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Rapid Synaptic Depression Explains Nonlinear Modulation
of Spectro-Temporal Tuning in Primary Auditory Cortex by

Natural Stimuli
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Institute for Systems Research, University of Maryland, College Park, Maryland 20742

In this study, we explored ways to account more accurately for responses of neurons in primary auditory cortex (A1) to natural sounds.
The auditory cortex has evolved to extract behaviorally relevant information from complex natural sounds, but most of our understand-
ing of its function is derived from experiments using simple synthetic stimuli. Previous neurophysiological studies have found that
existing models, such as the linear spectro-temporal receptive field (STRF), fail to capture the entire functional relationship between
natural stimuli and neural responses. To study this problem, we compared STRFs for Al neurons estimated using a natural stimulus,
continuous speech, with STRFs estimated using synthetic ripple noise. For about one-third of the neurons, we found significant differ-
ences between STRFs, usually in the temporal dynamics of inhibition and/or overall gain. This shift in tuning resulted primarily from
differences in the coarse temporal structure of the speech and noise stimuli. Using simulations, we found that the stimulus dependence
of spectro-temporal tuning can be explained by a model in which synaptic inputs to Al neurons are susceptible to rapid nonlinear
depression. This dynamic reshaping of spectro-temporal tuning suggests that synaptic depression may enable efficient encoding of

natural auditory stimuli.

Introduction

Most of our understanding of sound representation in cerebral
cortex comes from experiments using synthetic acoustic stimuli
(Kowalski et al., 1996; deCharms et al., 1998; Blake and Mer-
zenich, 2002; Miller et al., 2002; Gourevitch et al., 2008). Only a
few studies have tested how well models of auditory processing
generalize to more natural conditions in auditory cortex (Rot-
man et al., 2001; Machens et al., 2004) or homologous auditory
systems (Theunissen et al., 2000; Nagel and Doupe, 2008). In the
limited regimen of the synthetic stimuli used for model estima-
tion, a model might accurately predict neural responses, but it is
impossible to know how well that model generalizes to natural
conditions unless it is tested with natural stimuli (Wu et al.,
2006). The small number of experiments that have, in fact, eval-
uated functional models using complex natural sounds have re-
ported that the ability of current models to generalize to novel
natural stimuli is quite limited (Theunissen et al., 2000; Rotman
et al., 2001; Machens et al., 2004).

In this study, we evaluated one commonly used model, the
spectro-temporal receptive field (STRF), in terms of how it de-
scribes cortical responses to speech. The STRF is a linear model in
the spectral domain that describes the best linear mapping be-
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tween the stimulus spectrogram and the observed neural re-
sponse (Aertsen and Johannesma, 1981; Kowalski et al., 1996;
Klein et al., 2000; Theunissen et al., 2001; David et al., 2007).
Typically, STRFs are estimated using synthetic broadband stimuli
(Aertsen and Johannesma, 1981; Kowalski et al., 1996; deCharms
et al., 1998; Miller et al., 2002). Broadband noise is particularly
convenient because it allows for unbiased STRF estimates with
computationally efficient algorithms, such as spike-triggered av-
eraging (Klein et al., 2000). Classically, auditory neurons have
been described with just a single STRF, but recent studies in the
auditory cortex and avian song system have shown that STRFs
depend on the stimulus used for estimation (Theunissen et al.,
2000; Blake and Merzenich, 2002; Woolley et al., 2005; Goure-
vitch et al., 2008; Nagel and Doupe, 2008). Because auditory neu-
rons are nonlinear, STRFs estimated from natural stimuli can
vary substantially from those estimated from more commonly
used synthetic stimuli (Theunissen et al., 2000; Woolley et al.,
2005). These changes reflect the effects of important nonlinear
mechanisms activated by natural sounds in a way that cannot be
predicted from experiments with synthetic stimuli. In theory, a
synthetic stimulus that contains the essential high-order statisti-
cal properties of natural sounds should activate the same re-
sponse properties. However, it is not possible to produce such a
synthetic stimulus until these essential statistical properties are
fully characterized.

To look for stimulus-dependent STRFs in primary auditory
cortex, we compared STRFs estimated using continuous speech
to STRFs estimated using broadband noise composed of tempo-
rally orthogonal ripple combinations (TORCs) (Klein et al.,
2000). We tested for significant differences between STRFs esti-
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mated with different stimuli by comparing their ability to predict
responses in a novel data set not used for estimation (David and
Gallant, 2005). To understand what spectro-temporal features of
the stimuli cause the STRF changes, we also estimated STRFs
from a hybrid stimulus that combined features from speech and
TORCs.

Simply showing changes in STRFs estimated using different
stimuli demonstrates the existence of a nonlinear response, but it
does not specify the nature of the underlying mechanism (Chris-
tianson et al., 2008). To understand the mechanism that might
cause different speech and TORC STRFs, we ran a series of sim-
ulations to test how different nonlinear mechanisms can give rise
to stimulus-dependent STRFs. We compared three mechanisms
well known in cortical neurons: short-term depression of synap-
tic inputs (Tsodyks et al., 1998; Wehr and Zador, 2005), divisive
surround inhibition (Carandini et al., 1997), and thresholding of
spiking outputs (Atencio et al., 2008). We used each of these
models to simulate responses to speech and TORCs and esti-
mated STRFs from each set of simulated responses. We then
compared the tuning shifts observed for the different nonlinear
models to the shifts actually observed in the neural responses. The
nonlinear mechanism that more accurately predicted the ob-
served tuning shifts was deemed the better candidate for the im-
portant mechanism for natural sound processing.

Materials and Methods

Experimental procedures

Auditory responses were recorded extracellularly from single neurons in
primary auditory cortex (A1) of six awake, passively listening ferrets. All
experimental procedures conformed to standards specified by the Na-
tional Institutes of Health and the University of Maryland Animal Care
and Use Committee.

Surgical preparation. Animals were implanted with a steel head post to
allow for stable recording. While under anesthesia (ketamine and isoflu-
rane), the skin and muscles on the top of the head were retracted from the
central 4 cm diameter of skull. Several titanium set screws were attached
to the skull, a custom metal post was glued on the midline, and the entire
site was covered with bone cement. After surgery, the skin around the
implant was allowed to heal. Analgesics and antibiotics were adminis-
tered under veterinary supervision until recovery.

After recovery from surgery, a small craniotomy (1-2 mm diameter)
was opened through the cement and skull over auditory cortex. The
craniotomy site was cleaned daily to prevent infection. After recordings
were completed in one hemisphere, the site was closed with a thin layer of
bone cement, and the same procedure was repeated in the other
hemisphere.

Neurophysiology. Single-unit activity was recorded using tungsten mi-
croelectrodes (1-5 M{); FHC) from head-fixed animals in a double-
walled, sound-attenuating chamber (Industrial Acoustics Company).
During each recording session, one to four electrodes were controlled by
independent microdrives, and activity was recorded using a commercial
data acquisition system (Alpha-Omega). The raw signal was digitized
and bandpass filtered between 300 and 6000 Hz. Spiking events were
extracted from the continuous signal using principal components anal-
ysis and k-means clustering. Only clusters with =90% isolation (i.e.,
=90% spikes in the cluster were likely to have been produced by a single
neuron) were used for analysis. Varying the isolation threshold from 80
t0 99% did not change any of the population-level effects observed in this
study.

After identification of a recording site with isolatable units, a sequence
of random tones (100 ms duration, 500 ms separation) was used to
measure latency and spectral tuning. Neurons were verified as being in
Al according to by their tonotopic organization, latency, and simple
frequency tuning (Bizley et al., 2005).
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Stimuli

Stimuli were presented from digital recordings using custom software.
The digital signals were transformed to analog (National Instruments),
equalized to achieve flat gain (Rane), amplified to a calibrated level
(Rane), and attenuated (Hewlett Packard) to the desired sound level.
These signals were presented through an earphone (Etymotics) con-
tralateral to the recording site. Before each experiment, the equalizer was
calibrated according to the acoustical properties of the earphone
insertion.

