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Rationale: Induced mainly by cigarette smoking, chronic obstructive
pulmonary disease (COPD) is a global public health problem character-
ized by progressive difficulty in breathing and increased mucin pro-
duction. Previously, we reported that acrolein levels found in COPD
sputum could activate matrix metalloproteinase-9 (MMP9).
Objectives: To determine whether acrolein increases expression and
activity of MMP14, a critical membrane-bound endopeptidase that can
initial a MMP-activation cascade.
Methods: MMP14 activity and adduct formation were measured follow-
ing direct acrolein treatment. MMP14 expression and activity was
measured in human airway epithelial cells. MMP14 immunohistochem-
istry was performed with COPD tissue, and in acrolein- or tobacco-
exposed mice.
Measurements and Main Results: In a cell-free system, acrolein, in
concentrationsequal tothosefoundinCOPDsputum,directlyadducted
cysteine 319 in the MMP14 hemopexin-like domain and activated
MMP14. Incells,acrolein increasedMMP14activity,whichwasinhibited
by a proprotein convertase inhibitor, hexa-D-arginine. In the airway
epithelium of COPD subjects, immunoreactive MMP14 protein in-
creased. In mouse lung, acrolein or tobacco smoke increased lung
MMP14 activity and protein. In cells, acrolein-induced MMP14 tran-
scripts were inhibited by an epidermal growth factor receptor (EGFR)
neutralizing antibody, EGFR kinase inhibitor, metalloproteinase inhib-
itor, or mitogen-activated protein kinase (MAPK) 3/2 or MAPK8 in-
hibitors, but not a MAPK14 inhibitor. Decreasing the MMP14 protein
and activity in vitro by small interfering (si)RNA to MMP14 diminished
the acrolein-induced MUC5AC transcripts. In acrolein-exposed mice or
transgenic mice with lung-specific transforming growth factor-a (an
EGFR ligand) expression, lung MMP14 and MUC5AC levels increased
and these effects were inhibited by a EGFR inhibitor, erlotinib.
Conclusions: Taken together, these findings implicate acrolein-induced
MMP14 expression and activity in mucin production in COPD.
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chronic obstructive pulmonary disease

A leading cause of morbidity (.14 million cases) and mortal-
ity (.110,000 deaths/yr) in the United States (1), chronic
obstructive pulmonary disease (COPD) is marked by excessive
mucin production, chronic cough, shortness of breath, and

labored breathing (2–4). The pathogenesis of COPD involves
proteinase/antiproteinase imbalance that leads to disruption of
the alveolar structure (emphysema) and alteration of the
airway architecture (bronchitis) (3, 5), the latter is marked
by decreased ciliated and Clara cells and increased mucin-
producing cells. The etiology of COPD has been studied
extensively and it is clearly linked to cigarette smoking and
other environmental exposures (2–4, 6). Cigarette smoke
contains numerous irritants but none stronger than acrolein
(7–10), a potent inducer of excessive mucin production in
laboratory animals (11–13). Excessive mucin production in
more advanced COPD is associated with rapid declines in lung
function and more frequent exacerbations (including hospital-
ization and death) (5, 14).

In the lung, the major proteinases include the matrix
metalloproteinases (MMPs) and a disintegrin and metallopep-
tidase domain proteins (including ADAM17 [a disintegrin and
metalloproteinase domain-17], also called TACE [tumor ne-
crosis factor-a converting enzyme]) (15–18). Secreted MMPs
are typically inactive zymogens (pro-MMPs) and are activated
through initial cleavage by the other MMPs or serine endo-
peptidases (including neutrophil elastase) and subsequent
autocatalytic cleavage. However, certain pro-MMPs lack se-
quences susceptible to proteolytic activation (19) and are
activated by the membrane-bound MMP14 (also known as
membrane type 1-MMP), an event that triggers an MMP
activation cascade (20, 21). Unlike secreted MMPs, MMP14
is activated by proprotein convertases in the trans-Golgi
network, allowing cell-specific control of secreted MMP acti-
vation. The cell surface localization of MMP14 permits
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Scientific Knowledge on the Subject

Acrolein is a component of cigarette smoke and also can be
endogenously generated in the airways of persons with
chronic obstructive pulmonary disease (COPD).

What This Study Adds to the Field

Low-level acrolein concentrations (equivalent to those
present in COPD sputum) activated and increased matrix
metalloproteinase-14 (MMP14) transcripts, protein, and
activity. MMP14 immunostaining increased in the airway
epithelium of subjects with COPD. Inhibition of MMP14
induction, by epidermal growth factor receptor kinase
inhibitors, reduced acrolein-induced mucin levels in mouse
lung. Thus, local pharmacological inhibition of MMP14 in
the airway epithelium could be useful in the treatment of
COPD-related mucin overproduction.
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targeting protease activation to pericellular regions. The
expression of MMP14 and subsequent activation of MMPs is
seen in normal lung fibroblasts exposed to cigarette smoke
extract in vitro (22).

