
www.wjgnet.com

 BASIC RESEARCH

Failure of P-selectin blockade alone to protect the liver from 
ischemia-reperfusion injury in the isolated blood-perfused 
rat liver

Samuel Wyllie, Neal R Barshes, Feng-Qin Gao, Saul J Karpen, John A Goss

Online Submissions: wjg.wjgnet.com                                 			      World J Gastroenterol  2008 November 28; 14(44): 6808-6816
wjg@wjgnet.com                                                                                                                             World Journal of Gastroenterology  ISSN 1007-9327
doi:10.3748/wjg.14.6808                                                                                                                                                © 2008 The WJG Press. All rights reserved.

Samuel Wyllie, Neal R Barshes, Feng-Qin Gao, Saul J 
Karpen, and John A Goss, Michael E. DeBakey Department 
of Surgery, Liver Transplant Center Laboratory, Baylor College 
of Medicine, Houston, TX 77030, United States
Supported by Grants from the American Liver Foundation, 
Naomi Judd Liver Scholar Award, The American Surgical 
Association Career Development Fellowship, and National Ⅰ
Correspondence to: Samuel Wyllie, PhD, Department of 
Surgery, Liver Transplant Center Laboratory Baylor College of 
Medicine, Houston, TX 77030, 
United States. swyllie@bcm.tmc.edu
Telephone: +1-832-8243751  Fax: +1-832-8253181
Received: March 10, 2006      Revised: November 11, 2008
Accepted: November 18, 2008
Published online: November 28, 2008

Abstract
AIM: To determine if blockade of P-selectin in the 
isolated blood-perfused cold ex vivo  rat liver model 
protects the liver from ischemia-reperfusion injury.
METHODS: The effect of P-selectin blockade was 
assessed by employing an isolated blood-perfused cold 
ex vivo  rat liver with or without P-selectin antibody 
treatment before and after 6 h of cold storage in 
University of Wisconsin solution.
RESULTS: In our isolated blood-perfused rat liver 
model, pre-treatment with P-selectin antibody failed 
to protect the liver from ischemia-reperfusion injury, 
as judged by the elevated aspartate aminotransferase 
activity. In addition, P-selectin antibody treatment did 
not significantly reduced hepatic polymorphonuclear 
leukocyte accumulation after 120 min of perfusion. 
Histological evaluation of liver sections obtained at  
120 min of perfusion showed significant oncotic 
necrosis in liver sections of both ischemic control and 
P-selectin antibody-treated groups. However, total bile 
production after 120 min of perfusion was significantly 
greater in P-selectin antibody-treated livers, compared 
to control livers. No significant difference in P-selectin 
and ICAM-1 mRNAs and proteins, GSH, GSSG, and 
nuclear NF-kB was found between control and 
P-selectin antibody-treated livers.
CONCLUSION: In conclusion, we have shown 
that blockade of P-selectin alone failed to reduced 
polymorphonuclear leukocyte accumulation in the liver 
and protect hepatocytes from ischemia-reperfusion 

injury in the isolated blood-perfused cold-ex vivo  rat 
liver model.
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INTRODUCTION
Ischemia-reperfusion (I/R)3 injury has been shown to 
play a major role in clinical and experimental hemorrhagic 
shock, organ resection, and transplantation[1-5]. The 
inflammatory component of  I/R injury is mediated 
by pro-inflammatory cytokines such as TNF-α and 
IL-1β, and cellular adhesion molecules such as β2-
integrins, ICAM-1, VCAM-1, and members of  the 
selectin family, P-, E-, and L-selectin[6-8]. The sequence 
of  events currently enjoying the most popularity as 
the mechanism responsible for I/R injury of  the liver 
is: (1) KC are activated following I/R[9]; (2) During 
early reperfusion (0-2 h), KC are further activated by 
complement and produce significant vascular oxidative 
stress[10]; (3) KC also produce pro-inf lammatory 
cytokines and chemokines, which is dependent on the 
activation of  the redox-sensitive transcription factor 
NF-κB[11]. Activated hepatocytes and endothelial 
cells also produce reactive oxygen species (ROS) and 
contribute to the liver cytokine-chemokine milieu; (4) 
Cytokine mediated induction of  adhesion molecules 
such as P- and E-selectins, ICAM-1, and VCAM-1 on 
the liver endothelium occur during reperfusion; (5) 
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PMNs accumulate in the liver as a result of  P- and 
E-selectin-mediated rolling and margination on the liver 
endothelium, followed by ICAM-1-dependent firm 
adhesion. Although PMNs accumulate in the liver during 
early reperfusion, they do not contribute to liver injury 
until the latter phase (6-24 h) of  I/R injury[10,12,13]; and (6) 
PMNs transmigrate to the liver parenchyma via ICAM-1 
and VCAM-1, bind to hepatocytes via ICAM-1/β2-
integrins (CD11b/CD18), and engage in a sustained 
production of  ROS to produce intracellular oxidative 
stress in hepatocytes and cell death[14-17].

