L. monocytogenes can hijack the host ubiqui-
tination machinery to enter epithelial cells via
clathrin-dependent endocytosis (Veiga and
Cossart 2005b). More recently, this observation
has been extended, revealing that clathrin-
dependent endocytosis is an entry pathway
shared by a number of zippering bacteria
(Veiga et al. 2007). This observation showed
that the maximal size of particles that can be
internalized via clathrin can exceed 100 nm
and, in the case of InlA-mediated internaliza-
tion, suggested a possible role of the endocytosis
machinery in the establishment of adherens
junctions (Veiga et al. 2007; Bonazzi et al.
2008). As recently shown, caveolin is required
for E-cadherin clustering at the bacterial entry
site (Bonazzi et al. 2008). Caveolin and clathrin
may then mediate bacterial internalization
(Fig. 4). Interestingly, both endocytic proteins
are substrates of Src (Wilde et al. 1999; Joshi
et al. 2008). Clathrin-mediated bacterial inter-
nalization specifically depends on the presence
of the juxtamembrane domain of E-cadherin
(Bonazzi et al. 2008). Clathrin and caveolin
are also required for the internalization of
InlA-coated beads and E-cadherin-coated
beads (Bonazzi et al. 2008), suggesting that the
endocytic machinery is involved in the initial
steps of adherens junctions formation.

FROM STRUCTURE TO PATHOGENESIS

InlA interacts in a specific manner with EC1, the
amino-terminal EC repeat of E-cadherin also
involved in the initial interaction between
E-cadherin molecules on the surface of adjacent
cells (Lecuit et al. 1999). The region of the EC1
domain involved in InlA binding differs from
that involved in the formation of homotypic
interactions between E-cadherins, suggesting
that E-cadherin molecules engaged in adherens

junctions are still able to bind InlA. Despite the
large degree of similarities between E-cadherin
orthologs, InlA shows a species specificity for
some E-cadherins, as its interaction is comple-
tely impaired in rat and mouse, whereas it is
functional in other mammalian species such as
humans, dogs, rabbits, guinea pigs, and gerbils
(Lecuit et al. 1999). This species specificity
depends on the nature of a single amino acid, a
proline in position 16 within the EC1 domain
of E-cadherin in permissive species, and a glu-
tamic acid in nonpermissive mouse and rat
E-cadherin (Lecuit et al. 1999). The E-cadherin
loop that harbors a proline in position 16 is
hydrophobic anduncharged,whereasaglutamic
acid at this location results in a charged and
hydrophilic region, suggesting that InlA/
E-cadherin interaction involves hydrophobic
interactions. Of note, in humans, a proline in
position 16 is present in all members of the clas-
sical cadherins. However, a conserved proline in
position 16, although necessary, is not the only
critical residue for InlA interaction with the
EC1 domain of cadherins, as InlA does not
bind N-cadherin, although it harbors a proline
in position 16 (Mengaud et al. 1996).

These observations have been confirmed
when the crystal structure of InlA, alone or in
complex with the EC1 domain of E-cadherin,
was solved (Fig. 2) (see previous discussion)
(Schubert et al. 2002). Replacing proline 16
with glutamic acid in silico in the EC1
domain of E-cadherin, changes the hydrophilic
properties of the binding site for InlA, therefore
hampering a close interaction between receptor
and ligand (Schubert et al. 2002). Overall, the
affinity of InlA for E-cadherin is low and
bacterial attachment and internalization is
thought to reflect the cooperation of multiple
interactions. It has been proposed that the lack
of a high affinity binding may be of advantage
for the bacterium, as it allows the potential
dissociation of InlA from E-cadherin once the
bacterium has been internalized, but this has
not been investigated experimentally (Wollert
et al. 2007a).

