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In urban settings, exposure to traffic can be
a significant environmental justice issue—when
low-income or minority communities suffer
disproportionate exposures to environmental
toxins.1 Many traffic-related primary air pollut-
ants decrease in concentration rapidly as a func-
tion of distance from the roadway,2 and low-
income and minority populations often live
disproportionately close to major roadways.3,4

Living near truck routes or major roadways has
been associated with increased rates of asthma
symptoms5–7 or hospitalizations.8,9 The effect of
traffic-related pollutants is greater among low-
income individuals10 and those with greater
exposure to violence.11 These findings are in
agreement with the hypothesized pathways
through which low-income populations would be
differentially affected by air pollution—exposure
differentials related to property values and fa-
cility siting practices, susceptibility directly re-
lated to social position, and susceptibility related
to predisposing health conditions12—which
would all be present when one considers urban
traffic impacts.

Evaluation and mitigation of traffic-related
environmental justice issues is complicated
by multiple factors, including the lack of ade-
quate air quality data. Few air pollution mon-
itors are found within urban neighborhoods,
and the limited spatial coverage of the avail-
able monitors precludes identification of
‘‘hot spots.’’ Studies have deployed passive
samplers to capture spatial variability in pol-
lutants such as nitrogen dioxide,13–15 but these
integrated measures cannot capture the short-
term dynamics associated with traffic. Commu-
nities are not only interested in knowing where
air pollution levels are high, but also whether
this is because of idling vehicles, rush hour
back-ups, or other factors beyond total traffic
volume.

To better characterize small-scale spatial
variability in traffic-related air pollution, stud-
ies have used portable continuous monitors
in a geographic information system

framework. One effort in a Boston neighbor-
hood16 found elevated particle-bound polycyclic
aromatic hydrocarbon (PAH) concentrations
with proximity to a major bus terminal, with
evidence of both PAH and fine particulate matter
(PM2.5) elevations during morning rush hour.
However, this study lacked extensive traffic
or meteorological data. A study in New York
City17 demonstrated significant variability in
black carbon concentrations associated with local
diesel traffic, but only characterized a limited
number of sites. Both studies involved commu-
nities in study design and sampling within
a community-based participatory research
(CBPR) framework, but there remains a need for
more intensive characterization of spatiotempo-
ral patterns of multiple traffic-related pollutants
for communities. In particular, neither study
included ultrafine particulate matter, which may
show more significant spatial gradients than
PM2.5.2

We focused our air quality characteriza-
tion in Mission Hill, part of the Roxbury

neighborhood of Boston. Mission Hill is a
racially/ethnically diverse neighborhood
(19% Hispanic, 20% non-Hispanic Black or
African American, 14% Asian, and 47% non-
Hispanic White or multiracial), with 36% of
residents below the poverty level.18 Across
all Boston neighborhoods, Roxbury has the
highest asthma hospitalization rate for chil-
dren younger than 5 years, with elevated rates
of infant mortality and age-adjusted mortal-
ity.19

In addition, Mission Hill abuts the hospitals
and schools in the Longwood Medical Area,
which induce substantial traffic and have
a projected workforce growth of 24% between
2003 and 2013.20 The epicenter of Longwood
Medical Area–related traffic is near the inter-
section of Tremont and Francis streets (the street
changes names at the intersection) and Hun-
tington Avenue (Figure 1), which has been
characterized as a significant congested intersec-
tion,21 and is proximate to 3 large housing
developments with numerous vulnerable
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individuals, several elementary schools, day care
programs, and recreational space. Because of the
confluence of sensitive subpopulations, poten-
tially elevated concentrations, and continued
growth of the Longwood Medical Area, com-
munity groups such as the Mission Hill Health
Movement have become concerned about local
air quality and the health and environmental
justice implications.

To address these concerns, a community–
university research partnership was established
that jointly developed a study to characterize
air quality patterns and establish a baseline
for comparison as traffic volumes increase.
Monitoring equipment was placed at the Mis-
sion Hill Health Movement office, and mobile
monitoring protocols were developed utiliz-
ing local high school students to conduct the
sampling. Both mobile and fixed-site sampling
involved multiple continuous measurements,
including ultrafine particle counts, PM2.5, traf-
fic, and meteorology. We hypothesized that
these protocols coupled with a regression-
based framework accounting for traffic counts,
speed, and composition, wind speed and di-
rection, and proximity to major roadways
would allow for the traffic contribution to

community air quality to be well-characterized
and useful for future development of inter-
vention strategies.