Stimuli from each class (described below) were presented in separate
blocks, and the order of the blocks was varied randomly between
experiments.

Speech. We recorded the responses of isolated A1 neurons to segments
of continuous speech. Speech stimuli, while not a complete sampling of
all possible natural stimuli, are complex mammalian vocalizations that
share many high-order statistical properties with a broad class of natural
sounds (Smith and Lewicki, 2006). Samples of continuous speech were
taken from the Texas Instruments/Massachusetts Institute of Technol-
ogy (TIMIT) database (Garofolo, 1998) (see Fig. 1A). Stimuli were sen-
tences (3—4 s) sampled each from a different speaker and balanced across
gender. For each neuron, 30—90 different sentences were presented at 65
dB sound pressure level (SPL) for 5-10 repetitions. The original stimuli
were recorded at 16 kHz and upsampled to 40 kHz before presentation.
Included in the TIMIT database are labels of the occurrence of each
phoneme, which were used to break the stimulus into its phoneme com-
ponents (see Fig. 1 B).

TORCs. TORCs are synthetic noise stimuli designed to efficiently
probe the linear spectro-temporal response properties of auditory neu-
rons (see Fig. 1C) (Klein et al., 2000). A set of 30 TORCs probed tuning
over 5 octaves (250—8000 Hz), with a spectral resolution of 1.2 cycles/
octave and a temporal envelope resolution of 48 Hz (65 dB SPL, 5-10
repetitions, 3 s duration, 40 kHz sampling).

Speech-envelope orthogonal ripple combinations. Speech-envelope or-
thogonal ripple combinations (SPORCs) were constructed by multiply-
ing each of the 30 TORCs with an envelope matched to the slow modu-
lations (~3 Hz) associated with syllables in speech. The envelope was
constructed by rectifying and low-pass filtering (300 ms Gaussian win-
dow) 30 different speech signals and multiplying each of the 30 TORCs
by a different envelope. Thus, the fine spectral structure of SPORCs was
nearly the same as TORCs, whereas the coarse temporal modulation
structure was matched to that of speech (see Fig. 1 D). As for the other
stimuli, neural responses were collected for 5-10 repetitions of the
SPORC set at 65 dB SPL.

STREF estimation

Linear spectro-temporal model. Neurons in ferret A1 are tuned to stimulus
frequency but are rarely phase-locked to oscillations of the sound wave-
form (Kowalski et al., 1996; Bizley et al., 2005). To describe tuning prop-
erties of such neurons, it is useful to represent auditory stimuli in terms of
their spectrogram. The spectrogram of a sound waveform transforms the
stimulus into a time-varying function of energy in each frequency band
(see Fig. 1). This transformation removes the phase of the carrier signal so
that the mapping from the spectrogram to neuronal firing rate can be
described by a linear function.

For a stimulus spectrogram s(x,t) and instantaneous neuronal firing
rate r(t) sampled at times t = 1...T, the STRF is defined as the following
linear mapping (Kowalski et al., 1996; Klein et al., 2000; Theunissen et al.,
2001):

XU

r(t) = Zh(x,u)s(x,t — ) + e(t). (1)

u=0

Each coefficient of h indicates the gain applied to frequency channel x at
time lag u. Positive values indicate components of the stimulus correlated
with increased firing, and negative values indicate components corre-
lated with decreased firing. The residual, e(t), represents components of
the response (nonlinearities and noise) that cannot be predicted by the
linear spectro-temporal model.
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STRF estimation by boosting. STRFs were estimated from the responses
to the speech, TORC, or SPORC stimuli by boosting (Zhang and Yu,
2005; David et al., 2007). Boosting converges on an unbiased estimate of
the linear mapping between stimulus and response, regardless of auto-
correlation in the stimulus.

We used boosting as an alternative to normalized reverse correlation,
the estimation algorithm more commonly used to estimate STRFs from
natural stimuli (Theunissen et al., 2001). In a previous study, we com-
pared these two methods and found that boosted STRFs generally were
better fits and suffered less from residual correlation bias than STRFs
estimated by normalized reverse correlation (David et al., 2007). Com-
pensating for residual bias is critical for making accurate comparisons of
tuning properties between STRFs estimated using different stimulus
classes (David et al., 2004; Woolley et al., 2005).

Several boosting algorithms exist that can be used to estimate STRFs.
In this study, we used forward stagewise fitting, which uses a simple
iterative algorithm (Friedman et al., 2000). Initially, all STRF parameters
are set to zero, hy(x,y) = 0. During each iteration, i, the mean-squared
error is calculated for the prediction after incrementing or decrementing
each parameter by a small amount, €. All possible increments are speci-
fied by three parameters (spectral channel, y = 1...X; timelag,v=1...U;
and sign, { = —1 or 1), such that:

Ahy, (xu) = Le, x=xu=v
=0, otherwise.

(2)

Each increment can be added to the STRF from the previous iteration to
provide a new predicted response:

ks

U

Prwd(t) = 2, (himi(x,u) + By (x,u))s(x,t = u). (3)

=
I

=
I
o

The best increment is the one that predicts the response with the largest
decrease in the mean-squared error:

T
(xi,ui,zi) = arg min z(r(t) = (D) (4)
Xue g
This increment is added to the STRF:
hi(xu)=h;_  (xu) +Ahy, ;i Li(xu), (5)

and the procedure (Egs. 2-5) is repeated until an additional increment/
decrement ceases to improve model performance.

Implementing boosting requires two hyperparameters (i.e., parame-
ters that affect the final STRF estimate but that are not determined ex-
plicitly by the stimulus/response data). These are (1) the step size, &, and
(2) the number of iterations to complete before stopping. Generally, step
size can be made arbitrarily small for the best fits. However, extremely
small step sizes are computationally inefficient, because they require
many iterations to converge. We fixed € to be a small fraction of the ratio
between stimulus and response variance:

1 [ var(r(t))

50 var(s(x,t))’ (©)

€
Here, stimulus variance is averaged across all spectral channels. Despite
differences in variance across spectral channels, this heuristic produced
accurate estimates and required relatively little computation time. In-
creasing or decreasing € by a factor of two had no effect on STRFs. Of
course, different values of € are likely to be optimal for different data sets.

To optimize the second hyperparameter, we used an early stopping
procedure. We reserved a small part (5%) of the fit data from the main
boosting procedure (in addition to the reserved validation set, which was
used only for final model evaluation; see below). After each iteration, we
tested the ability of the STRF to predict responses in the reserved set. The
optimal stopping point was reached when additional iterations ceased to
improve predictions in the reserved fit data.

Thresholded STRFs. To determine the influence of inhibitory channels
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on the predictive power of STRFs, we generated thresholded STRFs from
the STRFs estimated using boosting. To generate thresholded STRFs, all
negative coefficients in the STRF were set to zero,

hthresh(x>u):h(x)u)) h(x,u) >0
=0, h(x,u) = 0. )

Data preprocessing. The same preprocessing was applied to all stimuli
before STRF estimation. Spectrograms were generated from the stimulus
sound pressure waveforms using a 128-channel rectifying filter bank that
simulated processing by the auditory nerve (Yang et al., 1992). Filters had
center frequencies ranging from 100 to 8000 Hz, were spaced logarith-
mically, and had a bandwidth of ~1/12 octave (Qj 45 = 12). To improve
the signal-to-noise ratio of STRF estimates, the output of the filter bank
was smoothed across frequency and downsampled to 24 channels.

Spike rates were computed by averaging responses over the 5-10 re-
peated stimulus presentations. Both the stimulus spectrogram and spike
rates were binned at 10 ms resolution.

This data preprocessing effectively required the specification of two
additional hyperparameters, the spectral and temporal sampling density.
The respective values of 1/4 octave and 10 ms were chosen to match the
spectral resolution of critical bands (Zwicker, 1961) and temporal reso-
lution of neurons in A1 (Schnupp et al., 2006). Increased binning reso-
lution would change the number of fit parameters and could, in theory,
affect model performance. However, when we tested the algorithm with
sparser and denser sampling of the spectral and temporal axes, we did not
observe any change in the trends in tuning and predictive power across
STRFs estimated with different stimuli.

