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                THERE is increasing interest in the reduction and/or re-
distribution of adiposity in conjunction with delayed 

aging. Obesity is associated with impaired function of most 
organ systems and is a strong risk factor for shortened life 
span ( 1 ). Therefore, genes that promote adiposity are poten-
tial inhibitory targets for aging intervention. Studies in in-
vertebrate organisms have indicated an important role for 
nutrient responsive kinase signaling pathways in response to 
nutrient deprivation. One such pathway in yeast is defi ned 
by cyclic adenosine monophosphate (cAMP) – dependent 
protein kinase A (PKA) ( 2 , 3 ). Several mutations that reduce 
PKA activity lead to increased life span in yeast and inter-
estingly map to the same longevity pathway as caloric re-
striction (CR). PKA regulates cell growth and division in 
response to environmental cues ( 4 , 5 ) and is controlled by 
intracellular cAMP levels that are in turn modulated by 
adenylyl cylase (AC) activity ( 6 ). Loss of function of CYR1, 
an AC ortholog, extends life span in yeast, as do mutations 
in adenylate cyclase CDC35, the GTP – GDP exchange fac-
tor CDC25, or the PKA catalytic subunits TPK1, TPK2, and 
TPK3 ( 2 , 3 ). These invertebrate studies suggested that PKA 
may play a role in mammalian aging because in mammals 
PKA is thought to be important in the genetic regulation of 
obesity and energy balance, with a central role in the regula-
tion of triglyceride storage and metabolism in response to 
nutrient status ( 7 ). 

 Mammalian PKA is a tetrameric holoenzyme composed 
of four subunits: two catalytic and two regulatory ( 6 ). 
In mice, separate genes encode each of the four regulatory 

isoforms (RI a , RI b , RII a , and RII b ) and two catalytic iso-
forms (C a  and C b ) ( 8 ). Each R subunit binds one C subunit, 
and binding of cAMP to R subunits causes the dissociation 
of active C subunits. In general,  a -subunits are expressed 
ubiquitously in all tissues, whereas  b -subunits show a more 
restricted pattern of expression ( 9 ). C b  has been reported to 
be expressed at low levels in many tissues but found in high 
levels only in the nervous system ( 9 ). The C b  gene encodes 
three isoforms: C b 1, C b 2, and C b 3 ( 10 , 11 ). The last two are 
transcribed from neural-specifi c promoters, and knocking 
out all three isoforms (C b all  − / −  ) in mice reduces basal PKA 
activity in the brain ( 12 ). While C b all  − / −   mice appear overtly 
normal on a regular diet, we speculated that they may show 
a more substantial phenotype in conditions of nutrient over-
load. Here, we report that C b all  − / −   animals are signifi cantly 
protected against diet-induced obesity, steatosis, dyslipo-
proteinemia, and insulin resistance when fed a high-caloric 
diet. These effects cannot be explained solely by reduced 
food consumption or enhanced activity and suggest that re-
duced brain and liver PKA C b  activity confers a potential 
anti-aging phenotype in mammals.  

 M ethods   

 PKA C b -Defi cient (C b all  − / −  ) Mice 
 C b all  − / −   mice lack expression of all PKA C b  isoforms. 

Mice were originally generated on a 50:50 (129XC57BL/6) 
genetic background and backcrossed to C57BL/6J (Jackson 
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Laboratory, Bar Harbor, ME) for fi ve generations (98% 
C57BL/6J) ( 12 ). We continued to backcross these mice to 
C57BL/6J for our studies. For this study, heterozygotes from 
congenic C57BL/6J mice were interbred to produce C b all  − / −   
and wild-type littermates. C b all  − / −   mice have a neomycin 
expression cassette in lieu of exon 2. To identify the mutant 
allele, a reverse primer was designed inside the neomycin 
gene (5 ′ -TGC TCT AGT AGC TTT ACG GAG C-3 ′ ) to be 
used with a forward primer (5 ′ -TTG TGA CTT GCT TCC 
AAC TAA TG-3 ′ ) located approximately 435 bp upstream 
in intron 1 – 2. To identify the wild-type allele, a reverse 
primer was designed inside intron 1 – 2, in a region removed 
by the neomycin cassette (5 ′ -GGA TTT GCC ATG GTC 
GTC TA-3 ′ ); a 345-bp product was obtained when used with 
the forward primer, 5 ′ -TCT AAG GAT AGT CGT CAG 
TTA-3 ′ . Mice were maintained in a 25°C-specifi c pathogen-
free barrier facility with 12-hour alternating light and dark 
cycles and were given free access to food and water. All pro-
cedures used in this study were approved by the Animal 
Care and Use Committee of the University of Washington.   