Following I/R of  several organs or tissues, a 
general mechanism of  selectin-dependent rolling of  
PMNs followed by firmer adhesion to endothelial 
cells by integrins and ICAM-1 is applicable to their 
vasculature (heart, lung, intestine, and cremaster muscle). 
Accordingly, numerous studies reported that anti-P-
selectin therapy afforded protection to the liver from 
I/R injury[18-21]. However, this general mechanism may 
not be applicable to the liver[13,14]. Numerous reports 
suggest that P-selectin attenuates I/R injury of  the liver 
by mediating the recruitment of  PMNs[18-20], while other 
reports minimize its role in liver I/R injury and its role 
in recruiting PMNs in the inflamed liver vasculature[21-26]. 
Furthermore, hepatic PMNs accumulation, mediated 
by P-select in expressed on endothel ia l cel ls of  
postsinusoidal venules, might not contribute significantly 
to liver injury, because there is no experimental evidence 
supporting extravasation of  these neutrophils to the liver 
parenchyma[23,26]. In addition, a recent report by Kubes et 
al. suggest that the protective effect observed in the liver 
with anti-P-selectin therapy may be mostly secondary to 
the anti-P-selectin therapy of  accompanying intestinal 
I/R injury[27].

If  the above scenario is to hold, then blockade of  
P-selectin should prevent or attenuate I/R injury, at least 
during the latter phase of  I/R injury in the warm in 
vivo liver model. Therefore, to investigate if  P-selectin 
blockade alone protects the liver from I/R injury, we 
employed an antibody to P-selectin and a cold-ex vivo 
I/R rat liver model. The present study demonstrates 
that while anti-P-selectin treatment may increase total 
bile flow in livers subjected to I/R, it failed to protect 
hepatocytes in the isolated blood-perfused rat liver 
model. 

MATERIALS AND METHODS
Animals
Male Sprague-Dawley rats (250-350 g) were purchased 
Charles Rivers, Houston, TX). All an imals used in 
this study received a nutritionally balanced rodent diet, 
water ad libitum, and were cared for according to NIH 
guidelines. 

Isolated-Perfused-Rat-Liver (IPRL) model
In brief, animals were anaesthetized with Nembutal 
(50-60 mg/kg bd. wt., ip, Sigma-Aldrich, St. Louis, MO), 
and under aseptic conditions, a laparotomy performed 