Validation procedure. A cross-validation procedure was used to make
unbiased measurements of the accuracy of the different STRF models.
From the entire speech data set, 95% of the data were used to estimate the
STREF (estimation data set). The STRF was then used to predict the neu-
ronal responses in the remaining 5% (validation data set), using the same
10 ms binning. This procedure was repeated 20 times, excluding a differ-
ent validation segment on each repetition. Each STRF was then used to
predict the responses in its corresponding validation data set. These pre-
dictions were concatenated to produce a single prediction of the neuron’s
response. Prediction accuracy was determined by measuring the correla-
tion coefficient (Pearson’s r) between the predicted and observed re-
sponse. This procedure avoided any danger of overfitting or of bias from
differences in model parameter and hyperparameter counts (David and
Gallant, 2005). Each STRF was also used to predict responses to the 5%
validation segments of the TORC stimulus and SPORC stimulus (when
data was available), using the same procedure.

Studies using natural stimuli have argued that Al encodes natural
sounds with 10 ms resolution (Schnupp et al., 2006), but in some condi-
tions, Al neurons can respond with temporal resolution on the order of
4 ms (Furukawa and Middlebrooks, 2002). Measurements of prediction
accuracy by correlation ignore signals at resolutions finer than the tem-
poral window (Theunissen et al., 2001); thus, the correlation values re-
ported in this study should not be interpreted as strict lower bounds on
the portion of responses predicted by STRFs.

Tuning properties derived from STRFs

To compare STRFs estimated using the different stimulus classes, we
measured seven tuning properties commonly used to describe auditory
neurons (Kowalski et al., 1996; Klein et al., 2000; David et al., 2007):

Best excitatory frequency was measured by setting all negative STRF
coefficients to zero and averaging along the latency axis. The resulting
frequency tuning curve was smoothed with a Gaussian filter (SD, 0.2
octaves), and the best frequency was taken to be the position of the peak
of the smoothed curve.

Peak excitatory latency was measured by setting all negative STRF
coefficients to zero and averaging along the frequency axis. The peak
latency was then taken to be the position of the peak of the resulting
temporal response function.

Best inhibitory frequency and peak inhibitory latency were measured
similarly to the corresponding excitatory tuning properties, but by first
setting all positive, rather than negative, STRF coefficients to zero and
finding the minima of the respective tuning curves after collapsing.
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Spectral bandwidth describes how broad a range of frequencies excites
responses from the neuron. This value was computed from the smoothed
excitatory frequency tuning curve (see best excitatory frequency above)
as the width, in octaves, at half-height around the best excitatory
frequency.

Preferred modulation rate, measured in cycles per second or Hertz
(Hz), is a complementary property to spectral bandwidth that describes
the temporal modulation rate of a stimulus that best drives the neuron.
Preferred rate was measured by computing the modulation transfer
function of the STRF (i.e., the absolute value of its two-dimensional
Fourier transform) (Klein et al., 2000; Woolley et al., 2005), averaging the
first quadrant and the transpose of the second quadrant, collapsing along
the spectral axis, and computing the center of mass of the average.

Gain describes the relative overall strength of a neuron’s spiking re-
sponse per decibel of sound energy and was computed as the SD of all
coefficients in the STRF.

Simulation of nonlinear STRFs

Short-term depression model. After stimulation, the inputs to neurons in
auditory cortex are known to undergo rapid depression in their efficacy
(Wehr and Zador, 2005). In neurons that undergo depression, responses
decrease during rapid, repeated presentation of a stimulus but recover
after extended periods of silence (on the order of tens to hundreds of
milliseconds). This change in responsiveness is nonlinear and cannot be
captured fully by a linear STRF. To study the effects of nonlinear depres-
sion on STRF estimates, we constructed a model neuron consisting of a
bank of bandpass channels that each undergoes rapid depression
(Tsodyks et al., 1998; Elhilali et al., 2004) before passing through a linear
spectro-temporal filter.

In the short-term depression model, the stimulus spectrogram, s 4(x;1),
was sampled over the same range of spectral channels and time bins as the
original stimulus. The level of depression, d(x,t), for each channel and
time bin ranged from 0 to 1. The value of d(x,¢) initialized at 0 for t = 1
and was computed iteratively for subsequent time steps:

d(x,u)=d(x,t—1)+s(x,t—1)[1—d(x,t—1)Ju—d(x,t—1)/7.
(8)

This model requires two parameters, u, the strength of depression, and 7,
the time constant of recovery. A “depressed” stimulus spectrogram was
then computed:

sq(x,)=s(x,1)(1—d(x,1)). (9)

Finally, Equation 1 was used to compute the neural response but with the
stimulus spectrogram replaced by s,(x,1).

For the simulations shown in Figure 8 B, u was 0.05 divided by the
maximum value of s(x,t), and Twas 160 ms. Changing the values of  and
7 affects the magnitude of changes in the simulated speech STRF. Larger
values of u cause stronger late inhibition, and larger values of T cause
inhibition to occur at longer latencies. Reducing 1 and/or 7 to zero cause
the estimated STRF to return smoothly to the estimate for the linear
STRF.

Divisive normalization model. Several studies have suggested that in-
hibitory lateral connections in cortex serve to provide a gain control
mechanism by normalizing neural responses according to the net activity
in the surrounding region on cortex (Carandini et al., 1997; Touryan et
al,, 2002). Although these effects have mostly been demonstrated in vi-
sual cortex, they could operate similarly in auditory cortex. To model this
nonlinear mechanism, we first simulated the response of a linear neuron,
1in(t) using Equation 1 and then normalized by the energy in the stimu-
lus spectrogram (Carandini et al., 1997):

rlin(t)
rnurm(t) = X UZ . (10)
az,s(x,t— u)+b
x=1
u="U

Unlike previous studies, this study used natural stimuli with global stim-
ulus energy that changed rapidly over time. Thus, it was necessary to
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define a temporal integration window, u = U,...U,, for the normaliza-
tion signal.

For the simulations shown in Figure 8C, we assumed that suppressive
signals arrived about as quickly as excitatory inputs, with U; = 20 ms,
and lasted as long as has been measured physiologically, U, = 200 ms
(Wehr and Zador, 2005). (By choosing the longest duration possible, we
maximized the possibility of changes in STRF dynamics, because these
were the dominant stimulus-dependent effects that we observed.) In
addition, two other parameters, a and b, determined the strength of
normalization. For our simulations, we fixed the normalization to be
strong to maximize effects on STRF estimates, with a = 0.8 divided by the
average stimulus energy during U, — U, (averaged over the entire stim-
ulus database) and b = 0.2.

Threshold model. Another mechanism known commonly to give rise to
nonlinear response properties is the spike threshold (Atencio et al., 2008;
Christianson et al., 2008). Excitatory inputs must drive a neuron’s mem-
brane potential over some threshold voltage before any spikes can be
elicited. We modeled threshold with positive rectification on the output
of the linear filter in Equation 1. For the simulations shown in Figure 8 D,
the threshold was set to be very high, 2 SDs above the mean response of
the linear spectro-temporal filter to the speech stimulus. Reducing the
threshold to smaller values causes the estimated STRF to return to the
estimate for the linear STRF.

Results

Spectro-temporal response properties of Al neurons during
stimulation by continuous speech

To study how speech is represented in primary auditory cortex
(A1), we recorded the responses of 354 isolated Al neurons to
continuous speech stimuli (Fig. 1 A). The stimuli were taken from
astandard speech library and were sampled over an assortment of
speakers, balanced between male and female (Garofolo, 1998).

To contrast the speech responses with more traditional char-
acterizations of A1 responses, we also presented a set of TORCs to
the same neurons (Fig. 1C). These stimuli are designed for effi-
cient linear analysis of the spectro-temporal tuning properties of
auditory neurons (Klein et al., 2000). Several previous studies
have used TORCs or similar ripples to characterize spectro-
temporal response properties in A1 (Kowalski et al., 1996; Miller
et al., 2002); thus, such a characterization provides a baseline for
comparing speech responses. Neuronal responses were averaged
over 5-10 repeated presentations of each speech or TORC stim-
ulus to measure a peristimulus time histogram (PSTH) for each
neuron’s response.