 Specialized Diet Cohorts 
 The two diets used in our studies were standard rodent 

chow (5053; Picolab, Richmond, IN) containing 20% (wt/wt) 
protein, 4.5% fat (ether extract), and 55% carbohydrate (pri-
marily starch), and a high-fat, high-sucrose (high-caloric) 
diet (S3282; Bio-Serv, Frenchtown, NJ) containing 20% pro-
tein, 36% fat (primarily lard), and 36% carbohydrate (pri-
marily sucrose). Mice were maintained on standard rodent 
chow until 12 weeks of age, at which time they were either 
switched to the high-caloric diet or continued on the stan-
dard chow for an additional 13 – 16 weeks. Both the regular 
diet and high-caloric diet cohorts had a minimum of seven 
mice per gender per genotype. Food intake was measured 
every 3 weeks. Two to three mice of the same genotype were 
housed per cage, and food intake was measured as the weight 
of food a cage consumed over a 24-hour period, averaged 
between the number of mice in each cage. Food was weighed 
three times in a row over the course of 3 days and averaged.   

 Immunoblotting 
 Whole brains and right lobes of livers were harvested 

from 3-month-old female and 4-month-old male mice, re-
spectively, both maintained on a regular diet. The whole 
brains and half of the lobe of each of the livers each were 
ground in liquid nitrogen followed by homogenization in 
1 mL of ice-cold RIPA containing 25  m L each of the follow-
ing protease and phosphatase inhibitor cocktails: P8340, 
P2850, P5726 (Sigma-Aldrich, St Louis, MO). Thirty mi-
crograms of protein from the cytosolic fraction was loaded 
to each lane of a NuPAGE Novex 4 – 12% Bis – Tris Gel (NP-
0322BOX; Invitrogen, Grand Island, NY). Blots were 
probed with primary antibodies to PKA C a  (NB100-92207; 
Novus Biological [Littleton, CO]; diluted 1:500 in tris-buffer 

saline tween-20 [TBST]) and C b  (obtained from G.S.M., 
University of Washington, Seattle; diluted 1:1000 in TBST). 
A goat anti-rabbit, horseradish peroxidase-conjugated sec-
ondary antibody (ab6721; Abcam, Cambridge, MA) was 
used at a dilution of 1:3000, and detection was accomplished 
using ECL (95038-560; VWR Scientifi c, Brisbane, CA).   

 Body and Liver Composition 
 Body weights were measured weekly. Body and liver 

composition analyses were performed on all cohorts at the 
end of the experiment, following 13 weeks on either the 
regular or the diabetogenic diet (25 weeks of age). Compo-
sition measurements were measured using quantitative nu-
clear magnetic resonance imaging (QNMR), with an 
EchoMRI 3-in-1 Animal Tissue Composition Analyzer, at 
the University of Washington Mouse Metabolic Phenotyp-
ing Center (MMPC). Body composition measurements 
were performed on live mice. Mice were then euthanized by 
CO 2 , and body length (from tip of nose to anus) and weights 
were measured. The liver and the following fat pads were 
dissected out and weighed: inguinal, reproductive, retro-
peritoneal, mesenteric, and brown adipose. The large lobe 
of the liver was embedded in paraffi n and sectioned; a small 
(approximately 30 mg) piece was set aside for QNMR com-
position measurements.   

 Serum Triglycerides and Cholesterol 
 Before dissection and following euthanasia, blood was 

collected by cardiac puncture. Upon collection, serum was 
immediately separated using serum separator tubes (365956; 
Becton Dickinson, Franklin Lakes, NJ) and stored at  − 80°C 
until analysis. Triglyceride concentration (measured from 
glycerol derived by hydrolytic action of lipase on glycer-
ides) was measured using a serum triglyceride determina-
tion kit (TR0100; Sigma Aldrich, St Louis, MO). Serum 
high-density lipoprotein (HDL) and low and very low – 
density lipoprotein (LDL/VLDL) concentrations were also 
quantifi ed using a kit (K613-100; BioVision, Mountain 
View, CA). Both kits were used as per the manufacturer ’ s 
instructions.   

 Glucose Homeostasis 
 Blood glucose levels were measured weekly. For blood 

glucose measurements, food was removed from mice 6 
hours before blood was drawn by tail pricking. Analyses 
were performed using a glucometer and Comfort Curve 
Test Strips (Advantage; Accu-Chek, Roche, Basel, Switzer-
land). For intraperitoneal glucose tolerance testing (IPGTT) 
and insulin resistance assays, mice were fi rst fasted over-
night for 16 hours. Mice were then injected intraperitone-
ally with either 20% D-(+)-glucose (G7021; Sigma Aldrich) 
in phosphate buffered saline (14190; Invitrogen) at a dose 
of 2 g glucose/kg body weight for the IPGTT or human 
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insulin (Humulin R; Eli Lilly, Indianapolis, IN) diluted with 
sterile diluent (Eli Lilly) at a dose of 1.0 U insulin/kg body 
weight for the insulin resistance assay. Blood glucose mea-
surements were performed as previously described at 0, 30, 
60, 90, 120, and 240 and 0, 30, 60, and 90 minutes after in-
jection for the IPGTT and insulin resistance assay, respec-
tively. For serum insulin measurements, food was removed 
from mice 12 hours before the collection of blood from the 
retro-orbital sinus into serum separator tubes (365956; Bec-
ton Dickinson); after separation, plasma was either used im-
mediately or stored at  − 80°C until analysis. Plasma insulin 
was measured using an ELISA kit (EZRMI-13K; LINCO, St 
Charles, MO) as per the manufacturer ’ s instructions.   