to access the liver for mobilization. Livers were carefully 
isolated from male Sprague-Dawley rats under Nembutal 
anesthesia after cannulat ion of  the por tal vein, 
common bile duct, and suprahepatic vena cava, while 
constantly perfused with oxygenated Krebs-Hensleit 
buffer (pH 7.4) via the portal vein[28]. Immediately after 
isolation, control and treated livers were flushed with 
10 mL of  pristine UW solution, and stored at 4℃ for 
6 h. Livers in the treated group received an additional 
flush of  1 mL of  UW solution containing 420 µg of  
P-selectin Ab (CD62P, Cat.#553716, PharMingen, 
San Diego, CA) via the portal vein before cold-ex vivo 
ischemia (storage) and immediately before perfusion. 
This antibody has been show to inhibit the binding of  
neutrophils to rat P-selectin in both in vitro and in vivo 
studies. Control livers were also flushed with 1 mL of  
pristine UW solution immediately before perfusion. 
At the end of  cold storage, livers were perfused with 
syngenic rat blood (diluted with Krebs-Hensleit buffer 
(pH 7.4) to a hematocrit of  12%, total volume 100 
mL) in a re-circulating perfusion system using a fully-
jacketed isolated-perfusion-rat-liver apparatus (RGT 
#130003, Radnoti Glass Technology, Inc., Monrovia, 
CA) for 120 min, as previously described[10]. Prior to 
perfusion, the perfusion apparatus was primed with 
blood perfusate at 37℃. Oxygenation was done with a 
membrane-oxygenating chamber (PO2 held > 250 mm 
Hg) monitored with inline-digital pressure transducer. 
Portal vein perfusate flow was continually adjusted to 
maintain portal pressures between 18 and 23 mm Hg, 
and monitored with inline-digital pressure transducer. 
Temperature, pH, and oxygen level were maintained 
throughout each experiment. Liver sections (snap-frozen 
in liquid nitrogen), blood perfusate, and bile (collected 
in pre-weighed eppendorf  tubes) were collected every  
30 min during perfusion. At the end of  each experiment, 
sections of  the liver were snap-frozen or placed in 
buffered-formalin, for blinded-histological evaluation of  
hematoxylin and eosin (HE) stained liver sections by a 
pathologist and determination of  PMNs accumulation 
in the liver.

Plasma aspartate aminotransferase activity
Plasma AST activity was determined with a commercially 
available kit (#DG158K-U, Sigma Diagnostics, St. Louis, 
MO).

Histological analysis of liver injury
HE sections from formalin-fixed liver tissues obtained 
from sham-control and P-selectin Ab-treated livers were 
randomly selected and blindly analyzed for the degree 
of  necrosis, hepatocellular vacuolization, glycogen 
depletion, zonal variations, and sinusoidal congestion, as 
measures of  hepatic injury.

Polymorphonuclear leukocyte (PMNs) accumulation in 
the liver
PMNs accumulation in rat livers during perfusion was 
determined in formalin-fixed paraffin sections of  the 



liver obtained at each perfusion-sampling time point 
as previously described[29]. A commercially available 
kit (91-C, Sigma-Aldrich, St. Louis, MO) was used to 
stain for sinusoidal-sequestrated PMNs using the well-
established Naphthol AS-D Chloroacetate esterase 
procedure, according to the manufacturer’s directions. 
At least four random sections from each group were 
analyzed by viewing (blindly) fifty random high power 
fields (HPF, × 40) on each section. Results were 
expressed as number of  PMNs/50HPF. 

RT-PCR analysis of Liver P-selectin and ICAM-1 mRNAs
Total RNA was extracted from liver tissue using an 
UltraSpec Total RNA Isolation Kit (#BL-10050, Biotecx 
Laboratories Inc., Houston, TX). Complementary 
DNA (cDNA) was transcribed with 4 µg of  total RNA, 
random hexamers, and a SuperScript Ⅱ Preamplification 
System (#18089-011, GIBCO BRL, Life Technologies, 
Grand Island, New York) according to the manufacturer’s  
protocol. Using specific primers for p-selectin ICAM-1, 
and GAPDH, the i r cDNAs were ampl i f i ed by 
polymerase chain reaction (PCR) under the following 
conditions: P-selectin and ICAM-1 (35 cycles, 94℃ for 
60 s, 56℃ for 60 s, and 72℃ for 120 s), and GAPDH, (28 
cycles, 94℃ for 60 s, 52℃ for 60 s, and 72℃ for 60 s).  
PCR reaction primers (Sigma-Genosys, Woodlands, 
TX) used were as follows: P-selectin forward primer 
(5'-TGTATCCAGCCTCTTGGGCATTCC-3') and 
P-selectin reverse primer (5'-TGGGACAGGAAGTGA
TGTTACACC-3') to give an 350-bp product; ICAM-1 
forward primer (5'-AGGTGTGATATCCGGTAG-3') 
and ICAM-1 reverse primer (5'-TGGGACAGGAA
GTGATGTTACACC-3') to give an 595-bp product; 
GAPDH forward primer (5'-GCCAAGTATGACAT
CAA-3') and GAPDH reverse primer (5'-CCATATT
CATTGTCATACCA-3') to give a 203-bp product. All 
PCR products were electrophoresed on a 2% agarose 
gel (Fisher Scientific, Fair Lawn, NJ). Bands were 
visualized by post staining for 30 min with GelStar 
Nucleic Acid Gel Stain (FMC Bioproducts, Rockland, 
MA), and photographed. Photographs were digitized 
and evaluated as stated above. The relative expression of  
P-selectin and ICAM-1 messenger RNAs (mRNA) were 
assessed by taking the ratio of  the intensity of  the DNA 
bands of  P-selectin and ICAM-1 to GAPDH band, and 
expressed as arbitrary units. To ensure an equal amount 
of  RNA was used for all samples, RNA concentration 
was determined spectrophotometrically, and its integrity 
evaluate on agarose gel. DNA bands were digitized (Corel 
Photohouse 2.0, Ontario, Canada) and evaluated using 
an image analysis software (Scion Image Beta 3b, NIH 
Image modified for Windows by Scion Corporation, 
Frederick MD).