A comparison of speech and TORC spectrograms reveals basic
differences in the spectro-temporal structure of the stimuli. The
speech stimulus has a relatively sparse structure, in which sylla-
bles are separated by periods of silence. Neuronal responses tend
to occur in brief bursts associated with the onset of syllables (Fig.
1A,B). TORCs sample spectro-temporal space uniformly, giving
them a much denser spectrogram. Similarly, neural responses to
TORCs tend to be much more uniformly distributed in time (Fig.
1C).

To characterize the functional relationship between the stim-
ulus and neuronal response, we estimated the STRF for each
neuron from its responses to the speech stimuli. The STRF is a
linear function that maps from the stimulus spectrogram to the
neuron’s instantaneous firing rate response (Kowalski et al.,
1996; Theunissen et al., 2001; David et al., 2007). Typically,
STRFs are estimated using a standard spectrogram representa-
tion of the stimulus (Theunissen et al., 2001). To implement a
more biologically plausible model, we used a spectrogram gener-
ated by a model that simulates the output of the auditory nerve
with a bank of logarithmically spaced bandpass filters (Yang et al.,
1992). We fit STRFs by boosting, an algorithm that minimizes the
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mean-squared error response predicted by
the STRF while also constraining the STRF
to be sparse (David et al., 2007). Several
other methods exist for STRF estimation
that assume different priors, such as nor-
malized reverse correlation (Theunissen et
al., 2001). The sparse prior used by boost-
ing reduces residual stimulus bias that can
complicate the comparison of STRFs esti-
mated using different stimulus classes
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STRE, it predicts responses to the validation speech stimulus with
nearly the same accuracy as the speech STRF (r = 0.80). However,
its overall gain is lower than the speech STRF. Although this
difference does not affect the prediction correlation, its effects
can be seen in the average phoneme response predictions in Fig-
ure 2C. Although the TORC STRF predicts the time course and
relative size of each phoneme response, it predicts a much weaker
response than is actually observed (Fig. 2C, red lines). Because the
correlation coefficient normalizes differences in variance, predic-
tion correlation is not affected by global changes in gain.

Other neurons showed a dependence of STRF shape on stim-
ulus class. Figure 3A shows a speech STRF with excitatory tuning
centered at 5200 Hz and a weak inhibitory response at later laten-
cies. The TORC STRF estimated for the same neuron (Fig. 3B)
has similar excitatory tuning but also has a large, short-latency
inhibitory lobe at 7000 Hz. The speech STRF predicts responses
in the validation data set (r = 0.33) significantly better than the

TORC STRF, which fails completely to predict the speech re-
sponses (r = 0.01; p < 0.05, randomized paired t test).

Effects of the differences between STRFs are illustrated in the
average predicted phoneme responses in Figure 3D. As in the
previous example, the strength of the response to each phoneme
predicted by the speech STRF is well matched to the observed
response of the neuron, capturing the relatively strong responses
to /s/, /sh/, and /z/. The late inhibitory component in the speech
STRF may be an attempt to capture the relatively transient time
course of the observed responses, although it fails to fully capture
the temporal dynamics. In contrast to the speech STRF predic-
tions, the TORC STRF predicts suppression by these three pho-
nemes. The suppressive response can be explained by the 7000 Hz
inhibitory lobe in the TORC STRF that overlaps the regions of
high energy in each of the phoneme spectrograms.

One explanation for the superior performance of the speech
STREF could be that spectro-temporal tuning has not changed but
that the TORC STREF is simply a noisier estimate of the same
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Figure2. Example neuron with spectro-temporal tuning that is very similar when estimated with speech or TORCs, but with an
overall gain that is higher during speech. A, The spectro-temporal receptive field (STRF) plots the tendency of a neuron to produce
action potentials as a function of stimulus frequency and time lag. Areas in red indicate frequencies and time lags correlated with
anincreasein firing, and areas in blue indicate frequencies and lags correlated with a decrease in firing. This STRF, estimated using
speech, shows an excitatory peak at 560 Hz and a peak latency of 13 ms. min, Minimum; max, maximum. B, The TORC STRF
estimated for the same neuron shows very similar tuning to the speech STRF, but its overall gain is lower, indicated by the lighter
shade of red in the tuning peak. (STRFs in A and B are plotted using the same color scale). €, Average spectrograms for a
representative set of phonemes were computed by averaging the spectrogram of the speech stimulus over every occurrence of a
phoneme. Spectrograms are each normalized to have the same maximum value. The average PSTH response of the neuron (black
lines) to phonemes with energy in the 500 Hz region (/ah/and/eh/) is large, consistent with the STRF tuning. Average responses
predicted by the speech STRF (blue lines) are well matched to the observed responses. Responses predicted by the TORC STRF (red
lines) capture the relative response to each phoneme, but because of the weaker gain, the TORC STRF fails to predict their overall
amplitude.

J. Neurosci., March 18,2009 - 29(11):3374-3386 * 3379

function. We tested whether this is the case
by comparing the ability of the STRFs to
predict responses to a TORC validation
stimulus. For the neuron in Figure 3, the
speech STRF predicts TORC responses
with a correlation of r = 0.15, whereas the
TORC STRE predicts responses with a sig-
nificantly greater correlation of r = 0.27
(p < 0.05, randomized paired ¢ test). Be-
cause the TORC STRF predicts TORC re-
sponses more accurately, the differences
between STRFs are not noise. Instead, they
reflect a significant change in the STRF
that best describes responses under the dif-
ferent stimulus conditions (Theunissen et
al., 2001; David and Gallant, 2005).

Several different statistical features of
the stimuli could be responsible for the
differences between the speech and TORC
STRFs in Figures 2 and 3. Speech and
TORCs differ in their coarse temporal
structure, which can be easily observed in
the spectrograms in Figure 1, A and C, and
in their fine spectro-temporal structure,
observed in the correlations between spec-
tral channels for speech (Diehl, 2008) that
are absent in TORCs. To determine
whether the differences between STRFs
can be attributed either to coarse or fine
stimulus properties, we presented a hybrid
stimulus that shared structure with both
speech and TORCs to a subset of 74 Al
neurons. The SPORC was generated by
multiplying a TORC sound waveform
with the temporal envelope of a speech
stimulus. This manipulation resulted in a
stimulus containing the fine temporal
structure of TORCs but the coarse modu-
lations of speech. The spectrogram of a
SPORC generated from the speech and
TORC examples in Figure 1 appears in Fig-
ure 1D.

The STRF estimated using SPORCs
(Fig. 3C) closely resembles the speech
STRF and predicts with nearly the same
accuracy (r = 0.28; p > 0.2). The SPORC
STREF also predicts average phoneme re-
sponses nearly as well as the speech STRF
(Fig. 3D, green lines). Conversely, the
SPORC STRF predicts responses in the
TORC validation stimulus significantly
less accurately than the TORC STREF (r =
0.20; p < 0.05). Thus, for this neuron, the
differences between speech and TORC
STRFs result from differences in the coarse
temporal structure of the two stimuli.

Comparison of prediction accuracy
between STRF classes

The tendency of speech STRFs to predict
speech responses more accurately than
TORC STRFs is consistent across the en-
tire set of 354 Al neurons in our sample.
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tuning with a peak at 5200 Hz and 16 ms. There is also a small inhibitory lobe at 7800 Hz and 42 ms. B, The TORC STRF estimated for the same neuron shows similar excitatory tuning but has a larger
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atalatency intermediate to the speech and TORC STRFs (peak: 7000 Hz, 32 ms). D, Consistent with the tuning revealed by the STRFs, this neuron responds strongly to phonemes with energy at high
frequencies (/s/,/sh/, and/z/; data plotted as in Fig. 2). Responses predicted by the speech (blue lines) and SPORC (green lines) STRFs capture the relative strength of the observed response to each
phoneme. In contrast, the TORC STRF fails completely to predict these responses (red lines), attributable primarily to its large inhibitory lobe, which predicts suppression by high-frequency

phonemes. min, Minimum; max, maximum.