Previously, MMP9 and ADAM17 have been found to me-
diate increased mucin production, especially mucin 5AC,
oligomeric mucus/gel-forming (MUC5AC) (12, 23, 24),
through mobilization of epidermal growth factor (EGF) family
ligands that bind to and activate receptor-type protein tyrosine
kinases, including epidermal growth factor receptor (EGFR)
(18, 23–30). However, small interfering RNA (siRNA) di-
rected against ADAM17 and MMP9 did not completely inhibit
the acrolein-induced increase in MUC5AC transcripts. In
addition, gene-targeted mice lacking MMP9 had only a partial
reversal of phenotype (24), suggesting a role of other MMPs in
increased MUC5AC transcript levels. Inasmuch as cell surface
mobilization of EGF ligands requires localized protease
activation and because MMP14 activation can initiate MMP
activation cascades at the cell surface, we sought to examine
whether MMP14 transcripts are increased in airway epithelial
cells and the role of MMP14 activation in acrolein-induced
MUC5AC expression.

METHODS

Experimental Design

In a cell-free system, MMP14 activity was measured after submicro-
molar acrolein exposures at concentrations similar to those found in
COPD sputum and acrolein protein adducts were measured by mass
spectrometry. In human airway epithelial cells, MMP14 protein
activity was measured and the role of proprotein convertase pro-
cesses evaluated after treatment with an inhibitor, hexa-D-arginine.
Immunoreactive MMP14 protein and periodic acid–Schiff staining for
mucus glycoprotein was measured in the airway of subjects with
COPD and control subjects. Immunoreactive MMP14 protein was
measured in the airway of mice exposed to acrolein or cigarette
smoke. To determine the role of EGFR and mitogen-activated
protein kinase (MAPK) signaling in MMP14 expression, MMP14
transcripts were measured in human airway cells treated with
neutralizing antibody (LA1), EGFR kinase inhibitor (AG1478),
metalloproteinase inhibitor (GM6001), or MAPK3/2 (PD98059),
MAPK8 (SP600125), or MAPK14 (ML3403) inhibitor. In human
airway epithelial cells, siRNA to MMP14 was used to determine
whether increases in acrolein-induced MUC5AC transcript levels
were mediated by MMP14. Last, acrolein-exposed FVB/NJ (non-

Figure 1. Acrolein increases matrix metalloproteinase-14 (MMP14)

transcripts and protein levels. (A) Lung MMP14 transcript levels
increased in FVB/NJ mice exposed to acrolein compared with control

mice. FVB/NJ mice were exposed to acrolein (2.0 ppm 3 6 h/d 3

5 d/wk 3 4 wk) or filtered air (control mice) and lung MMP14 levels

were measured by quantitative real-time polymerase chain reaction
(qRT-PCR). The results are expressed as fold change in the level of

transcript after normalizing to glyceraldehyde-3-phosphate dehydro-

genase (GAPDH). (B) Lung MMP14 protein levels increased in FVB/NJ
mice exposed to acrolein. MMP14 protein level as determined by

Western blot increased in acrolein-exposed FVB/NJ mouse lung after

acrolein exposure. Each lane was loaded with 60 mg of protein

obtained from an individual mouse that is representative of each
group (n 5 5 mice per treatment). (C ) MMP14 transcript levels

increased in NCI-H292 cells or normal bronchial epithelial (NHBE)

cells treated with 100 nM acrolein (4 h). The level of MMP14

transcript was determined by qRT-PCR. Results are expressed as fold
change in the level of MMP14 transcripts after normalizing to

ribosomal protein L32 (RPL32). (D) MMP14 transcripts increased in

NCI-H292 cells in a concentration-dependent manner after acrolein

treatment. Confluent serum-starved NCI-H292 cells or NHBE cells
were treated (4 h, 378C) with 10–300 nM acrolein. Values represent

means 6 SEM (n 5 5–9). *Significantly different from control mice,

using an all-pairwise multiple-comparison analysis of variance pro-
cedure (Holm-Sidak method).

b
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transgenic) strain mice or doxycycline-regulatable transgenic mice
with induced lung-specific transforming growth factor-a (an EGFR
ligand) expression were treated with vehicle (control) or with an
EGFR kinase inhibitor, erlotinib, and lung MMP14 and MUC5AC
transcript levels measured. Values are presented as means 6 standard
errors and were considered significant when P , 0.05 as determined
by analysis of variance using an all-pairwise multiple-comparison
procedure (Holm-Sidak method) (SigmaStat 3.5; Systat Software,
Inc., San Jose, CA). See the online supplement for additional details
of the methods used.