Western blot analysis of liver P-selectin and ICAM-1 
proteins
Homogenates and supernatants of  liver samples were 
prepared as described by Vural et al[30]. Proteins (P-selectin 
(14 µg) and ICAM-1 (27 µg)) in liver supernatants 

were separated on 6% NuPAGE gels (Invitrogen, 
Carlsbad, CA) and transfer red to nitrocel lulose 
membranes (Schleicher and Schuel, Dassel). Equal 
transfer to membranes was confirmed by staining the 
membranes with Ponceau S (Aldrich-Sigma, St. Louis, 
MO). P-selectin bands were detected on membranes by 
incubating with an anti-P-selectin-specific rabbit primary 
antibody diluted 1:100 (CD62P, PharMingen, San Diego, 
CA). A horseradish peroxidase-conjugated anti-rabbit 
secondary antibody (sc-2350, Santa Cruz Biotechnology, 
Inc., Santa Cruz, CA) diluted 1:1000 and an enhanced 
chemiluminescence (ECL) kit (Amersham Life Sciences, 
Piscataway, NJ) were used to visualize bands. ICAM-1 
was detected on membranes by incubating with an anti-
ICAM-1-specific mouse primary antibody (MCA1333R, 
Serotec, Raleigh, NC) diluted 1:50. A horseradish 
peroxidase-conjugated anti-mouse secondary antibody 
(Amersham Life Sciences, Piscataway, NJ) diluted 1:1000 
was used to reveal ICAM-1 as described above. To 
ensure equal loading and normalize Western-blot bands 
of  P-selectin and ICAM-1, membranes were also probed 
for β-actin. Membranes were immunoblotted for β-actin 
with an affinity purified goat polyclonal antibody diluted 
1:500 (sc-1616, Santa Cruz Biotechnology, Inc., Santa 
Cruz, CA) and a horseradish peroxidase-conjugated 
anti-goat secondary antibody (sc-2350, Santa Cruz 
Biotechnology, Inc., Santa Cruz, CA) (diluted 1:1000). 
Actin bands were visualized with a commercially 
available ECL kit, as stated above.

Liver total (GSH + GSSG) and oxidized (GSSG) 
glutathione levels
Liver GSH + GSSG and GSSG levels were determined 
by the method of  Tietze[31], as previously described by 
Jaeschke et al[14].

Liver nuclear factor-kappa B (NF-κB) activation
Activation of  the redox-sensitive transcription factor 
NF-κB in control and P-selectin Ab-treated livers 
was measured using a commercially available ELISA 
kit (Trans-AMTM NF-κB p65 Transcription Factor 
Assay Kit, Active Motif, Carlsbad, CA). The assay 
was performed according to the manufacturer’s 
procedure and as described by Renard et al[32]. Nuclear 
proteins were extracted according to the procedure of  
Osarogiagbon et al[33]. Approximately 100 mg of  snap-
frozen liver tissue was homogenized in 0.4 mL of  cold 
TM buffer (10 mmol/L Tris-HCl, 1 mmol/L MgCl2 (pH 
7.0), containing completeTM protease inhibitors (Roche 
Diagnostics Corp., IN). Homogenates were centrifuged 
at 2000 r/min for 30 s, and the supernatant mixed with 
200 µl of  lysis buffer, incubated at 4℃ for 5 min, and 
centrifuged at 5000 r/min for 10 min. The nuclear pellets 
were reconstituted with lysis buffer, and centrifuged at 
14 000 r/min for 20 s at 4℃. Nuclear protein extract 
(15 µg) of  each sample was used to assay for NF-κB 
activation. To ensure the specificity of  the assay, the 
wild-type consensus oligonucleotide provided by the 
manufacturer served as a competitor to NF-κB binding.
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Protein concentration
All protein concentrations were determined according to 
the method of  Lowry et al[34]. 