Figure 4 A compares the ability of each TORC and speech STRF
estimated from the same neuron to predict speech responses. The
average prediction correlation for speech STRFs, r = 0.25, is sig-
nificantly greater than the average for TORC STRFs, r = 0.12
(p < 0.001, randomized paired t test). It is important to note
that, to avoid bias, prediction accuracy is evaluated here using a
validation data set that was not used for fitting STRFs from either
stimulus class (see Materials and Methods) (David and Gallant,
2005).

When comparing the performance of STRFs estimated from
different stimulus classes, it is also important to control for the
possibility that STRFs estimated from one stimulus class may
tend to be noisier than those estimated from the other. When we
considered the ability of STRFs to predict responses in the vali-
dation data for their own stimulus class, we found that 282 of 354
(80%) speech STRFs predicted validation responses with greater
than random accuracy ( p < 0.05, jackknifed ¢ test), whereas just
147 of 354 (42%) TORC STRFs did the same. The intersection of
these two sets is a subset of 131 neurons with speech and TORC

STRFs that both predict responses to their own stimulus class
with greater than random accuracy (Fig. 4 A, filled circles). For
these neurons, the mean prediction correlation of r = 0.33 for
speech STREFs is still significantly greater than the mean of r =
0.21 for TORC STRES ( p < 0.001). For 34% (44 of 131) of these
neurons, the speech STRF predicts speech responses significantly
better than the corresponding TORC STREF (jackknifed ¢ test, p <
0.05). Conversely, no TORC STRF predicts speech responses sig-
nificantly better than the speech STRF. This confirms that, in A1
neurons, the linear spectro-temporal tuning estimated during
stimulation by speech differs systematically from tuning esti-
mated during stimulation by TORCs.

For further confirmation that differences in STRFs do not
reflect only differences in the signal-to-noise level between STRFs
estimated from different stimuli, we compared the ability of
speech and TORC STRFs to predict responses in the TORC vali-
dation set. In this case, TORC STRFs predict TORC responses
with an average correlation of r = 0.13, which is significantly
greater than the average correlation of r = 0.07 for speech STRFs
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Figure4. A, Scatter plot comparing ability of speech and TORC STRFs to predict responses to speech. Across the entire sample
of A1 neurons (filled and open circles), speech STRFs consistently predict better than TORC STRFs (speech STRF mean r = 0.25;
TORC STRF mean r = 0.12; p << 0.001, randomized paired ¢ test). For the 131 neurons with speech and TORC STRFs that both
predict responses to their estimation stimulus with greater than random accuracy ( p << 0.05, jackknifed ¢ test; filled circles), the
speech STRFs also predict significantly more accurately than the TORC STRFs (speech STRF mean r = 0.33; TORC STRF mean r =
0.21; p < 0.001, randomized paired t test). B, Scatter plot comparing ability of speech and TORC STRFs to predict responses to
TORGs. In this case, TORC STRFs predict significantly better than speech STRFs both for the entire set of neurons (speech STRF mean
r=10.07; TORCSTRF mean r = 0.13; p << 0.001, randomized paired ¢ test) and for the subset that predict their own estimation
stimulus class significantly (speech STRF mean r = 0.14; TORC STRF mean r = 0.23; p << 0.001, randomized paired t test).
Together, these results demonstrate that STRFs estimated using the different stimulus classes are significantly different. ¢, When
inhibitory tuning is removed by thresholding the speech and TORC STRFs, predictions by the two STRF classes are much more
similar (n = 354 neurons: speech STRF mean r = 0.19, TORC STRF mean r = 0.14, p << 0.001; n = 131 significantly predicting
neurons: speech STRF mean r = 0.26, TORC STRF mean r = 0.22, p << 0.001). The similarity of performance by the thresholded
STRFs demonstrates that the majority of difference between STRF classes is in their inhibitory tuning.

(p < 0.001, randomized paired t test). The difference is also
significant for the 131 neurons with STRFs that predict their own
validation data with greater than random accuracy (TORC
STRFs, r = 0.23; speech STRFs, r = 0.14; p < 0.001).

Predictions for all pairwise combinations of speech, TORC,
and SPORC STRFs and validation data sets are summarized in
Figure 5 (n = 74 neurons presented with all three stimulus classes
and with STRFs that predict their own validation data with
greater than random accuracy; p < 0.05, jackknifed ¢ test). For
each validation data set (i.e., validation data from each stimulus
class), the best average predictor is the STRF estimated using the
same stimulus class. For both speech and TORC:s, the second best
predictor is the SPORC STRF. In both of these cases, the SPORC
STREFs predict significantly better than the third best STRFs ( p <
0.001, randomized paired ¢ test). Thus, STRFs estimated using
the hybrid stimulus capture spectro-temporal properties inter-
mediate to the two other stimulus classes.

Estimation stimulus primarily affects inhibitory tuning

The STRF estimated from a particular stimulus class represents a
locally linear approximation of a complex nonlinear function
(David et al., 2004; Nagel and Doupe, 2008). A dependence of the
STRF on the estimation stimulus indicates that nonlinear re-
sponse properties are activated differentially under the different
stimulus conditions. To learn more about the nonlinear mecha-
nisms that give rise to the changes in STRFs, we compared the
average STRF estimate for each stimulus class. To compute the
average, we aligned each STRF according to the best excitatory
frequency and peak latency of that neuron (averaged across stim-
ulus classes) and then averaged the aligned speech, TORC, and
SPORC STRFs across neurons.

The average STRF for each stimulus class appears in Figure 6
(left column). For all three classes, excitatory tuning is quite sim-
ilar. Inhibitory tuning varies substantially with respect to excita-
tory tuning, rendering the average inhibitory tuning much
weaker than excitatory tuning in the average STRFs. However, if
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excitatory components are removed, then
the average inhibitory tuning can be visu-
alized more clearly (Fig. 6, right column).
Inspection of the inhibitory tuning shows
clear differences between stimulus classes.
For speech STRFs (Fig. 6A), inhibitory
tuning occurs over a wide range of fre-
quencies and latencies. For TORC STRFs
(Fig. 6B), inhibitory tuning is concen-

Thresholded TORC STRFs

0 02 04 06 trated in frequency bands adjacent to exci-

tatory tuning and mostly at short latencies
similar to the latency of excitatory tuning.
For SPORC STRFs (Fig. 6C), inhibitory
tuning is broader and ranges over longer
latencies, like speech STRFs. Thus, the
tuning of inhibition differs dramatically
between speech and TORC STREFs,
whereas inhibition in the SPORC STRFs
shows a greater resemblance to that of the
speech STRFs.

To perform a quantitative comparison
of tuning between stimulus classes, we
measured seven tuning properties for each
STRE: best excitatory frequency, best in-
hibitory frequency, peak excitatory la-
tency, peak inhibitory latency, spectral
bandwidth, preferred modulation rate
(i.e., inverse of temporal bandwidth), and total gain. Figure 7
compares the mean value of each tuning property measured from
speech, TORC, and SPORC STRFs for the 74 neurons tested with
all three stimulus classes. As suggested by the average STRFs in
Figure 6, average peak excitatory and inhibitory frequency are not
significantly different between classes (p > 0.05, randomized
paired f test), nor is the peak latency of excitation ( p > 0.05).
However, other tuning properties do show differences. Average
peak inhibitory latency is longer ( p < 0.001), and bandwidth and
preferred rate are both greater for speech and SPORC STRFs than
for TORC STRFs (p < 0.001). Overall gain is also significantly
greater for speech and SPORC STRFs ( p < 0.001).