METHODS

To characterize air pollution patterns in
Mission Hill, we utilized a combination of
mobile and fixed-site monitoring coupled with
traffic characterization. Fixed-site monitors
were placed at the Mission Hill Health Move-
ment office on Tremont Street in the center
of our domain (Figure 1), and mobile monitor-
ing followed defined routes across most of
Mission Hill. Six high school students, recruited
through the Harvard School of Public Health
Research Apprenticeship Program, Project
Success at Harvard Medical School, and local
high schools and community organizations,
represented the primary field staff, supervised
by the authors. They received training on air
pollution monitoring, project protocols, and
general issues in scientific inquiry.

Fixed-Site Monitoring

The monitors installed at the Mission Hill
Health Movement office (Figure 1) collected

continuous measurements aggregated to 10-
minute averages from July through September
2007. Monitors were placed indoors with
tubing running outside through a polyvinyl
chloride pipe, collecting measurements ap-
proximately 4 meters above the ground. The
length of tubing (2 m to 5 m across instru-
ments) necessitated by the building configu-
ration contributed to some particle losses, but
we utilized Tygon polyvinyl chloride and
polytetrafluoroethylene tubing (Saint-
Gobain, Courbevoie, France) to minimize
deposition, and our measurements are in-
terpretable in a relative sense (examining
diurnal patterns and predictors of fixed-site
concentrations).

Measurements at the fixed site included
a water-based condensation particle counter
for ultrafine particles (CPC Model 3781, TSI,
Shoreview, MN), a laser photometer for PM2.5

(TSI DustTrak 8520), a photoelectrical aerosol
sensor for particle-bound PAHs (PAS 2000CE,
EcoChem Analytics, League City, TX), an
aethalometer for black carbon (Model AE42,
Magee Scientific, Berkeley, CA), and a nitric
oxide (NO) monitor (Model 400, 2B Technol-
ogies, Boulder, CO). For PM2.5, daily concen-
tration data were also collected from a nearby
Environmental Protection Agency monitor (in
Dudley Square, approximately 1.5 km from the
fixed site).

A Weather Wizard III (Davis Instruments,
Hayward, CA) was set up on the roof of the
1-story Mission Hill Health Movement office,
with the wind vane affixed to the side of
a ventilation stack pipe in a location that
minimized building envelope effects and
shielding by neighboring buildings. This in-
strument collected temperature, wind speed,
and wind direction. A HOBO Pro H08-032-IS
(Onset Computer Corporation, Pocasset, MA)
was affixed next to the wind vane and mea-
sured temperature, relative humidity, and dew
point.

Traffic Monitoring

To capture real-time traffic data, we used
Trax I Plus traffic counters (JAMAR Technol-
ogies, Horsham, PA), which use a set of tubes
laid across the roadway to record traffic vol-
ume and, under certain configurations, speed
and composition. Counters were placed on
both Huntington Avenue and Tremont Street

Note. This map shows the stationary sites along Huntington Ave and Tremont and Francis St and the location of the fixed site at the

Mission Hill Health Movement.

Figure 1—Map of our monitoring region (shaded area), with mean ultrafine particle counts

by road segment: Huntington Avenue, Tremont and Francis Streets, and the Mission Hill

Health Movement, Boston MA, 2007.
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(Figure 1). Huntington Avenue is a 4-lane,
2-directional street with a Massachusetts Bay
Transportation Authority train line running in
the median. Given this configuration and
available instrumentation, we could not cap-
ture traffic in both directions and focused on
traffic toward downtown Boston (traveling
northeast). This counter only captured traffic
volume data. A second traffic counter was
placed in front of the Mission Hill Health
Movement office, capturing vehicle counts and,
on a subset of dates, vehicle counts by axle class
and by speed.

Mobile Monitoring

The high school students conducted mobile
monitoring in July through August 2007 as 3
teams of 2 students. Each team carried a set of
equipment in a backpack and messenger
bag—PAS 2000CE, DustTrak 8520, and CPC
3781 with portable battery and casing, all of
which recorded 1-minute average concentra-
tions. The teams were also given a Global
Positioning System (GPS; Model 60CSx, Garmin,
Olathe, KS) and a clipboard with traffic moni-
toring worksheets and informational pam-
phlets to hand out to interested community
members.

Sampling was performed in two 2-hour
shifts each day between 9:00 AM and 5:00
PM, with shift length dictated by battery life
and the size of the monitoring region. Four
mobile routes were established throughout
the neighborhood and sampled forward and
backward, along with 3 sets of 3 parallel
routes to separate spatial and temporal vari-
ability. The parallel routes consisted of1 route
on 1 side of a main road and 2 routes on 2
parallel roads on the same side of the main
road. Also, 25 stationary monitoring sites
were located at varying distances from the 2
major roadways (Figure 1).