RESULTS

Acrolein Increases Airway Epithelial MMP14 Transcript,

Protein, and Activity

Repetitive acrolein exposure increased murine MMP14 tran-
script levels in FVB/NJ mouse lung (Figure 1A). MMP14

protein in the whole lung homogenates in acrolein-exposed
FVB/NJ mice increased as compared with control (unexposed)
mice (Figure 1B). MMP14 transcripts increased in acrolein-
treated normal bronchial epithelial (NHBE) cells (Figure 1C)
and acrolein increased MMP14 transcripts in airway epithelial
(NCI-H292) cells in a concentration-dependent manner (Fig-
ure 1D). Thus MMP14 transcripts and protein increased after
acrolein treatment. In addition, MMP14 activity also increased
in acrolein-treated FVB/NJ mouse lung (1.6 6 0.43 ng/ml) as
compared with control mouse lung (0.52 6 0.043 ng/ml)
(Figure 2A). MMP14 activity increased in acrolein-treated
NCI-H292 cells after acrolein exposure (8.78 6 0.24 ng/ml) as
compared with the control (2.87 6 0.24 ng/ml) (Figure 2B).
Pretreatment with a proprotein convertase (furin) inhibitor,
hexa-D-arginine, diminished the acrolein-induced increase in
MMP14 activity (Figure 2C).

Acrolein Binds to Cysteine-319 of MMP14 Protein

The mass spectral data generated from the full-scan analysis of
the digestion of MMP14 were searched against the Uniprot-T
database, subset human (Uniprot-T Consortium). This search
resulted in the identification of 60 different peptides, including
the peptide NPTYGNICDGFDTVAMLR that corresponds
to amino acid residues 311 to 328 of the sequence of MMP14.
The mass spectral data collected from the analysis of acrolein-
exposed MMP14 was searched, using the same database.
Twenty-four peptides were identified, and again the peptide
NPTYGNICDGFDTVAMLR was identified. When these pep-
tides were compared, the 21 charge states displayed a mass
difference of 28.51067 Da, a mass corresponding to an addition
of acrolein to the peptide (Figure 3). The acrolein treatment of
MMP14 was repeated and analyzed by single-ion monitoring
mass spectrometry. When the mass ranges corresponding to
the 21 and 31 charge states were scanned, in each case a base
peak was observed at 42.95 minutes. This peak eluted at the
same time as a peak in the full-scan mass spectrum and
displayed mass spectra of the doubly and triply charged
acrolein–adducted MMP14 (Figure 4). These data are consis-
tent with an acrolein adduction occurring at the position 319

Figure 2. Acrolein increases matrix metalloproteinase-14 (MMP14)

activity. (A) Acrolein increased MMP14 activity in mouse lung. FVB/NJ

mice were exposed to acrolein (2.0 ppm 3 6 h/d 3 5 d/wk 3 4 wk) or
filtered air (control). MMP14 activity was determined by capturing

active MMP14 with anti-MMP14 antibody, which was then used to

activate a modified prourokinase detection enzyme to cleave a chro-
momeric peptide substrate and the resultant color was read spectro-

photometrically at 405 nm. A serial dilution of known sample of active

MMP14 was run simultaneously to obtain a reference curve. Each

sample was analyzed in the linear portion of the curve and the relative
amount of active MMP14 was determined by comparing the OD405 of

each sample against the standard curve. (B) Acrolein increased MMP14

activity in NCI-H292 cells. Confluent serum-starved NCI-H292 cells

were treated with acrolein (300 nM, 4 h, 378C) and MMP14 activity
was determined. (C) A proprotein convertase inhibitor, hexa-D-arginine,

inhibited acrolein-induced MMP14 activity by 61 6 8%. Conflu-

ent serum-starved NCI-H292 cells were pretreated with 0.625 mM

hexa-D-arginine and incubated with acrolein (300 nM, 4 h, 378C), and
MMP14 activity was determined. Values represent means 6 SEM (n 5

5–10). *Significantly different from control (P , 0.05), using an all-

pairwise multiple-comparison analysis of variance (ANOVA) procedure
(Holm-Sidak method). †Significantly different from acrolein treatment

(P , 0.05), using an all-pairwise multiple-comparison ANOVA pro-

cedure (Holm-Sidak method).

b
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cysteine. Thus, acrolein not only increases MMP14 production
and activity but directly conjugates to a cysteine residue known
to form a disulfide bond within the hemopexin domain of
MMP14.

MMP14 Mediates Increased MUC5AC after Acrolein Exposure

Immunostaining for MMP14 protein increased in the airways of
subjects with COPD (Figures 5A–5D) and MMP14 staining
accompanied increased mucus granule–containing (goblet) cells
in the airway epithelium (Figures 5E and 5F). MMP14 immuno-
staining also increased in the airway epithelium of acrolein-
exposed mice (Figures 6A–6D) or tobacco smoke-exposed mice
(Figures 6E–6H). To determine the role of MMP14 in acrolein-
induced MUC5AC increase, we transfected NCI-H292 cells with
siRNA directed against MMP14. MMP14 siRNA decreased
MMP14 transcript and protein levels, and activity (Figure 7A).
NCI-H292 cells transfected with MMP14 siRNA had reduced
levels of constitutive MUC5AC transcripts and demonstrated
no increase in MUC5AC transcripts after acrolein treatment
(Figure 7B). In contrast, nontransfected cells and cells trans-
fected with scrambled siRNA demonstrated a normal response
to acrolein (Figure 7B). Thus, NCI-H292 cells transfected with
MMP14 siRNA responded less to acrolein treatment, support-
ing the hypothesis that acrolein-induced increases in MUC5AC
are mediated by MMP14.