In contrast to the large differences between speech and TORC
STREFs, there are no significant differences in average tuning be-
tween speech and SPORC STRFs. The similarity of these STRFs
suggests that the major differences between speech and TORC
STRFs result from differences in the coarse temporal properties
of the estimation stimuli.

predicting speech

Changes in inhibitory tuning influence prediction accuracy

The comparison of tuning between stimulus classes reveals that
inhibitory tuning is particularly dependent on the stimulus class
used for estimation. Thus, the pattern of inhibition observed in
speech STRFs could explain their superior ability over TORC
STRFs to predict responses to speech. To measure the contribu-
tion of inhibitory tuning to prediction accuracy directly, we ap-
plied a threshold to each STREF, setting all negative coefficients to
zero and effectively removing inhibitory tuning (Eq. 7). We com-
pared the ability of these thresholded STRFs to predict responses
to speech (Fig. 4C). After thresholding, prediction accuracy of
speech STRFs decreased (mean r = 0.26; n = 131; p < 0.001,
randomized paired ¢ test), whereas the prediction accuracy of
TORC STRFs did not change significantly (mean r = 0.22; p >
0.05, randomized paired ¢t test). For each neuron, the perfor-
mance of the two STRFs tended to be much more similar than for
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Figure 5.  Average prediction correlations for each of the three stimulus classes (speech,

TORC, and SPORC) by STRFs estimated using each stimulus class (n = 74 neurons presented
with all three stimulus classes and with STRFs that predicted responses to their own validation
data with greater than random accuracy; p << 0.05, jackknifed ¢ test). For each class, the STRF
estimated using that class performs significantly better than either of the others ( p < 0.001,
randomized paired t test). For both speech and TORC predictions, SPORC STRFs perform second
best, confirming that they capture spectro-temporal tuning properties intermediate to the
other stimulus conditions. The bars at the far right show average prediction correlations for
speech data after thresholding the STRFs estimated from the three stimulus classes (i.e., setting
all negative parameters to zero). In this case, performance by speech and SPORC STRFs are worse
than the nonthresholded STRFs. The speech STRFs still perform slightly better than either other
class ( p << 0.01, randomized paired ¢ test), but the overall similarity of performance suggests
that the majority of difference between STRF classes is in their inhibitory tuning. NS, not
significant.

STRFs before thresholding, as can be seen in the relatively tight
clustering near the line of unity slope in Figure 4C.

When the same thresholding procedure was applied to
SPORC STRFs, the mean prediction correlation for speech was
significantly reduced to r = 0.21 (Fig. 5) (n = 74; p < 0.01,
randomized paired ¢ test). This decrease indicates that, unlike
TORC STREFs, the inhibitory tuning expressed in SPORC STRFs
contributes to prediction accuracy and is actually characteristic
of activity during processing of speech. Removing inhibitory
components drives all three STRF classes to perform similarly,
suggesting that the majority of their differences lie in their inhib-
itory tuning. However, the thresholded speech STRFs do still
predict speech responses slightly better than the TORC and
SPORC STRFs (p < 0.01, randomized paired ¢ test). The small
remaining differences in prediction accuracy are presumably at-
tributable to changes in excitatory tuning specific to the fine
spectro-temporal structure of speech (Blake and Merzenich,
2002; Gourevitch et al., 2008).

Rapid synaptic depression can explain differences between
speech and TORC STRFs

The differences between STRFs estimated using speech and
TORCs suggests that a nonlinear mechanism is differentially ac-
tivated under the different stimulus conditions (David et al.,
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2004; Woolley et al., 2005; Nagel and Doupe, 2008). However, the
existence of a difference between STRFs does not in itself indicate
what particular nonlinear mechanisms are important for creating
the difference. A wide range of nonlinear response properties are
known to exist in cortex, including rapid synaptic depression
(Wehr and Zador, 2005), divisive normalization (Carandini et
al., 1997), and thresholding (Atencio et al., 2008). We wanted to
determine whether the pattern of changes observed between
STRFs could provide insight into the nonlinearity responsible for
the changes. To answer this question, we simulated the responses
of auditory neurons with different nonlinear mechanisms. We
compared four models: (1) a simple linear spectro-temporal fil-
ter; (2) a spectro-temporal filter with inputs that undergo rapid
nonlinear synaptic depression (Tsodyks et al., 1998; Elhilali et al.,
2004); (3) a spectro-temporal filter with output that undergoes
divisive normalization (Carandini et al., 1997); and (4) a spectro-
temporal filter with output that passes through a nonlinear
threshold (Atencio et al., 2008). For each model, we simulated the
responses of a neuron with the same underlying spectro-
temporal filter to the three stimulus classes used in this study. We
then estimated STRFs for the different simulation/stimulus class
combinations using the same methodology as for the actual Al
data.

Figure 8 A shows STRFs estimated for the simple linear filter.
Aswould be expected (Theunissen et al., 2001), the STRFs are the
same for all three stimulus classes. The pattern of spectro-
temporal tuning in the estimates (excitatory lobe at 2000 Hz and
weaker inhibitory lobe at 800 Hz) matches the original linear
filter used to generate the simulated responses.

Unlike the linear model, STRFs estimated for the simulation
with rapidly depressing inputs vary substantially between stimu-
lus classes (Fig. 8 B). All three STRFs have inhibition at latencies
following the excitatory lobe. However, the latency is longer for
the speech and SPORC STRFs than for the TORC STRF. Gain
also differs substantially between STRFs. The overall excitatory
gain of the SPORC STREF is nearly the same as the speech STRF,
whereas the gain of the TORC STREF is substantially lower. The
exact magnitude of changes between stimulus classes depends on
the strength of depression and recovery time constant specified in
the model (Eq. 8). However, it is clear that the differences be-
tween stimulus classes resemble the pattern observed in the Al
data (Figs. 6, 7).

Estimated STRFs for the divisive normalization simulation
(Fig. 8C) also vary between stimulus classes, but they follow a
much different pattern. The strength of inhibition is reduced,
most prominently for the speech STRF, but the tuning of inhibi-
tion does not change with the stimulus. This pattern does not
match the changes observed in the Al data, because there is no
difference in the time course of inhibition, and the SPORC STRF
more closely resembles the TORC STRF than the speech STRF.

Estimated STRFs for the output threshold simulation (Fig.
8 D) also follow a different pattern than the observed data. In this
case, the speech STRF is more narrowly tuned along the spectral
axis, and inhibition is reduced. Both the TORC and SPORC
STRFs show tuning very similar to the linear model. Thus, the
threshold model also does not predict similar shifts in tuning for
the speech and SPORC STRFs

These simulations suggest that rapid depression of inputs to
Al neurons can give rise to the pattern of changes observed be-
tween STRFs estimated using speech and TORCs. Speech con-
tains relatively long periods of silence between phonemes that
give it a sparse temporal structure compared with TORC:s (Fig. 1,
compare spectrograms in A, C). During the silence between pho-
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Figure 6. A, Average STRF (n = 74 neurons) estimated using speech, aligned to have the same best frequency and peak
latency (each best frequency and latency was fixed for a single neuron across stimulus conditions). The right panel shows the
average of only the negative (i.e., relative inhibitory) parameters of the STRFs. B, Average STRF estimated using TORCs. The
average STRF has slightly narrower excitatory tuning than the speech STRF. Greater differences can be observed in the average
inhibitory components (right), which tend to occur at shorter latencies than in speech STRFs. (, The average STRF estimated using
SPORCs is similar to that for speech, although inhibition maintains some resemblance to the average TORC STRF.

nemes, depressed inputs have the opportunity to recover so that
they can produce strong transient responses to the onset of the
next phoneme. When the same simulation was run with SPORC
stimuli, it predicted that SPORC STRFs should share spectro-
temporal tuning properties with speech STRFs, which is also con-
firmed in our data (Figs. 6, 7). The slightly longer inhibition in the
speech STRF than the SPORC STREF results from the 300 ms
smoothing that was applied to the SPORC envelope (see Materi-
als and Methods). This smoothing diminished the sharp onsets
and offsets in the speech stimulus, reducing the amount of time
for recovery from depression. This slight difference is also re-
flected in the actual Al data in Figure 6, where the inhibitory
tuning in the average SPORC STRF shows less late inhibitory
tuning than the average speech STRF.