 Stastistics 
 Data are presented as means. Error bars, where present, 

indicate  ±  standard deviation. Differences between genotypes 
were determined using the Student ’ s  t  test. Probabilities of 
individual data points being different are indicated on graphs 
as  p   ≤  .0001 (***),  p   ≤  .001 (**),  p   ≤  .05 (*),  p   ≤  .1 or border-
line signifi cant (b) and  p  > .1 or insignifi cant (no indicator).    

 R esults   

 C b all  − / −   Mice Have No Detectable Levels of PKA C b  
and Unaltered Levels of C a  

 Loss of the C b  subunit in tissues of C b all  − / −   mice was 
confi rmed. Immunoblotting detected no C b  protein in either 
brains or livers of C b all  − / −   mice ( Figure 1 ). Because com-
pensatory increases in C a  in the brain in response to loss of 
C b  have been reported ( 12 ), we also looked at C a  levels in 
these tissues. We did not fi nd any noticeable alterations in 
expression levels of the  a -catalytic subunit ( Figure 1 ).       

 Fat Mass Accumulation Is Altered in PKA C b -Null Mice 
 Male C b all  − / −   mice at 12 weeks of age on standard rodent 

chow showed body weights approximately 10% less than 
wild-type littermates, and this size difference persisted over 
the 14-week course of the regular diet treatment ( Figure 2A ). 
When maintained on a diabetogenic diet for 15 weeks, body 
weights between genotypes continued to diverge ( Figure 2B ). 
There were no signifi cant differences in body weight found 

  

 Figure 1.        C a  and C b  protein levels in brain and liver. Immunoblots showed 
no detectable levels of C b  in either total brain or in liver of C b all  − / −   mice. C a  
levels were found to be unaltered by disruption of C b  in these tissues. Each lane 
represents an individual mouse   .    

between genotypes in females on standard chow ( Figure 2C ). 
Fat acquisition was refl ected by a pronounced difference in 
the rate of weight gain between female C b all  − / −   mice and their 
wild-type littermates over the course of their maintenance on 
the diabetogenic diet. After 6 weeks, signifi cant differences in 
body weight were seen between genotypes ( Figure 2D ). By 
12 weeks on the high-caloric diet, wild-type female mice had 
almost doubled their weight, whereas body weights of female 
mutants had only increased by about 30% ( Figure 2D ).     

 QNMR analysis showed no differences in percent body 
weight of fat and lean tissue between genotypes for 
25-week-old males maintained on a regular diet, whereas 
C b all  − / −   females of the same age and on the regular diet had 
a slightly higher percentage of body fat than their wild-type 
littermates ( Figure 2E ). For mice maintained on the diabe-
togenic diet until 25 weeks of age, only females showed a 
signifi cant difference in percent body fat and lean weight 
between genotypes. At the end of the diabetogenic diet 
treatment, C b all  − / −   females had signifi cantly lower body fat 
percentages, and higher lean weight percentages, than their 
wild-type littermates. Wild-type littermates were found to 
have body fat percentages that were approximately 25% 
higher than mutants ( Figure 2E ). 

 Fat pad percent body weights between genotypes of male 
mice kept on the regular diet were similar ( Figure 2F ). 
However, and even though QNMR did not show differences 
in total percent body fat between male mutant and wild-type 
mice after 13 weeks on the high-caloric diet, fat distribution 
differed between genotypes. Mutants had larger reproduc-
tive pads, but smaller retroperitoneal, mesenteric, and brown 
adipose fat pads ( Figure 2G ). Fat pad percent body weights 
between genotypes of female mice kept on the regular diet 
showed slightly larger inguinal and brown adipose fat pads 
in C b all  − / −   females ( Figure 2H ), but after being maintained 
on the diabetogenic diet, all fat pads in the mutants were 
smaller when compared with those of the wild-type animals 
( Figure 2I ). There were no signifi cant differences in food 
intake between males of either genotype on the regular diet 
( Table 1 ). Male C b all  − / −   mice on the diabetogenic diet were 
sometimes seen to be slightly hypophagic compared with 
wild-type mice. Female mutants were not found to eat less 
than their wild-type littermates. If anything, females on a 
regular diet were found to be borderline hyperphagic. With 
the exception of 1 week during the dietary treatment, no 
signifi cant differences were observed between genotypes 
for females on the diabetogenic diet. No differences in loco-
motor activity were seen between genotypes for either gen-
der at any time of day (data not shown).       