MMP14 Transcript Levels Increase after Acrolein Treatment

through EGFR/MAPK3/2/MAPK8 Signaling

Pretreatment with EGFR tyrosine kinase inhibitor (AG1478)
(Figure 8A) or LA1 (see Figure E1 in the online supplement),
a neutralizing antibody against EGFR, diminished the acro-
lein-induced increase in MMP14 transcripts in NCI-H292 cells.
EGFR activation leads to activation of downstream mitogen-
activated protein kinase (MAPK). Pretreating the cells with
MAPK3/2 inhibitor PD98059 (Figure 8A), with MAPK8
(c-Jun N-terminal kinase or JNK) inhibitor SP600125 (Figure
8B), or with metalloproteinase inhibitor GM6001 (Figure E1)
diminished the acrolein-induced increase in MMP14 tran-
scripts. Pretreatment with an MAPK14 (p38) inhibitor had
no effect on the acrolein-induced increase in MMP14 tran-
scripts (Figure 8B). Previously, we found that an EGFR
antagonist, erlotinib, inhibited acrolein-induced MUC5AC
transcripts and immunoreactive mucin protein in FVB/NJ
mice (24). Lung MMP14 transcripts increased in acrolein-
exposed mice and this effect was inhibited by erlotinib
(Figure 9A). Likewise, acrolein-induced increased MUC5AC
was inhibited by erlotinib (Figure 9B). In addition, lung
MMP14 (Figure 9C) and MUC5AC (Figure 9D) transcripts
increased with conditional doxycycline-inducible transforming
growth factor-a, an EGFR ligand, and erlotinib attenuated this
effect in doxycycline-treated mice. Thus, increased MMP14
and MUC5AC transcript levels in acrolein-treated airway epithe-

Figure 3. Mass spectrum of matrix metalloproteinase-14 (MMP-14) or acrolein-treated MMP-14 tryptic digests. Mass spectrum of MMP14 before

and after acrolein treatment demonstrates a change in the 21 charge state of the NPTYGNICDGFDTVAMLR peptide consistent with acrolein adduct

formation. (A1) Full scan of MMP-14. (A2) Mass spectrum of the peptide NPTYGNICDGFDTVAMLR, 21 charge state. (B1) Full scan of MMP-14 that
has been exposed to acrolein. (B2) Mass spectrum of the peptide NPTYGNICDGFDTVAMLR with the adduction of acrolein, 21 charge state. The

mass spectral data generated from the full-scan analysis of the digestion of MMP-14 were searched against the Uniprot-T database, subset human

(Uniprot-T Consortium).
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lial cells are accompanied by metalloproteinase-mediated, EGFR
ligand–dependent MAPK3/2 and MAKP8 signaling.

DISCUSSION

It is clear that acrolein can initiate mucin overproduction in
vivo. Animals exposed repeatedly to acrolein develop histolog-
ical changes including epithelial damage, mucous cell meta-
plasia, and bronchiolitis, accompanied by excessive macrophage
accumulation in the airways (11, 31, 32). Acrolein exposure in-
creased mucus-producing cells in airways and increased MUC5AC
transcripts in the lungs of Sprague-Dawley rats (11) and MUC5AC
and immunoreactive mucin in the lungs of FVB/NJ mice
(12, 24). MMPs have been proposed to play an important role
in pathogenesis of COPD with several articles describing the
role of MMPs in various lung pathologies (33). In this study, we
examine whether acrolein alters expression and activation of
MMP14, a critical membrane-bound endopeptidase that can
initiate an MMP activation cascade.

The acrolein levels used in this study (submicromolar in vitro
and 2 ppm in vivo) are relevant to common human exposures.
Acrolein levels in second-hand tobacco smoke are elevated
compared with mainstream smoke, because concentrations are
increased in side-stream smoke due to altered tobacco combus-
tion at lower temperatures (34–36). More than 30 million
nonsmokers in the United States are exposed to acrolein
concentrations in indoor air ranging from 0.8 to 1.5 ppm

and levels between 0.1 and 10 ppm have been detected in bars
and restaurants (35, 37–39). Acrolein is also generated by
biomass fuel combustion and high-temperature cooking with
oils (especially in woks) and is the major irritant in grassland
and forest fires, and diesel exhaust (34, 35, 40, 41). In addition to
exogenous exposure, acrolein is endogenously generated in
inflamed tissues from threonine by myeloperoxidase activation
(42–45), spermine or spermidine by amine oxidase–mediated
catabolism (46–50), or possibly membrane fatty acids by
oxidative degradation (35, 51–53).