Statistical analysis
Data were analyzed by unpaired Student’s t-test or 
ANOVA. After ANOVA, results were subsequently 
subjected to Tukey’s or Student-Newman Keuls non-
parametric test to determined significant differences 
between groups.

RESULTS
Plasma AST activity, histologic analysis, and PMNs 
accumulation in the cold ex vivo -perfused liver
No significant difference in AST activity was found 
between control and P-selectin Ab-treated livers 
throughout the perfusion period (Figure 1). In addition, 
after 120 min of  perfusion, similar degrees of  point 
necrosis (solid arrows, Figure 2A, B) and inflammation 
(arrow heads, Figure 2C, D) were found in both cold ex 
vivo-perfused control and P-selectin Ab-treated livers. 
Similarly, no significant difference in hepatic PMNs 
accumulation was found between control and P-selectin 
Ab-treated livers after 120 min of  perfusion (Figure 3).

Bile production in cold ex vivo-perfused liver
No significant difference in bile flow was found between 
control and P-selectin Ab-treated livers at individual 
sampling time-points throughout the perfusion period 
(data not shown). However, total bile production after  
120 min of  perfusion was significantly greater in P-selectin 
Ab-treated livers, compared to control (Figure 4). 

RT-PCR analysis of P-selectin and ICAM-1 mRNAs in the 
cold-ex vivo perfused liver
No significant difference in P-selectin mRNA and 
protein was found between cold-ex-vivo perfused control 
and P-selectin Ab-treated livers throughout the entire 
perfusion period (Figure 5A, B). In contrast, a significant 
reduction in ICAM-1 mRNA was found between cold-
ex-vivo perfused control and P-selectin Ab-treated livers 
at 60 min of  perfusion (Figure 5A). However, although a 

corresponding reduction in ICAM-1 protein was found, 
it did not reach statistical significance (Figure 5B). No 
significant difference in ICAM-1 mRNA and protein 
was found between cold ex-vivo-perfused control and 
P-selectin Ab-treated livers at all other time points of  
the perfusion period (Figure 5).

Western blot analysis of P-selectin and ICAM-1 proteins 
in the cold-ex-vivo perfused liver
No significant difference in P-selectin and ICAM-1 
proteins was found between cold ex-vivo-perfused control 
and P-selectin Ab-treated livers throughout the entire 
perfusion period (Figure 6A, B). Although P-selectin 
expression at 90 min of  perfusion is clearly greater in 
control livers compared to Ab-treated livers, the intra-
group variance precluded statistical significance. 

GSH + GSSG and GSSG levels in the cold-ex vivo-
perfused liver
No significant difference in GSH + GSSG and GSSG 
levels was found between cold ex-vivo-perfused control 
and P-selectin Ab-treated livers throughout the entire 
perfusion period (Figure 7).

NF-κB activation in cold ex vivo-perfused liver
No significant difference in NF-κB activation was found 
between cold ex-vivo-perfused control and P-selectin Ab-
treated livers throughout the entire perfusion period 
(Figure 8).

DISCUSSION
Our study demonstrates that antibody-blockade of  
P-selectin alone failed to protect the rat liver from I/R 
injury in the IPRL model. However, as stated earlier, 
considerable evidence exist that suggests that P-selectin 
plays a major role in I/R injury[18-21]. Existing reports 
also suggest that P-selectin mediates I/R injury of  
the liver by mediating initial rolling and margination 
of  PMNs in the liver vasculature[18-20]. However, other 
reports minimize its role in liver I/R injury, and its role 
in recruiting PMNs in the inflamed liver vasculature[21-26]. 