 PKA C b -Null Mice Are Protected Against 
Hepatic Adiposity 

 No differences in liver weights or liver fat content were 
found between genotypes of either gender when raised on a 
regular diet. On the diabetogenic diet, however, wild-type 
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mice of both genders developed larger livers, whereas 
C b all  − / −   mice did not ( Figure 3A and B ). The cells of livers 
from wild-type mice fed the high-caloric diet contained 
large fat-fi lled vacuoles ( Figure 3C ) that were absent from 
the livers of mutant mice ( Figure 3D ). QNMR analysis re-
vealed a strong and direct correlation between total liver 
weight and percent fat content ( Figure 3E ).       

 Deletion of PKA C b  Alters Serum Cholesterol but Not 
Triglyceride Levels 

 There were no differences in serum triglyceride levels be-
tween genotypes of either gender, regardless of diet (data 
not shown). No differences in HDL or LDL/VLDL were 
seen between genotypes of males maintained on the regular 
diet ( Figure 4 ). LDL/VLDL serum levels were slightly 
lower in C b all  − / −   females compared with wild-type litter-
mates when maintained on a regular diet, but with border-
line signifi cance. The diabetogenic diet caused signifi cant 
increases in HDL in both genotypes of both genders. In 
males, however, this increase in HDL was not as high for 
C b all  − / −   mice compared with wild-type littermates. LDL/
VLDL serum levels increased in male wild types fed the 
diabetogenic diet but not in mutants. Neither female mu-
tants nor their wild-type littermates experienced increases 
in serum LDL/VLDL when switched to the diabetogenic 
diet. By the end of the diabetogenic diet treatment, only 
males showed a difference in HDL and LDL/VLDL serum 

levels between genotypes. Both HDL and LDL/VLDL se-
rum levels were signifi cantly lower in C b all  − / −   males when 
compared with wild types.       

 Absence of PKA C b  Enhances Glucose Clearance and 
Improves Insulin Sensitivity 

 The diabetogenic diet tends to cause insulin resistance in 
BL/6 mice. Blood glucose levels of male C b all  − / −   mice were 
frequently found to be lower than wild types ( Figure 5A ), 
and these differences became more pronounced when mice 
were switched to the diabetogenic diet ( Figure 5B ). Serum 
insulin levels in males were barely detectable and not differ-
ent between genotypes on the regular diet ( Figure 5C ), but 
on the diabetogenic diet, serum levels increased in wild-
type males while remaining low in C b all  − / −   mice ( Figure 5D ). 
C b all  − / −   male mice on the diabetogenic diet showed superior 
glucose clearance and insulin sensitivity compared with 
wild types ( Figure 5F and H ), with no differences seen be-
tween genotypes fed the regular diet ( Figure 5E and G ). Fe-
males showed no difference between genotypes in blood 
glucose levels when fed the regular diet ( Figure 6A ), but 
wild-type mice showed elevated blood glucose compared 
with the mutants when switched to the diabetogenic diet 
( Figure 6B ). Serum insulin differences were not seen be-
tween genotypes in females, regardless of diet (data not 
shown). Differences in glucose clearance between genotypes 
in females were not seen, regardless of diet (data not shown), 

   Figure 2.        Weight gain and adiposity of male and female wild-type and C b all  − / −   mice on regular and diabetogenic diets. ( A  and  B ) Body weights of males main-
tained on a regular ( A ) and diabetogenic ( B ) diet for 14 – 15 weeks. Mutants weighed about 10% less than wild-type littermates when maintained on a regular diet; 
this weight difference became more pronounced if mice were raised on a diabetogenic diet. ( C  and  D ) Body weights of female wild-type and C b all  − / −   mice fed either 
a regular ( A ) or a diabetogenic ( B ) diet for 14 – 15 weeks. There was no difference in body weight between genotypes if maintained on a regular diet. Mutants had a 
slower rate of weight gain than wild-type littermates if raised on a diabetogenic diet. ( E ) Quantitative nuclear magnetic resonance imaging body composition analysis. 
There was no difference in percent fat or percent lean mass between genotypes for male mice, regardless of diet. Female mutants showed increased slightly higher 
adiposity compared with wild types when on a regular diet but reduced adiposity when maintained on the diabetogenic diet. ( F  –  I ) Final fat pad percent body weights 
of male and female wild-type and C b all  − / −   mice on regular and diabetogenic diets. ( F ) No differences were seen in fat pad percent body weights between genotypes 
of males on a regular diet. ( G ) Fat distribution was different in mutant males raised on a diabetogenic diet compared with wild-type mice. Reproductive fat pads 
comprised a larger percentage of the body weight in mutants than wild-type mice, whereas retroperitoneal, mesenteric and brown adipose fat pads had lower percent 
body weights. ( H ) Borderline signifi cant to no signifi cant differences was seen in fat pad weights between genotypes of females on a regular diet. Inguinal fat pads 
had slightly higher percent body weights in the mutants. ( I ) All fat pads of female mutants on the diabetogenic diet were much smaller than those of their wild-type 
littermates. * p  < .05, ** p  < .001, *** p  < .0001, and b represents borderline signifi cance. Error bars represent standard deviations.  n  = 7 – 10 mice per set.    