Because it forms a highly reactive zwitterion (1CH2CH5

CHO2) through electron rearrangement of the a,b-unsaturated
bond, acrolein readily reacts with various molecules on the airway
surface and thus it is nearly completely retained in the respira-
tory epithelium (10, 54). Acrolein readily attacks nucleophiles,
especially thiol-containing proteins (10, 53, 55, 56). Of all the
a,b-unsaturated 2-alkenals, acrolein is among the strongest elec-
trophiles (51), the most irritating (i.e., concentrations as low as
0.06 ppm can cause eye irritation within 5 min) (7, 57, 58), and
share in the ability to covalently modify macromolecules, which
disrupt critical cellular functions or cause mutations (51, 59–62).
Acrolein–protein adducts accumulate in ischemic tissue (52, 63)
and in atherosclerotic lesions (45, 64), and we found that acrolein
can directly bind to and activate MMP14 in this study.

Previously we reported a role for MMP9 and MMP12 in
acrolein-induced MUC5AC expression (12, 23, 24). Acrolein
increased MUC5AC transcripts and mucin protein in strain-

Figure 4. Mass spectrum of matrix metalloproteinase-14 (MMP14) or acrolein-treated MMP-14 tryptic digests. Mass spectrum before and after
acrolein treatment demonstrates that adduct formation occurs at cysteine-319 in the hemopexin domain of MMP14. (A1) Full scan of acrolein-treated

MMP14. (A2) Extracted ion scan for masses 1127.99 to 1128.03 Da, showing the presence of a single peak at 42.95 minutes. (A3) Mass spectrum of the

peak eluting at 42.95 minutes, which is the 21 charge state of the mass corresponding to acrolein adduction to MMP14. (B1) Full scan of acrolein-

treated MMP14. (B2) Extracted ion scan for masses 752.34 to 752.36 Da, showing the presence of a base peak at 42.95 minutes. (B3) Mass spectrum of
the peak eluting at 42.95 minutes, which is the 31 charge state of the mass corresponding to acrolein adduction to MMP14. Analyses were performed

by single-ion monitoring mass spectrometry.
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matched control Mmp91/1 mice more than gene-targeted
Mmp92/2 mice (23, 24). Similarly, acrolein increased MUC5AC
transcripts and macrophage accumulation in lungs of strain-
matched control Mmp121/1 mice more than in gene-targeted
Mmp122/2 mice (12). Acrolein increased the transcript levels of
MUC5AC in NCI-H292 cells (31) and normal bronchial epi-
thelial (NHBE) cells (23, 24). This increase in MUC5AC
transcripts is mediated through an EGFR–MAPK pathway that
is initiated by ectodomain shedding of EGFR ligands mediated
by metalloproteinases ADAM17 and MMP9 (23). However,
siRNA directed against ADAM17 and MMP9 did not com-
pletely inhibit the acrolein-induced increase in MUC5AC
transcripts. Similarly, the inhibition of acrolein-induced
MUC5AC increase was partial in the lungs of gene-targeted
Mmp92/2 as compared with Mmp91/1 mice, suggesting a role

for another MMP in acrolein-induced MUC5AC increase.
Previously, Ning and colleagues (22) demonstrated that ciga-
rette smoke extract increased MMP14 transcript levels in
human lung fibroblasts, so MMP14 was a reasonable candidate
for further study in human airway epithelial cells and in vivo
in mice.

Unlike secreted MMPs, MMP14 is associated with the cell
surface through a type 1 transmembrane domain (65). MMP14
is important in lung development as evidenced by a defect in for-
mation of alveolar septae in Mmp142/2 mice (66, 67). MMP14
can activate pro-MMP2 (68) and pro-MMP13 (69), which in
turn can cleave pro-MMP9 (70). Here we found that acrolein
increased MMP14 transcript (Figure 1A), protein (Figure 1B),
and activity (Figure 2A) in the lungs of FVB/NJ mice. The
inhaled acrolein concentration (2 ppm 3 6 h/d) is estimated to

Figure 5. Matrix metalloproteinase-14 (MMP14) immu-
nostaining increases in subjects with chronic obstructive

pulmonary disease (COPD). Lung specimens were ob-

tained from human subjects undergoing lung transplant

surgery for COPD treatment under institutional review
board–approved protocols at the Washington University

Medical Center (St. Louis, MO) and immunostaining with

anti-MMP14 was performed. Immunostaining with anti-
MMP14 antibody (red stain) increased in the lungs from

(C and D) subjects with COPD as compared with (A and B)

healthy subjects. The localization was notable for the

presence of MMP14 in columnar airway epithelial cells,
mononuclear cells in the alveolus, including pigmented

macrophages (insets). In subjects with COPD, areas of

mucous cell metaplasia were present when stained for (E)

periodic acid–Schiff-positive mucus glycoprotein (red-purple)
and corresponded with (F) translucent-appearing unstained

cells (arrowheads) when immunostained with anti-MMP14

antibody in serial sections.
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deliver an acrolein dose to the lung equivalent to 0.5–1.0 cig-
arette pack per day. Acrolein increased MMP14 transcripts in
NHBE and NCI-H292 cells (Figure 1C). Moreover, the acrolein
concentration necessary to increase MMP14 was as low as 30 nM
(Figure 1D), which is a concentration well within the concen-
trations we previously measured in sputum from subjects with
COPD (131 6 24 nM) (24).