At present, no convincing evidence exist for 
P-selectin expression on the mouse, human, and rat 
sinusoidal endothelia under normal and inflammatory 
conditions[22,35,36], although a more recent study reported 
immunohistochemical evidence of  P-selectin protein 
expression on the rat liver sinusoid endothelium after 
cold storage and orthotopic liver transplantation[37]. 
In the present study, the accumulation of  PMNs 
in livers after P-selectin blockade is probably due 
to physical trapping, resulting from the swelling of  
sinusoidal cells (e.g. endothelial and Kupffer cells), 
direct vasoconstriction, reduced deformability of  PMNs 
exposed to activated complement factors, and the pre-
existing intimacy (endothelium massaging) PMNs share 
with the sinusoidal endothelium, compared to the 
postsinusoidal endothelium. Once PMNs are slowed in 
the sinusoids, firm adhesion and transmigration may be 

Figure 1  Perfusate aspartate aminotransferase (AST) activity in isolated-
blood-perfused control and P-selectin-Ab treated rat livers after 6 h of 
cold ischemia.
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mediated by ICAM-1/β2-integrins and VCAM-1/β1-
integrins[23,38]. Alternatively, other, as yet unidentified, 
adhesion molecules may play a major role in the 
sequestration and transmigration of  PMNs in liver 
sinusoids. 

P-selectin blockade failed to protect the liver from I/R 
injury in our cold ex vivo model, as judged by the time 
dependent increase in AST activity, PMNs accumulation, 
and the similar histological-injury pattern found in 
control and P-selectin Ab-treated livers. Our findings 
are not in agreement with results of  other studies that 
reported protection of  the liver in cold ex vivo model 
with P-selectin blockade alone using the P-selectin 
ligands sPSGL-1and rPSGL-Ig[19,39] or an antibody to 

PSGL-1[40]. However, P-selectin blockade did enhance 
total bile production by 120 min of  perfusion, which 
agrees with earlier reports[39,40]. Exactly how P-selectin 
blockade enhanced total bile production remains unclear. 

P-selectin and ICAM-1 have been reported to 
be primary mediators of  PMNs sequestration in the 
liver following I/R[19,20,38,41]. However, in this study, 
P-selectin blockade had little or no effect on P-selectin 
and ICAM-1 mRNA and protein levels except for the 
significant decrease in ICAM-1 mRNA found at 60 min 
perfusion, which had a concomitant decrease in ICAM-1 
protein that did not reach statistical significance. These 
results support our finding that P-selectin blockade did 
not significantly alter PMNs accumulation in the liver at 
120 min perfusion. In fact, P-selectin blockade caused 

A B

C D

Figure 2  Histological analysis of isolated-blood-perfused control and P-selectin Ab-treated rat liver sections at 120 min perfusion after 6 h of cold 
ischemia (HE × 400). A, B: Point necroses in livers of control and P-selectin Ab-treated livers at 120 min perfusion (solid arrows); C, D: Inflammation in both control 
and P-selectin Ab-treated livers at 120 min of perfusion (arrow heads).
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an increase in PMNs accumulation in the liver, but not 
to a significant level. In addition, numerous studies 
have reported that ICAM-1 mediates firm adhesion 
and transmigration of  PMNs in the liver following an 
inflammatory stimulus[42-47]. However, some studies 
have questioned the absolute role of  ICAM-1 in PMNs 
sequestration in hepatic vasculature[21,48-52]. Furthermore, 
although the adhesion molecules ICAM-1 and VCAM-1 
are expressed on cells lining the sinusoids, antibodies to 
selectins, integrins, and CAMs have all failed to prevent 
accumulation of  PMNs in the liver sinusoids.