Discussion

We have shown that STRFs estimated for neurons in primary
auditory cortex (A1) show a strong dependence on the class of
stimuli used for estimation. Specifically, the latency and spectral

20 40 60 80 100
Time lag (ms)

TORC STRFs for a large number of neu-
rons to identify systematic changes be-
tween them. The changes that we observed
in inhibitory tuning were consistent with a
nonlinear model in which inputs to Al
neurons undergo rapid depression after
stimulation (Tsodyks et al., 1998). Such
depression is biologically plausible and has
previously been proposed as a mechanism
for controlling the precise timing of spikes
in response to modulated stimuli in Al (Elhilali et al., 2004).
Theoretical studies have also suggested that rapid synaptic de-
pression controls temporal dynamics and gain control in the vi-
sual system (Chance et al., 1998).

The rapid depression model predicts that a hybrid stimulus
that combines the coarse temporal modulations of speech with
the fine structure of TORCs should produce STRFs similar to
speech STRFs. When we measured STRFs with such a hybrid
stimulus, we found, in fact, that the resulting STRFs have tuning
properties similar to speech STRFs. Alternative nonlinear models
that incorporated surround normalization or a high spiking
threshold into the neural response did not predict the same shift
in inhibitory tuning, nor did they predict that STRFs estimated
from the hybrid stimulus should resemble speech STRFs. Some
differences did persist between STRFs estimated using speech and
the hybrid stimulus. These differences reflect the effects of the
fine spectro-temporal structure of speech, perhaps local changes
in spectral density or bandwidth, which have been shown to
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modulate STRFs in Al (Blake and Mer-
zenich, 2002; Gourevitch et al., 2008).
Our findings agree with other studies
that suggest that different mechanisms
may contribute to inhibitory tuning in Al
(Sutter and Loftus, 2003). Inhibitory tun-
ing (i.e., a decrease in responses correlated
with an increase in stimulus power) at

STRF estimation
2 stimulus

B speech
[ TORC s
[] SPORC

** p<0.001

longer latencies may result from synaptic
depression, whereas inhibition at shorter
latencies may arise by a different mecha-
nism, such as direct inhibitory inputs from
neighboring cortical neurons (Wehr and
Zador, 2005).

Our findings suggest that rapid depres-
sion is a dominant nonlinear mechanism
in primary auditory cortex that can ex-
plain much of the stimulus dependence of
STRFs. Additional experiments can con-
firm this hypothesis by measuring STRFs
with different stimulus classes and com-
paring those results with predictions by
the rapid depression model. These find-
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Relative tuning value
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22.0
20.5

| 22.3
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0.024

| 0.027
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30.1
27.2

ings also predict that a nonlinear model 0
that accounts explicitly for synaptic de-
pression should provide a better descrip-
tion of responses in Al. A similar nonlin-
ear model has shown improved ability
over the linear STRF to predict responses
to random chord stimuli (Ahrens et al.,
2008). In theory, incorporating the appro-
priate synaptic depression mechanism
into the input stage of the linear STRF may
accomplish this goal (Gill et al., 2006).
However, because synaptic depression ef-
fects vary across neurons, depression pa-
rameters must be fit individually for each neuron to significantly
improve model performance. Fitting such a model would require
a nonlinear regression algorithm outside the scope of the boost-
ing procedure used in this study, such as an iterative procedure
that alternately updates STRF coefficients and other nonlinear
terms (Ahrens et al., 2008).

BF

(Hz)
n=74

Figure 7.

Depression enables dynamic shifts in spectro-temporal
tuning for processing natural sounds
According to our simulations, rapid synaptic depression can give
rise to apparently inhibitory regions in the STRF that match the
best frequency of the neuron but appear at time lags after an
initial excitatory peak. Such dynamics allow a neuron to give an
initial strong transient response to a stimulus after a period of
silence, which is then rapidly attenuated during a sustained stim-
ulus. During stimulation by speech, the depression mechanism
can recover over the relatively long silent periods between sylla-
bles. However, during stimulation by TORCs, stimuli are pre-
sented nearly constantly, preventing the depression from ever
recovering. Because of the dynamic changes in the state of synap-
tic depression, the spectro-temporal information represented
during speech stimulation can change over the course of stimulus
presentation. This mechanism may allow cortex to efficiently ex-
tract useful information from auditory stimuli as it becomes
available.

Many animal vocalizations share the impulsive (i.e., tempo-
rally sparse burst) structure of speech, because they are composed

BF Latency Latency Bandwidth
excitation inhibition excitation inhibition (octaves)
(Hz)

Gain
(spikes/
sec/dB)

Best
rate
(Hz)

(ms) (ms)

Comparison of mean tuning properties measured from speech, TORC, and SPORC STRFs. Bars for each tuning prop-
erties are normalized to have a mean of one, and the actual average value is printed above each bar. Basic tuning properties [best
frequency (BF), peak excitatory latency] do not differ significantly between stimulus classes. However, the latency of inhibition is
longer, the preferred modulation rate is higher, and the overall gain is higher for both speech and SPORC STRFs than for TORC STRFs
(p<<0.001, randomized paired t test). These shifts ininhibitory tuning are consistent with the observation that inhibitory tuning
explains differences in predictive power between STRF classes. NS, Not significant.

of a sequence of complex spectro-temporal syllables, separated by
periods of silence (Smith and Lewicki, 2006). Thus, spectro-
temporal response properties observed during speech stimula-
tion are likely to resemble the responses that occur during the
processing of other natural sounds. In the bird song system, Field
L neurons that show delayed inhibition are particularly impor-
tant for discriminating between different song stimuli (Narayan
etal., 2005). Delayed inhibition is exactly the feature that appears
in STRFs during speech stimulation, which we attribute to syn-
aptic depression. Thus, dynamic changes in the state of synaptic
depression may contribute to the improved discriminative power
of these Field L neurons.

It has been proposed that changes in STRFs reflect adaptation
to the spectro-temporal statistics of a particular natural stimulus
for optimal representation of that stimulus (Woolley et al., 2005).
Although the changes we observe in STRFs are consistent with
such adaptation, these changes do not necessarily represent a
generic ability to adapt to any stimulus. Instead, our findings
suggest that rapid synaptic depression enables efficient process-
ing specifically of vocalizations and similar natural sounds. This
finding does not necessitate that STRFs will adapt to the spectro-
temporal statistics of an arbitrarily constructed synthetic stimu-
lus that does not share properties with natural stimuli.

Linear STRFs provide a tool for characterizing nonlinear
response properties

As a tool for understanding auditory representation, STRFs have
sometimes been criticized for being unable to characterize critical
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Figure8. A, STRFs estimated from each of the three stimulus classes for a simulated linear neuron. As expected for any neuron with linear spectro-temporal tuning, the estimated STRFs are the
same as the linear filter used to generate responses. Estimates for each model are plotted using the same color scale. B, STRFs estimated using each stimulus class for a simulated neuron that
undergoes rapid depression of itsinputs before passing through the same linear filter as in A. The appearance of negative components at longer latencies for speech and SPORC STRFs and the reduced
gain of the TORC STRF replicate the tuning differences observed for A1 neurons. C, STRFs estimated using each stimulus class for a simulated neuron that undergoes divisive normalization after
passing through the same linear filter as in A. The strength of inhibition is reduced for all stimulus classes, but the temporal dynamics do not change, failing to replicate the changes observed for the
A1 data. D, STRFs estimated for a simulated neuron with a high nonlinear threshold after passing through the same linear filter as in A. The absence of late inhibition in speech and SPORC STRFs and
the narrowing of tuning for the speech STRF do not resemble the tuning shifts observed for the A1 data. min, Minimum; max, maximum.

nonlinearities involved in the processing of sounds (Atencio et
al., 2008; Christianson et al., 2008). Whereas these concerns war-
rant special attention when studying STRFs, they do not neces-
sarily invalidate the methodology. As we demonstrate in this
study, the effects of nonlinear responses can give rise to system-
atic differences between STRFs. By identifying these systematic
differences, it is possible to infer properties of the nonlinear
mechanisms that cause them and compare how well different
nonlinear models predict the observed effects. By following such
logic in this study, we were able to compare the likely influence of
rapid synaptic depression, divisive normalization, and output
thresholding.