 Table 1.        Food Intake in Male and Female Wild-type and C b all  − / −   Mice on Regular and Diabetogenic Diets  

  Males Females 

 Regular Diet (g) Diabetogenic Diet (g) Regular Diet (g) Diabetogenic Diet (g) 

 Week WT C b all  − / −  Week WT C b all  − / −  Week WT C b all  − / −  Week WT C b all  − / −    

  3 4.9  ±  0.5 5.2  ±  0.9 3 3.4  ±  0.3 3.4  ±  0.5 0 4.6  ±  0.3 4.5  ±  0.3 0 2.9  ±  0.3 2.6  ±  0.5 
 5 6.0  ±  0.9 6.0  ±  1.2 7 2.8  ±  0.1 2.7  ±  0.4 3 4.7  ±  0.1 4.9  ±  0.7 3 2.7  ±  0.1 3.0  ±  0.4 
 7 5.3  ±  0.2 4.9  ±  0.7 10 3.6  ±  0.2 3.0  ±  0.5* 5 4.1  ±  0.2 4.7  ±  0.5  †  7 2.8  ±  0.1 3.4  ±  0.04* 
 14 6.3  ±  0.7 6.1  ±  1.3 12 4.0  ±  0.2 3.1  ±  0.8* 7 4.9  ±  0.3 5.5  ±  0.3* 10 2.2  ±  0.3 2.3  ±  0.5 
 15 6.3  ±  0.8 5.6  ±  1.3 14 3.2  ±  0.2 3.3  ±  0.4 12 4.4  ±  0.4 5.0  ±  0.1  †  15 3.1  ±  0.4 3.0  ±  0.4  

    Notes : Males, regular diet: no differences in food intake were seen over the course of the study. Males, diabetogenic diet: only on two occasions (at 10 and 12 
weeks) was some hypophagia seen in the mutants when compared with wild types. Females, regular diet: mutant females showed slight hyperphagy in weeks 5, 7, 
and 12 of the study. Females, diabetogenic diet: food intake was the same between mutants and wild types, except in week 7, where slight hyperphagia was observed 
in the mutants. * p  < .05, and dagger represents borderline signifi cance. Errors are presented as standard deviations.  n  = 7 – 10 mice per set.   
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but C b all  − / −   female mice on either diet were found to be 
more insulin sensitive than their wild-type littermates when 
insulin sensitivity tests were performed ( Figure 6C and D ).            

 D iscussion  
 We show that disruption of the PKA catalytic subunit C b  

protects mice from diet-induced obesity, steatosis, dyslipo-
proteinemia, and insulin resistance. We also show gender-
specifi c effects. Female C b all  − / −   mice are more insulin 
sensitive than wild-type mice even when fed a regular diet. 
On a high-caloric diet, female C b all  − / −   mice display reduced 
weight gain, adiposity, resistance to fatty liver disease, and 
improved insulin sensitivity when compared with their wild-
type littermates. Although male C b all  − / −   mice on a high-
caloric diet show reduced weight gain compared with 
wild-type littermates, this is probably due to a growth defect 
rather than obesity resistance because they do not show a 
lower overall body fat percentage. They do, however, de-
posit fat differently and maintain their insulin sensitivity. 
They display reduced plasma cholesterol, and, like females, 
they are also resistant to the development of a fatty liver. 
While PKA is known to be involved in the regulation of 
food intake, dramatic differences in caloric intake were not 
found between genotypes and are not believed to be respon-
sible for the differences in growth and fat accumulation seen 
between C b all  − / −   and wild-type mice. Locomotor activity 
was also not found to be different between genotypes. 

 Sexual dimorphism is common in mouse models of obe-
sity and insulin resistance, but interestingly, it is usually 
the males that show susceptibility to genetic mutations in 
this regard ( 13 ). For example, mice lacking peroxisome 
proliferator-activated receptor-alpha, a transcription factor 
involved in fatty acid oxidation gene expression, show an 

  

 Figure 3.        C b all  − / −   mutants are protected against fatty liver disease. ( A ) 
Wild-type (WT) mice fed the diabetogenic diet developed large livers, whereas 
livers from mutants remained the same size as those from mice on a regular 
diet. ( B ) Livers from WT mice fed a diabetogenic diet were large and pale in 
color compared with those of mutants. ( C  and  D ) Periodic acid/Schiff-stained 
sections of paraffi n-embedded livers from male mice fed a diabetogenic diet. 
Livers from WT mice were full of fat-fi lled vacuoles, absent from livers of 
C b all  − / −   mice. ( E ) Correlation of percent fat content of livers from male mice 
maintained on a diabetogenic diet (measured with quantitative nuclear mag-
netic resonance imaging), with total liver weight.  R  2  = .9762. * p  < .05, ** p  < 
.001, *** p  < .0001. Error bars represent standard deviations.  n  = 7 – 10 mice 
per set.    