It is well documented that GSH plays a protective 
role in liver I/R injury[1,53-57]. GSH can react with 
ROS such as hydrogen peroxide, peroxynitrite, and 
hypochlorous acid generated by KC and PMNs. We 
measured liver GSH and GSSG levels in our cold ex 
vivo model and found no significant difference with 
P-selectin-blockade treatment. If  significant oxidative 
stress occurred during reperfusion, an increase in liver 
GSSG should have occurred[1,53]. Although the major 
oxidative stress observed during perfusion is in the liver 
vasculature[1,53], we did not measure GSSG levels in the 

B 6

5

4

3

2

1

0

t /min
0            30            60            90           120

IC
AM

-1
/A

ct
in

 r
at

io
 

  
(a

rb
itr

ar
y 

un
its

)
Control liver
P-selectin Ab treated liver

A 6

5

4

3

2

1

0

t /min
0            30            60            90           120

P-
se

le
ct

in
/A

ct
in

 r
at

io
 

  
  

(a
rb

itr
ar

y 
un

its
)

Control liver
P-selectin Ab treated liver

Figure 6  Western blot analysis of P-selectin and ICAM-1 protein levels in isolated-blood-perfused control and P-selectin Ab-treated rat livers after 6 h of 
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Figure 5  Semi-quantitative RT-PCR analysis of P-selectin and ICAM-1 mRNA levels in isolated-blood-perfused control and P-selectin Ab-treated rat livers 
after 6 h of cold ischemia. aP < 0.05 vs control liver.

www.wjgnet.com

    Wyllie S et al . P-selectin blockade and liver ischemia-reperfusion injury                                                           6813

a



perfusate. Nevertheless, recent evidence from livers 
reperfused after cold storage has shown that hepatocytes 
may also be a source oxidative changes capable of  
impairing liver function during reperfusion[58]. Therefore, 
in this study we should have detected any significant 
change in GSH or GSSG as an intracellular oxidative 
stress that occurred during reperfusion. The lack of  
significant change in liver total GSH and GSSG in our 
IPRL model may be taken as the absence/attenuation of  
oxidative stress in the liver[53]. An alternate explanation 
for our failure to detect liver oxidative stress is that the 
above study used a more sensitive fluorescence detection 
compared to the colorimetric method employed in this 
study.

NF-κB activation in the liver following I/R has been 
reported[42,43,59]. Its activation has been reported as a 
requirement for I/R-dependent TNF-α induction in the 
liver[59]. The inflammatory response following I/R of  
the liver is primarily mediated by cytokines (e.g. TNF-α, 
IL-1β) and adhesion molecules P-selectin and ICAM-1, 
and VCAM-1. Induction of  all the above inflammatory 
mediators requires activation of  the transcription factor 
NF-κB. In addition, existing evidence suggest that redox-
sensitive transcription factors NF-κB activation mediates 
the gene expression of  pro-inflammatory cytokines such 
as TNF-α and IL-1β[11]. Therefore, this study addressed 
the activation of  liver NF-κB in our cold ex vivo model, 
and failed to detect any significant reduction in liver NF-
κB activation with P-selectin blockade throughout the 
perfusion period. This finding supports our results for 
P-selectin and ICAM-1 expression, with the exception 
of  ICAM-1 mRNA levels at 60 min perfusion. A 
corresponding decrease in NF-κB activation was found 
at 60 min perfusion with P-selectin blockade, but did not 
achieve statistical significance. 

Although most studies that characterized the 
benefit of  P-selectin blockade in liver I/R injury used 
monoclonal antibodies or recombinant P-selectin 
ligands, in the present study we used a polyclonal 
antibody. Our use of  a polyclonal antibody is not 
unusual, since other investigators have employed 
polyclonal antibodies to investigate blockade of  
mediators involved in I/R injury[60]. It is likely that our 

results are not in agreement with earlier studies because 
we employed a polyclonal antibody and at a different 
dose. Alternately, the antibody may have reacted with 
activated platelets and complement factors, as was later 
found for the monoclonal antibody PB1.3 used in the 
initial report that reported that P-selectin blockade alone 
protected the liver form I/R injury[20]. Nonetheless, while 
the general mechanism of  selectin-dependent rolling of  
PMNs followed by firmer adhesion to endothelial cells 
by integrins and ICAM-1 is applicable to the vasculature 
of  some organs and tissues (heart, lung, intestine, and 
cremaster muscle), this might not be the case for the 
entire vasculature of  the liver[23,24]. 

In summary, this study demonstrates that while 
P-selectin blockade alone increased total bile flow in 
the IPRL model, it failed to protect the liver from I/R 
injury.
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