MMP14 activity is tightly controlled at the transcriptional
and posttranslational levels. MMP14 is produced as a latent
propeptide that keeps the enzyme latent through the interaction
of a cysteine residue with a zinc ion in the catalytic domain.
MMP14 has a unique regulatory mechanism in which the active
enzyme undergoes a series of processing steps, either autocat-
alytic (71, 72) or mediated by other proteases (73, 74), initially
to an enzymatically active (z56-kD) species and ultimately
to an inactive membrane-tethered (z44-kD) species lacking
the entire catalytic domain, thereby regulating the activity and
nature of MMP14 proteins at the cell surface and at the
pericellular space. MMP14 contains an RXK/RR proprotein
convertase enzyme recognition motif between the propeptide
and catalytic domain, which can be activated by intracellular
subtilisin-type serine proteinases (e.g., furin) before MMP14
reaches the cell surface (73). Pretreatment with a furin inhibi-
tor partially decreased the acrolein-induced increase in MMP14
activity (Figure 2C), suggesting the presence of an additional
mechanism for increased MMP14 activity after acrolein
treatment.

Inhaled or endogenously generated acrolein reacts directly
with protein and nonprotein sulfhydryl groups, mainly at the cell
surface, and with primary and secondary amines found in the
intracellular proteins (34, 35). In lungs, MMP14 is expressed on
surface epithelial cells (75, 76) (Figures 5 and 6). Conjugation
of the carbon of acrolein with sulfhydryl groups by a Michael

addition reaction is rapid and essentially irreversible (35, 77).
Cysteine residues near the transmembrane domain or in the
catalytic domain could potentially interfere with the autocata-
lytic processing and thus increase the amount of active MMP14
present on the cell surface and thus potentially increase MMP14
activity. When MMP14 was treated with acrolein, we identified
a cysteine-319 adduct (Figures 3 and 4), which is contained within
a hemopexin-like domain and not the conserved ‘‘cysteine switch’’
domain that is cleaved by proprotein convertases. Hemopexin
domains are usually involved in substrate recognition of large
matrix molecules at sites distant from the catalytic domain (78,
79). However, MMP14 is membrane localized and hemopexin
domains appear to be critical for MMP14 dimerization. One
process that would require MMP14 self-interaction is the major
form of enzyme inactivation by autocatalytic cleavage (72, 74, 79).
We propose that our data suggest that MMP14 surface activity is
preserved by interference with hemopexin domain–mediated
dimerization and autocatalytic inactivation resulting in persis-
tence of active MMP14 on the cell surface of acrolein-treated
airway epithelial cells.

MMP14 activity is also regulated at the transcriptional level
and can be controlled at the protein level via anti-proteinase
inhibitors (80). Acrolein treatment increased the transcript
levels of MMP14 in NCI-H292 cells and NHBE cells (Figure
1C). Cytokines (including IL-2, IL-8, and monocyte chemo-
kine protein-1) (81, 82) and growth factors (including EGF
[83], fibroblast growth factor-1 [84], vascular endothelial
growth factor [85], and insulin-like growth factor-1 [86]) can
induce MMP14 expression in various cell lines. Previously,
MMP14 has been found to be expressed on rabbit surface
airway epithelial cells (75) and alveolar type II cells (76) and in
human adenocarcinoma cells (87). We found that MMP14
transcripts increased in the lungs of FVB/NJ mice exposed to

Figure 6. Matrix metalloproteinase-14 (MMP14) immuno-
staining increases in FVB/NJ mouse airway epithelium after

acrolein or tobacco smoke exposure. FVB/NJ mice were

exposed to (A, B, E, and F) filtered air (control), (C and D)

acrolein (2.0 ppm 3 6 h/d 3 5 d/wk 3 4 wk), or (G and H )
tobacco smoke (100 mg/m3 total suspended particulates 3

6 h/d 3 5 d/wk 3 13 wk) and lung sections were incubated

with (A, C, E, and G) control anti-IgG (diluted 1:100) or (B, D,

F, and H) anti-MMP14 (diluted 1:100) antibody. In each
image, the airway lumen is above the epithelium, which

stains red-brown in the presence of MMP14. Endogenous

peroxidase activity was quenched and specimens were incu-

bated with horseradish peroxidase–labeled goat anti-mouse
secondary antibody (diluted 1:5,000) in antibody dilution

buffer, twice rinsed with phosphate-buffered saline (PBS),

incubated with chromogen 3,39-diaminobenzidine tetrachlo-
ride (0.05% in PBS), and counterstained with hematoxylin.