  

 Figure 4.        Lipoproteins in male (left side) and female (right side) wild-type 
and C b all  − / −   mice on regular and diabetogenic diets. All mice on the diabeto-
genic diet experienced rises in serum HDL levels, but male mutants had signifi -
cantly lower levels than wild types. Male wild-type mice, but not mutant mice, 
also showed increases in low-density lipoprotein (LDL) and very low – density 
lipoprotein (VLDL) when fed the diabetogenic diet. * p  < .05, ** p  < .001, 
*** p  < .0001. Error bars indicate standard deviations.  n  = 7 – 10 mice per set.    
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obesity susceptible phenotype in males only, which can be 
rescued by a 2-week pretreatment with  b -estradiol ( 14 ). A 
female-specifi c phenotype points to a hormonal effect and 
may be due to a role for estrogen in the regulation of lipid 
metabolism. It has been found that in general, male mice 
are more susceptible to diet-induced obesity than female 
mice; in keeping with the idea that estrogen is involved in 
obesity resistance, ovariectomies removed protection of 

the females against this weight gain ( 15 ). The gender-
specifi c nature of the obesity resistance observed in C b all  − / −   
mice points to the potential involvement of an estrogen 
signaling pathway. 

 We have confi rmed that the C b all mutation results in a 
complete loss of the PKA C b  subunit. While the genetic 
mechanism behind the obesity resistance in C b   − / −   mice re-
mains unknown, some insight may be provided by studies 

  

 Figure 5.        Glucose homeostasis in male wild-type and C b all  − / −   mice on regular and diabetogenic diets. ( A ) Blood glucose levels of male mutants on the regular 
diet were frequently found to be lower than those of wild-type mice over the course of the study. Differences between genotypes were even greater when mice were 
fed the diabetogenic diet ( B ). ( C ) Serum insulin in both genotypes remained very low (barely detectable) over the course of the study when mice were fed the regular 
diet. ( D ) Serum insulin levels in wild-type mice fed the diabetogenic diet increased 10-fold by the end of the study but remained low in mutants. ( E  and  F ) Intraperi-
toneal glucose tolerance testings (IPGTTs) on mice fed regular ( E ) and diabetogenic ( F ) diets. There were no signifi cant differences between genotypes of mice fed 
the regular diet in the ability to clear intraperitoneally injected glucose, but mutants were found to have better glucose disposal than wild types if fed the diabetogenic 
diet for 12 weeks. ( G  and  H ) Insulin resistance of mice fed regular ( G ) and diabetogenic ( H ) diets. Differences were only seen between genotypes if mice were fed 
the diabetogenic diet; mutants were found to be more sensitive to insulin than wild-type mice. * p  < .05, ** p  < .001, *** p  < .0001, and b represents borderline sig-
nifi cance. Error bars represent standard deviations.  n  = 7 – 10 mice per set. For IPGTT and insulin resistance analyses, results were standardized by setting initial blood 
glucose levels at 100%.    
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of mutants lacking the RII b  regulatory subunit of PKA. As 
with C b all  − / −   mice, RII b   − / −   mice are protected against diet-
induced obesity ( 16 , 17 ). C b , like RII b , has high levels of 
expression in the brain, but unlike RII b , it is not present at 
high levels in adipose tissue ( 17 ). It is thus likely that PKA 
activity in the brain plays a very important role in the obe-
sity resistance and some of the other phenotypes shared by 
both of these mutants. The arcuate nucleus region of the 
hypothalamus contains leptin-responsive neurons that con-
trol metabolic rate through the activation of Gs-coupled 
melanocortin receptors. These receptors are thought to in-
crease energy expenditure through stimulation of the cAMP 
pathway and activation of PKA ( 18 ). It is known that dis-
ruption of the RII b  subunit rescues the obesity phenotype 
seen in agouti lethal yellow mice, believed to suffer from 
antagonism of these receptors ( 18 ), and loss of RII b  also 
rescues the mutant phenotype of the obese leptin-defi cient 
 ob/ob  mouse ( 19 ). It is most likely that RII b  acts down-
stream of leptin receptors in the leptin melanocortin path-
way, and it is possible that PKA C b  acts in a similar manner. 
Gender specifi city has not been reported for phenotypes 
demonstrated by mice lacking the RII b  subunit, however, 
and both genders of RII b   − / −   mice are resistant to age-in-
duced obesity ( 20 ). However, estrogen acts in the hypothal-
amus in a very similar manner to leptin, regulating food 
intake and energy expenditure in both animals and humans 
( 21 , 22 , 23 ). Loss of C b  may thus mimic some of the RII b   − / −   
leptin – mediated phenotypes by altering a hypothalamic es-
trogen signaling pathway, in which case disruption of both 
of these genes should have a synergistic effect on obesity 

resistance. Future studies will examine the effects of a di-
etary challenge on double knockouts of these genes. 