By estimating STRFs under a large number of stimulus con-
ditions, it may be possible to fully reconstruct the underlying
nonlinear model (David et al., 2004; Wu et al., 2006; Nagel and
Doupe, 2008). Of course, the amount of data available for analy-
sis is critically limited by the constraints of neurophysiology ex-
periments. Such an effort can be performed more effectively by a
combination of simulation and experimentation. As in this study,
a simulation can predict that a particular nonlinear mechanism
should give rise to differences between STRFs estimated using
two different stimuli, whereas a different nonlinearity will not.
Experiments comparing STRFs between these stimulus condi-

tions can then test which nonlinear mechanism actually influ-
ences neural responses. This general approach of comparing
model fits under different stimulus conditions is not restricted to
the study of STRFs and can be applied to other model frameworks
as well (Touryan et al., 2005; Atencio et al., 2008).

References

Aertsen AM, Johannesma PI (1981) The spectro-temporal receptive field. A
functional characteristic of auditory neurons. Biol Cybern 42:133-143.

Ahrens MB, Linden JF, Sahani M (2008) Nonlinearities and contextual in-
fluences in auditory cortical responses modeled with multilinear spectro-
temporal methods. ] Neurosci 28:1929-1942.

Atencio CA, Sharpee TO, Schreiner CE (2008) Cooperative nonlinearities
in auditory cortical neurons. Neuron 58:956-966.

Bizley JK, Nodal FR, Nelken I, King AJ (2005) Functional organization of
ferret auditory cortex. Cereb Cortex 15:1637-1653.

Blake DT, Merzenich MM (2002) Changes of Al receptive fields with sound
density. ] Neurophysiol 88:3409-3420.

Carandini M, Heeger DJ, Movshon JA (1997) Linearity and normalization
in simple cells of the macaque primary visual cortex. ] Neurosci
17:8621-8644.

Chance FS, Nelson SB, Abbott LF (1998) Synaptic depression and the tem-
poral response characteristics of V1 cells. ] Neurosci 18:4785-4799.

Christianson GB, Sahani M, Linden JF (2008) The consequences of re-
sponse nonlinearities for interpretation of spectrotemporal receptive
fields. ] Neurosci 28:446 —455.



3386 - J. Neurosci., March 18, 2009 - 29(11):3374-3386

David SV, Gallant JL (2005) Predicting neuronal responses during natural
vision. Network 16:239-260.

David SV, Vinje WE, Gallant JL (2004) Natural stimulus statistics alter the
receptive field structure of V1 neurons. ] Neurosci 24:6991-7006.

David SV, Mesgarani N, Shamma SA (2007) Estimating sparse spectro-
temporal receptive fields with natural stimuli. Network 18:191-212.
deCharms RC, Blake DT, Merzenich MM (1998) Optimizing sound fea-

tures for cortical neurons. Science 280:1439—1443.

Diehl RL (2008) Acoustic and auditory phonetics: the adaptive design of
speech sound systems. Philos Trans R Soc Lond B Biol Sci 363:965-978.

Elhilali M, Fritz JB, Klein DJ, Simon JZ, Shamma SA (2004) Dynamics of
precise spike timing in primary auditory cortex. J Neurosci
24:1159-1172.

Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a
statistical view of boosting. Ann Stat 28:337—407.

Furukawa S, Middlebrooks JC (2002) Cortical representation of auditory
space: information-bearing features of spike patterns. ] Neurophysiol
87:1749-1762.

Garofolo J (1998) Getting started with the DARPA TIMIT CD-ROM: an
acoustic phonetic continuous speech database. National Institute of Stan-
dards and Technology, Gaithersburg, MD.

Gill P, Zhang J, Woolley SM, Fremouw T, Theunissen FE (2006) Sound
representation methods for spectro-temporal receptive field estimation.
J Comput Neurosci 21:5-20.

Gourevitch B, Norena A, Shaw G, Eggermont JJ (2008) Spectrotemporal
receptive fields in anesthetized cat primary auditory cortex are context
dependent. Cereb Cortex. Advance online publication. Retrieved Febru-
ary 6, 2009. doi: 10.1093/cercor/bhn184

Klein DJ, Depireux DA, Simon JZ, Shamma SA (2000) Robust spectrotem-
poral reverse correlation for the auditory system: optimizing stimulus
design. ] Comput Neurosci 9:85-111.

Kowalski N, Depireux DA, Shamma SA (1996) Analysis of dynamic spectra
in ferret primary auditory cortex. I. Characteristics of single-unit re-
sponses to moving ripple spectra. ] Neurophysiol 76:3503-3523.

Machens CK, Wehr MS, Zador AM (2004) Linearity of cortical receptive
fields measured with natural sounds. ] Neurosci 24:1089-1100.

Mesgarani N, David SV, Fritz JB, Shamma SA (2008) Phoneme representa-
tion and classification in primary auditory cortex. ] Acoust Soc Am
123:899-909.

Miller LM, Escabi MA, Read HL, Schreiner CE (2002) Spectrotemporal re-
ceptive fields in the lemniscal auditory thalamus and cortex. ] Neuro-
physiol 87:516-527.

David et al. @ Nonlinear Spectro-Temporal Tuning in A1

Nagel KI, Doupe AJ (2008) Organizing principles of spectro-temporal en-
coding in the avian primary auditory area field L. Neuron 58:938-955.

Narayan R, Ergun A, Sen K (2005) Delayed inhibition in cortical receptive
fields and the discrimination of complex stimuli. J Neurophysiol
94:2970-2975.

Rotman Y, Bar-Yosef O, Nelken I (2001) Relating cluster and population
responses to natural sounds and tonal stimuli in cat primary auditory
cortex. Hear Res 152:110-127.

Schnupp JW, Hall TM, Kokelaar RF, Ahmed B (2006) Plasticity of temporal
pattern codes for vocalization stimuli in primary auditory cortex. ] Neu-
rosci 26:4785-4795.

Smith EC, Lewicki
439:978-982.

Sutter ML, Loftus WC (2003) Excitatory and inhibitory intensity tuning in
auditory cortex: evidence for multiple inhibitory mechanisms. ] Neuro-
physiol 90:2629-2647.

Theunissen FE, Sen K, Doupe AJ (2000) Spectral-temporal receptive fields
of non-linear auditory neurons obtained using natural sounds. ] Neurosci
20:2315-2331.

Theunissen FE, David SV, Singh NC, Hsu A, Vinje WE, Gallant JL (2001)
Estimating spatial temporal receptive fields of auditory and visual neu-
rons from their responses to natural stimuli. Network 12:289-316.

Touryan J, Lau B, Dan Y (2002) Isolation of relevant visual features from
random stimuli for cortical complex cells. ] Neurosci 22:10811-10818.

Touryan J, Felsen G, Dan'Y (2005) Spatial structure of complex cell recep-
tive fields measured with natural images. Neuron 45:781-791.

Tsodyks M, Pawelzik K, Markram H (1998) Neural networks with dynamic
synapses. Neural Comput 10:821-835.

Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in
rat auditory cortex. Neuron 47:437—445.

Woolley SM, Fremouw TE, Hsu A, Theunissen FE (2005) Tuning for
spectro-temporal modulations as a mechanism for auditory discrimina-
tion of natural sounds. Nat Neurosci 8:1371-1379.

Wu MC, David SV, Gallant JL (2006) Complete functional characterization
of sensory neurons by system identification. Annu Rev Neurosci
29:477-505.

Yang X, Wang K, Shamma S (1992) Auditory representations of acoustic
signals. IEEE Trans Info Theory 38:824—839.

Zhang T, Yu B (2005) Boosting with early stopping: convergence and con-
sistency. Ann Stat 33:1538-1579.

Zwicker E (1961) Subdivision of the audible frequency range into critical
bands. ] Acoust Soc Am 33:248.

MS (2006) Efficient auditory coding. Nature