The sections were visualized with a SPOT 2000 microscope

(340 objective) and the images were captured with a cooled

charge-coupled device camera.
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acrolein (Figure 1A). Immunostaining for MMP14 increased
in the lungs of FVB/NJ mice exposed to acrolein or tobacco
smoke (Figure 6) and in the airways of human subjects with
COPD (Figure 5). It is important to note that the subjects with
COPD were not current smokers, which suggests that in-
creased MMP14 can be persistent (possibly due to endoge-
nously generated acrolein).

We used siRNA to confirm the role of MMP14 transcripts
in acrolein-induced MUC5AC increase (Figure 7). siRNA
directed against MMP14 efficiently decreased the transcript
and protein levels. NCI-H292 cells transfected with siRNA had
lower constitutive levels of MUC5AC transcripts as compared
with untransfected cells or cells transfected with scrambled
siRNA. Transcript levels of MUC5AC in NCI-H292 cells
transfected with MMP14 siRNA after acrolein treatment were
not significantly different from control cells. Untransfected
cells responded appropriately to acrolein treatment. These
results indicate that MMP14 plays a critical role in acrolein-

induced MUC5AC increase. As noted previously, MMP14 can
activate MMP13 and MMP2, which in turn could activate
MMP9. Thus, several MMPs are likely to contribute to
MUC5AC increases.

Past investigations of MMP14 regulation have focused on
protein processing (as noted previously), and therefore less
is known about the signal transduction pathways involved
in increased MMP14 expression in the lung. Inhibition of
MAPK3/2 (ERK1/2) decreased MMP14 expression in fibro-
sarcoma cells (88). MAPK3/2 but not MAPK8 (JNK) or
MAPK14 (p38) regulates increased MMP14 expression in rat
endothelial cells (89) and lung fibroblasts (22). Moreover,
constitutively active MAP2K increased MMP14 expression in
MDK cells (90) and an MAP2K1/2 (MEK1/2) inhibitor di-
minished cigarette smoke extract–induced MMP14 expression
in lung fibroblasts (22). Here we report that an EGFR kinase
inhibitor diminished the acrolein-induced increase in MMP14
transcripts, confirming the role of EGFR in the acrolein-
induced increase in NCI-H292 cell (treated with AG1478)
(Figure 8A) and mouse lung (treated with erlotinib) (Figure 9)
MMP14 transcripts. Treatment with MAP3/2 inhibitor
(PD98059) and the MAPK8 (JNK) inhibitor (SP600125), but
not the MAPK14 (p38) inhibitor (ML3403), decreased the
acrolein-induced increase in MMP14 transcripts, suggesting
that MAPK3/2 (ERK1/2) and MAPK8 (JNK), but not
MAPK14 (p38), are involved in the response initiated by
acrolein in the airway epithelium. Thus, regulation of
MMP14 expression in the airway epithelium (which includes
MAPK8) differs from that in lung fibroblasts.

The MMP proteinase activity can be regulated by a counter-
balance with antiproteinase. For example, the tissue inhibitors
of metalloproteinase proteins (TIMPs) represent a family of at
least four 20- to 29-kD secreted proteins (TIMPs 1–4) that
reversibly inhibit the MMPs in a 1:1 stoichiometric fashion (91).
TIMP1 (92), TIMP2, TIMP3, and TIMP4 (93) are expressed in
bronchial epithelium. TIMP2 (80) and TIMP3 (94), but not
TIMP1 (95), inhibit MMP14 activity. TIMP3 also has the unique
ability to bind via its C-terminal domain to heparin sulfate

Figure 7. Matrix metalloproteinase-14 (MMP14) mediates acrolein-
induced increases in mucin 5AC, oligomeric mucus/gel-forming

(MUC5AC) transcripts in human airway epithelial (NCI-H292) cells.

(A) Top: MMP14 transcript levels were diminished in NCI-H292 cells
transfected with small interfering RNA (siRNA) directed against MMP14

as compared with cells transfected with scrambled siRNA (negative

control) or untransfected cells. Bottom: To determine whether siRNA-

diminished transcript levels were accompanied by decreased MMP14
protein and activity, protein was isolated and subjected to Western

blotting. (B) Acrolein-induced MUC5AC transcripts were diminished in

NCI-H292 cells transfected with siRNA against MMP14 as compared

with cells transfected with scrambled (nonsense) siRNA. NCI-H292 cells
(40% confluent) were transfected with siRNA against MMP14 or

scrambled siRNA (negative control) and compared with cells not

transfected with siRNA. Cells were incubated (378C, 36 h) and then
treated with vehicle or acrolein (300 nM, 4 h, 378C). RNA was isolated

and the level of MUC5AC transcript was determined by quantitative

real-time polymerase chain reaction. The results are expressed as fold

change in the level of MMP14 or MUC5AC transcripts after normalizing
to ribosomal protein L32 (RPL32). Values represent means 6 SEM (n 5

6–9). *Significantly different from control (P , 0.05), using analysis of

variance (ANOVA) with all-pairwise multiple-comparison ANOVA pro-

cedure (Holm-Sidak method). †Significantly different from acrolein
treatment (P , 0.05), using an all-pairwise multiple-comparison

ANOVA procedure (Holm-Sidak method).

b
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proteoglycans within the extracellular matrix, thereby concentrat-
ing it to specific regions within tissues and basement membranes
(96). Unlike other TIMPs, TIMP3 is subject to a high degree of
transcriptional regulation (97). Previously, we determined that
TIMP3 transcript levels decreased in the lungs of FVB/NJ mice

after acrolein exposure (23), which also could contribute to an
increase in MMP14 and other proteinase activity.