 In keeping with the idea that these two proteins may have 
somewhat different roles in obesity resistance, loss of either 
RII b  or C b  has a very different effect on overall PKA activ-
ity. Disruption of RII b  causes an increase in basal PKA ac-
tivity ( 19 ). Disruption of C b  causes a decrease in basal PKA 
activity in the brain in spite of a reported compensatory in-
crease in the amount of C a  protein in the cortex, amygdala, 
and hippocampus ( 12 ). However, the catalytic subunits C a  
and C b  have highly conserved amino acid differences across 
species, and they are thus believed to have unique functions 
( 24 ). Total PKA activity may very likely not be as important 
as the individual levels of activity by each of these subunits. 
While we were not able to show increases in C a  protein in 
total brain extracts of C b   − / −   mice, loss of the C b  subunit 
could still create a stoichiometric shift in C b /C a  activity, 
representing an increase in a particular type of PKA cata-
lytic function. C a - and C b -specifi c PKA activity assays 
need to be developed to test this hypothesis. 

 There were signifi cant differences in how fat was distrib-
uted in males on a high-caloric diet, even though the overall 
percentage of body fat was not different between genotypes. 
Mutants accumulated more fat in their reproductive fat pads 
and less in other fat pads than wild-type mice. Importantly, 
the mesenteric fat pad was found to be smaller in mutants. 
The accrual of mesenteric fat is a common feature of aging, 
and its removal extends life span in rats ( 25 ). Mesenteric fat 
is the source of several hormones and cytokines that induce 
infl ammation and oxidative damage in vascular tissue ( 26 ) 

  

 Figure 6.        Glucose homeostasis in female wild-type and C b all  − / −   mice on regular and diabetogenic diets. ( A ) Blood glucose levels of female mutants on the regular 
diet were found to be similar to those of wild-type mice over the course of the study, but mutants were frequently found to have lower blood glucose levels when mice 
were fed the diabetogenic diet. ( C  and  D ) Insulin resistance of mice fed regular ( C ) and diabetogenic ( D ) diets. Mutant mice on both diets were found to be more insulin 
sensitive than wild-type mice when injected intraperitoneally with insulin. * p  < .05, ** p  < .001, *** p  < .0001, and b represents borderline signifi cance. Error bars rep-
resent standard deviations.  n  = 7 – 10 mice per set. For IPGTT and insulin resistance analyses, results were standardized by setting initial blood glucose levels at 100%.    
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and is known to play a critical role in the pathogenesis of 
metabolic syndrome, its thickness correlating well with car-
diovascular risk factors ( 27 , 28 ). Mesenteric fat thickness 
also correlates with cholesterol levels in humans ( 27 ), and 
C b all  − / −   male mice were found to be resistant to increases in 
HDL and LDL/VLDL when maintained on a high-caloric 
diet. Thus, while C b all  − / −   male mice raised on a high-caloric 
diet are not less obese in terms of percent body fat, they still 
enjoy health benefi ts. Obesity resistance in female mutants 
was more overt. QNMR revealed a much higher fat-to-lean 
tissue ratio, as well as dramatically larger fat pads, in wild-
type mice raised on the high-caloric diet compared with 
C b all  − / −   mice. Lack of weight gain in female mutants on the 
high-caloric diet is thus largely due to a lack of fat accumula-
tion. C b  may have evolved to be important in the regulation 
of fat accumulation of females during reproductive life. 

 Livers of C b all  − / −   mice of both genders were found to be 
protected from steatosis. This was not entirely due to a sec-
ondary effect of protection against general obesity as per-
cent body fat in males on the high-caloric diet was similar 
between genotypes, but percent liver fat was dramatically 
different. Although male C b all  − / −   mice did not show re-
duced body fat percentages after 12 weeks on the high-ca-
loric diet compared with wild types, all mutants showed 
lack of steatosis. Protection against fatty livers in C b all  − / −   
mice is thus due to additional genetic factors not related to 
the peripheral anti-obesity phenotype. Potential roles for 
PKA C b  in fatty liver resistance are diverse and need to be 
investigated. Reduced lipolysis and fatty acid transfer to the 
liver is one mechanism by which steatosis can be prevented, 
but we did not fi nd differences in serum triglyceride levels 
between the C b all  − / −   and wild-type mice. Another explana-
tion for the lack of fatty liver seen in the C b all  − / −   mutants is 
altered gluconeogenesis. It is known that the transcription 
factor, cAMP response element – binding protein (CREB) 
does play a major and direct role in hepatic lipid and glu-
cose metabolism, acting as a regulatory checkpoint and pro-
moter for gluconeogenesis and fatty acid oxidation 
( 29 , 30 , 31 ). However, we did not fi nd changes in CREB 
phosphorylation levels in the livers of C b   − / −   mice (unpub-
lished observations). PKA is also involved in the regulation 
of carbohydrate responsive element – binding protein 
(ChREBP), a transcription factor that is activated in re-
sponse to high glucose and that upregulates the expression 
of lipogenic genes ( 32 , 33 , 34 , 35 ). Phosphorylation of 
ChREBP by cAMP-dependent PKA results in its inactiva-
tion ( 32 ). Inhibition of ChREBP improves hepatic steatosis 
and insulin resistance in the leptin-defi cient obese  ob/ob  
mouse ( 36 ). A potential role for PKA C b  in the ChREBP 
pathway will be the focus of future studies. Alternatively, 
rather than playing a direct role in fatty liver resistance, 
changes in PKA signaling in the brain could lead indirectly 
to changes in liver fat content, for example, by affecting 
the release of pituitary hormones such as adrenocorticotro-
pic hormone (ACTH). ACTH release is stimulated by a 