A key result was obtained when a trans-
genic mouse expressing human E-cadherin at
the enterocyte level was created. Both the
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Figure 4. Dynamics of the InlA/E-cadherin interaction (upper panel). (A) On engagement of E-cadherin by
InlA, the adherens junction machinery is activated, inducing the recruitment of the junctional proteins
a-catenin, p120 catenin, ARHGAP10, and myosin VIIa. (B) InlA interaction with E-cadherin induces the
caveolin-dependent clustering of E-cadherin and the activation of the tyrosine kinase Src. (C) The
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Lower images are a magnified view of the highlighted areas.
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observation that proline 16 is conserved in
E-cadherin of guinea pigs and the generation
of these transgenic mice, allowed for the first
time the study of InlA-mediated Listeria infec-
tions in a small animal model (Lecuit et al.
2001). These studies showed that InlA (Lecuit
et al. 1997; Lecuit et al. 2001), but not InlB
(Khelef et al. 2006), plays a critical role in the
crossing of the intestinal barrier (Fig. 5). In con-
trast, when animals are infected intravenously,
InlA plays no role, suggesting that InlA is a key
virulence factor during the early stage of the
infections (Lecuit et al. 2001).

More recently, InlA has been engineered
so as to enhance its affinity for human E-
cadherin, and this modified InlA also showed
an ability to interact with mouse E-cadherin
(Wollert et al. 2007b). In particular, replacing
serine in position 192 with an asparagine bridges
the gap between InlA and E-cadherin and the

substitution of the tyrosine in position 369
with a serine allows the formation of a hydrogen
bond. Of note, these mutations increase by four
orders of magnitude the affinity of this “muri-
nized” InlA (InlAm) for murine E-cadherin,
which is in the same range of affinity than that
of InlA with human E-cadherin (Wollert et al.
2007b). Under these conditions mice appear
to become susceptible to InlAm-mediated infec-
tion. Studies on the role of InlAm confirmed the
previously described role of InlA during early
oral infections (Lecuit et al. 2001; Wollert
et al. 2007b). Surprisingly, whereas murinized
InlA has a greatly increased binding affinity
for hEcad, this does not translate into a signifi-
cantly higher level of internalization in in vitro
cultured cells expressing hEcad, such as
Caco-2 cells (Wollert et al. 2007b).

Interestingly, although epidemiological
data strongly argued for a role for InlA in
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Figure 5. Species specificity of the InlA-E-cadherin interaction (A) The species specificity of the InlA/E–
cadherin interaction depends on the presence of a proline in position 16 of the amino-terminal E-cadherin
repeat. Species that substitute a glutamate to proline in position 16 of E-cadherin are not sensitive to Listeria
infection, as InlA/E–cadherin interactions cannot occur. Based on the observation that some species are not
sensitive to InlB, recent studies revealed that species specificity occurs in the case of InlB. (B) InlA/
E-cadherin interaction is fundamental to cross the intestinal barrier, whereas InlB does not play any role at
this stage. A coordinated action of the two internalins is necessary to cross the placental barrier, whereas the
role of InlA and InlB at the level of the blood–brain barrier is still an unresolved issue.
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fetoplacental listeriosis (Jacquet et al. 2004),
and ex vivo experiments using human placenta
also showed a role for InlA in placental invasion
(Lecuit et al. 2004), this had not been confirmed
in vivo until recently. On the contrary, results
obtained in pregnant guinea pigs were in appar-
ent contradiction with these human epidemi-
ological and ex vivo findings (Bakardjiev et al.
2005). The important discovery of the species
specificity of InlB, for which guinea pig Met
does not act as a receptor (Khelef et al. 2006),
led to the hypothesis that for InlA to exert its
effect at the placental level, InlB was also
required. In a search for a small animal model
permissive to both InlA and InlB, a natural
host for L. monocytogenes, the gerbil, which is
naturally susceptible to L. monocytogenes, was
tested. Results showed that gerbil primary epi-
thelial cells are permissive to both the InlA
and InlB pathways, as human epithelial cells
(Disson et al. 2008). Gerbils were then infected
orally to assess the role of InlA in the crossing of
the intestinal barrier, and as in guinea pigs and
transgenic mice expressing human E-cadherin,
InlA was shown to contribute to the crossing
of the intestinal barrier, but not InlB (Disson
et al. 2008). Importantly, wt L. monocytogenes
were able to colonize the placenta of pregnant
gerbils infected both orally and intravenously,
whereas the Listeria mutants that lack either
one of the internalins or both (DinlA, DinlB,
or DinlAB) were far less efficient in crossing
the placental barrier and infecting the fetus.
Similar data were also obtained in a novel
knock-in mouse model where a humanized
E16P mouse E-cadherin is expressed in place
of mouse E-cadherin (Disson et al. 2008).
Together, these data suggest that for the crossing
of the placental barrier, both internalin InlA and
InlB have to be able to recognize their respective
receptors, E-cadherin and Met, to cooperate
and allow efficient placental invasion and fetal
infection.