In summary, these findings implicate acrolein-induced
MMP14 expression and activity in mucin production in COPD.

Figure 8. Acrolein-induced increases in matrix metalloproteinase-14

(MMP14) transcript levels are mediated by epidermal growth factor

receptor (EGFR) and mitogen-activated protein kinase (MAPK) signal-

ing in human airway epithelial (NCI-H292) cells. (A) Acrolein-induced
increases in transcript levels of MMP14 were diminished by an EGFR

kinase inhibitor (0.250 mM AG1478) or an MAPK3/2 inhibitor (5 mM

PD98059), by 72 and 57%, respectively. (B) MMP14 transcript levels
were also decreased in cells treated with an MAPK8 (also called c-Jun

N-terminal kinase, JNK) inhibitor (5 mM SP600125) by 41%, but not in

cells treated with MAPK14 (also called p38 MAPK) inhibitor (5 mM

ML3403) by 2%. Confluent NCI-H292 cells were pretreated (378C, 1 h)
with inhibitor and then incubated with vehicle or acrolein (100 nM,

4 h, 378C). RNA was isolated and the level of MMP14 transcript was

determined by quantitative real-time polymerase chain reaction. The

results are expressed as fold change in the level of MMP14 transcripts
after normalizing to ribosomal protein L32 (RPL32). Values represent

means 6 SEM (n 5 4–6). *Significantly different from control (P ,

0.05), using an all-pairwise multiple-comparison ANOVA procedure
(Holm-Sidak method). †Significantly different from acrolein treatment

(P , 0.05), using an all-pairwise multiple-comparison ANOVA pro-

cedure (Holm-Sidak method).

Figure 9. Epidermal growth
factor receptor (EGFR) inhibition

diminishes acrolein- or trans-

forming growth factor (TGF)-

a–induced increases in matrix
metalloproteinase-14 (MMP14)

or mucin 5AC, oligomeric mu-

cus/gel-forming (MUC5AC) tran-

scripts in FVB/NJ mouse lung. (A)
Acrolein-induced increases in

MMP14 transcripts were dimin-

ished in mice pretreated with an
EGFR inhibitor (erlotinib) by 89%

compared with mice treated

with sterile vehicle control. FVB/

NJ mice were pretreated with
erlotinib (100 mg/kg/d by ga-

vage) or vehicle and exposed to

acrolein (2.0 ppm 3 6 h/d 3 5 d/

wk 3 4 wk). (B) Acrolein-induced
increases in MUC5AC transcripts

were diminished by 86% in mice

pretreated with an EGFR inhibitor

(erlotinib) compared with mice
treated with vehicle control. (C )

TGF-a induced increases in

MMP14 transcripts in conditional
transgenic mice after doxycycline

induction as compared with the

littermate controls maintained

without doxycycline for 8 weeks.
This effect was inhibited by

91% in mice pretreated with

an EGFR inhibitor (erlotinib,

100 mg/kg/d). (D) TGF-a in-
duced increases in MUC5AC tran-

scripts in conditional transgenic

mice after doxycycline induction
as compared with the littermate

controls maintained without

doxycycline for 8 weeks. This

effect was inhibited about 100%
in mice pretreated with an EGFR

inhibitor (erlotinib). RNA was iso-

lated and the levels of MMP14 or

MUC5AC transcripts were deter-
mined by quantitative real-time

polymerase chain reaction. The

results are expressed as fold
change in the level of MMP14

or MUC5AC transcripts after

normalizing to ribosomal pro-

tein L32 (RPL32). Values repre-
sent means 6 SEM (n 5 4–9

mice per group). *Signifi-

cantly different from control

(P , 0.05), using an all-pairwise
multiple-comparison analysis of

variance (ANOVA) procedure

(Holm-Sidak method). †Sig-

nificantly different from acrolein
or TGF-a treatment (P , 0.05),

using an all-pairwise multiple-comparison ANOVA procedure (Holm-
Sidak method).
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Low-level acrolein concentrations (equivalent to those present
in COPD sputum) activated and increased MMP14 transcripts,
protein, and activity. MMP14 immunostaining increased in
the airway epithelium of subjects with COPD. Inhibition
of MMP14 induction, by EGFR kinase inhibitors, reduced
acrolein-induced mucin levels in mouse lung. Thus, local
pharmacological inhibition of MMP14 in the airway epithelium
could be useful in the treatment of COPD-related mucin
overproduction.
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