cAMP-dependent PKA-mediated pathway ( 37 , 38 ), and its 
secretion leads to the release of hormones from the adrenal 
cortex that ultimately stimulate liver gluconeogenesis by 
inducing key gluconeogenic enzymes PEPCK and G6Pase 
( 39 , 40 , 41 ). Fatty liver resistance could also be linked to 
protection against high-caloric diet-induced insulin resis-
tance. Insulin resistance is the most common and reproduc-
ible factor associated with nonalcoholic fatty liver disease 
( 42 ) and is believed to increase the intrahepatic production 
of free fatty acids ( 43 ). 

 C b all  − / −   mice were protected against diet-induced insulin 
resistance. Both genders displayed insulin sensitivity, an-
other unusual fi nding among diabetic rodent models ( 17 ). 
This effect was not merely due to obesity resistance because 
even under a regular diet regimen and with slightly higher 
adiposity, female mutants showed improved glucose dis-
posal in response to peritoneally injected insulin compared 
with wild types. After being on the high-caloric diet, C b all  − / −   
male mice shared the same percent body fat as their wild-
type littermates but were also more responsive to insulin. 
C b  thus directly infl uences insulin sensitivity. It has been 
proposed that because PKA is known to antagonize insulin 
activation of the mitogen-activated protein kinase cascade, 
mutants with decreased PKA activity may have enhanced 
insulin sensitivity ( 17 ). The insulin sensitive phenotype of 
C b all  − / −   mice may thus indicate a specifi c role for the C b  
subunit in the regulation of this pathway. Because insulin 
inhibits the assembly and release of VLDLs from the liver 
( 44 ), it is possible that the reduced serum VLDL levels seen 
in C b all  − / −   mice are an indirect effect of the insulin sensitiv-
ity. Alternatively, as with fatty liver resistance, disruption of 
pituitary PKA C b  may lead to these phenotypes because it 
is known that ACTH stimulates insulin secretion and inhib-
its VLDL secretion ( 45 , 46 ). 

 Studies in divergent organisms have implicated PKA as 
being important in the regulation of aging in response to 
nutrient status ( 47 ). Theories for how PKA disruption pro-
motes longevity in yeast are diverse, including enhanced 
resistance to heat and oxidative stress ( 48 , 49 ). In yeast, it 
was initially proposed that reduced PKA increased life span 
by activating the Sir2 histone deacetylase and reducing the 
accumulation of extrachromosomal ribosomal DNA circles 
( 3 ), but subsequent studies have shown that PKA and CR 
both act via Sir2-independent mechanisms ( 50 , 51 ). More 
recently, reduced signaling through TOR, PKA, and the 
yeast homolog of ribosomal S6 kinase, Sch9, has been 
shown to increase life span in part by reducing messenger 
RNA (mRNA) translation ( 52 ). Because regulation of 
mRNA translation is also a conserved mechanism of lon-
gevity control in multicellular eukaryotes ( 53 ), it is tempt-
ing to speculate that PKA may infl uence mammalian aging 
in a similar manner. 

 The role of PKA in regulating metabolism may be par-
ticularly relevant for mammalian longevity. CR extends life 
span in many organisms. It is unknown exactly which of the 
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physiological changes and what genetic mechanisms are re-
sponsible for life span extension in CR mice, but like 
C b all  − / −   and RII b   − / −   animals, they do not develop altered 
adiposity and increased insulin effi ciency, hallmarks associ-
ated with metabolic syndrome ( 54 , 55 ). RII b   − / −   animals have 
been found to be both resistant to age-related obesity as 
well as long lived ( 20 ). Aging in people is often character-
ized by metabolic decline associated with obesity, altered 
body fat distribution, and insulin resistance ( 56 , 57 , 58 ). The 
increased obesity and insulin resistance found in the major-
ity of middle-aged people in the Western world are major 
risk factors for diminished life span and enhanced age-re-
lated disease conditions such as diabetes, cardiovascular 
disease, neurodegeneration, and cancer ( 59 , 60 ). These ob-
servations suggest that PKA may be a viable pharmacologi-
cal target for treating age-associated diseases, and it will be 
of particular interest to determine whether C b all  − / −   animals 
have an extended life span.   
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