E-CADHERIN IS ALSO A RECEPTOR FOR THE
OPPORTUNISTIC FUNGUS C. ALBICANS

E-cadherin has been recently identified as the
target for another pathogen surface protein,

the C. albicans invasin Als3 (Phan et al. 2007).
It has been previously shown that N-cadherin
mediates C. albicans endocytosis into endo-
thelial cells, a step that is crucial for the develop-
ment of systemic infections, but the fungal
proteins responsible for cadherin engagement
were unknown (Phan et al. 2005). The
C. albicans als gene family encodes a set of pro-
teins that have a potential role as adhesins and at
their amino-termini share a remarkable simi-
larity with Yersinia pseudotuberculosis invasin
(Phan et al. 2007). In fact, it has been observed
that the protein Als3 is capable of binding
E-cadherin and N-cadherin on the surface of
epithelial and endothelial cells, respectively,
and als3D/als3Dmutants are no longer interna-
lized within host cells and lose the ability of
inducing cellular damage (Phan et al. 2007).
Similarly to InlA for Listeria, latex beads
coated with recombinant Als3 are efficiently
internalized within E-cadherin- and N-
cadherin-expressing cells. Interestingly, in silico
models of the secondary structure of the Als3
amino terminus revealed a striking similarity
with the more distal extracellular domain of
E-cadherin, suggesting that, differently from
InlA, Als3 may engage E-cadherin at the same
sites than those required for adherens junctions
formation (Phan et al. 2007).

CONCLUSIONS

Pathogen mimicry of host natural ligands and
subversion of host cellular functions has been
a recurrent theme in the relatively new field of
cellular microbiology. It has helped decipher
complex signaling pathways and unravel novel
cellular functions. Studies on the inter-
nalization of bacteria such as Listeria, Staphylo-
coccus, and Yersinia, allowed the identification
of unsuspected functions for important cell
adhesion molecules (Isberg and Barnes 2001;
Agerer et al. 2005; Hamon et al. 2006) and
opened new perspectives for well-established
cellular models (Veiga and Cossart 2005b;
Veiga et al. 2007).

Among bacterial pathogens, L. monocyto-
genes has emerged as a model microorganism
for the characterization of key molecular
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mechanisms, both in bacteria and eukaryotic
cells: For example, the study of post-
transcriptional regulation in Listeria high-
lighted a novel mechanism of thermoregulation
for the promoter PrfA (Johansson et al. 2002);
the intracellular actin-based motilityof L. mono-
cytogenes has helped unravel the mechanism
underlying actin dynamics and cell motility
(Welch et al. 1998; Gouin et al. 2005). InlA
was the first L. monocytogenes surface protein
identified as a mediator of internalization
(Gaillard et al. 1991; Mengaud et al. 1996) and
the identification of E-cadherin as the cellular
receptor for InlA opened the field of adherens
junction biology to microbiologists. Since
then, L. monocytogenes has been a powerful
tool in understanding the complex dynamics
of adherens junctions and in building a compre-
hensive model to describe its functioning.

The development of a humanized small-
animal model, a transgenic mouse expressing
human E-cadherin, was critical in establishing
the importance of a single amino acid in the
EC1 domain of E-cadherin in the stringent
species-specificity to L. monocytogenes. It also
helped highlight the unique role of InlA in the
crossing of the intestinal barrier (Lecuit et al.
2001). Further advances in the development of
new animal models led to the important discov-
ery of an interdependent role for the two major
internalins, InlA and InlB, in the crossing of the
fetoplacental barrier, a key step of the infection
(Disson et al. 2008). A current challenge is to
understand the molecular mechanisms of the
conjugated action of InlA and InlB at the
single cell level. Furthermore, recent insights
in the cell biology of InlA-mediated infections
have also revealed promising interactions
between the adhesion and the endocytic machi-
neries (Bonazzi et al. 2008) that deserve further
investigation.
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