For most shifts, each group conducted 1
hour of stationary sampling and 1 hour of
mobile sampling. During stationary sam-
pling, the groups characterized traffic in 4
different ways: (1) directly counting diesel
and nondiesel vehicles for 5-minute inter-
vals, (2) characterizing traffic flow every 30
seconds (e.g., light free-flow, start-and-stop,
gridlocked), (3) setting waypoints on the
GPS whenever traffic was backed up beyond
where the group was sampling, and (4)

logging the presence of idling vehicles. The
groups also logged atypical source activity,
including smokers, construction, or grilling.
During mobile sampling, not all forms of
traffic characterization were practical, so
the groups only logged idling vehicles and
atypical source activity. To avoid damage
to equipment, mobile monitoring was can-
celled on days with threat of rain.

Statistical Analysis

We considered the 5 pollutants from the
fixed site and 3 from the mobile monitoring
as candidate outcome variables. Various
measures from the traffic counter in front
of the fixed site were used to predict fixed-
site concentrations. Vehicle counts classi-
fied by axle length following the 14 category
Federal Highway Administration Type F
Vehicle Classification Scheme22 were ag-
gregated to generally represent nondiesel-
fueled vehicles (e.g., cars, motorcycles,
pickups, vans) and diesel-fueled vehicles
(e.g., buses, heavy-duty trucks), recognizing
that some misclassification was likely be-
cause of buses fueled by compressed natu-
ral gas and other alternative fuels. Vehicles
that were uncategorized were apportioned
on the basis of counts in each category
during the corresponding time period. Vehi-
cle counts by speed were grouped as travel-
ing faster than15 miles per hour and15 miles
per hour or slower.

We also considered temperature, relative
humidity, wind speed, and wind direction as
covariates. Wind speeds were collapsed into 3
bins: 0 to 0.5 meters/second, 0.5 to 1 meters/
second, and more than 1 meter/second. Wind
direction was categorized as upwind, down-
wind, or parallel relative to Tremont St. These 3
wind direction variables were interacted with
the 3 wind speed variables, creating 9 wind
categories. Thus, our fixed-site models sepa-
rately consider the 3 alternative traffic-counter
measures, controlling for temperature, relative
humidity, and wind speed and direction. We
present fixed-site models for ultrafine particles,
PM2.5, and black carbon and not PAHs and NO
because PAH measurements frequently were
below the effective limit of detection of the
instrument (30% of values higher than 10 ng/
m3), and instrument problems prevented col-
lection of NO concurrent with traffic data. We

also evaluated whether autocorrelation in our
continuous measurements had an influence on
our findings by applying an autoregressive
model of order 1 (AR1) autocorrelation struc-
ture.

For our mobile monitoring, we developed
separate models for the stationary measure-
ments and for mobile and stationary monitor-
ing combined. We had insufficient contempo-
raneous automatic traffic counter data, so in the
former case, we considered each of the 4 forms
of field staff traffic characterization as predic-
tors, controlling for temperature, relative hu-
midity, and wind speed and wind direction
relative to the roadway on which the monitor-
ing was occurring, and distance from the
other major roadway. In the latter case, we
considered distance to each of the major road-
ways as predictors, controlling for temperature,
relative humidity, and wind speed and wind
direction relative to each of the 2 major
roadways, and also considered idling vehicles.
In both cases, we tested the influence of an AR1
autocorrelation structure within a repeated
measures model by sampling day and bag.
We developed models for both ultrafine parti-
cles and PM2.5, which were run with R ver-
sion 2.7.1.

RESULTS

There was significant diurnal variability in
multiple pollutants at our fixed site. Black
carbon featured a peak during morning rush
hour with a steady decline in concentrations
throughout the day, whereas ultrafine parti-
cles demonstrated an earlier increase and
elevated concentrations through the early
afternoon. In contrast, PM2.5 had less diurnal
variability (Figure 2). Our PM2.5 measure-
ments were reasonably correlated with mea-
surements from the nearby Environmental
Protection Agency monitor (Pearson correlation
coefficient of 0.75), especially in light of dif-
ferences in instrumentation.

Traffic on Tremont Street showed an atyp-
ical pattern. Counts were fairly steady after the
morning rush hour through the afternoon, with
an increase in slow-moving vehicles in the
middle of the day and the greatest hourly
volume occurring between 7:00 PM and 8:00
PM (Figure 2). Diesel vehicle counts increased
during the morning rush hour and peaked at
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noon, with a slow decline for the rest of the
afternoon (results not shown).

When we controlled for temperature, rela-
tive humidity, and wind speed and direction,
total vehicle count was significantly associated
with ultrafine particles and PM2.5 at the fixed
site with a positive but insignificant association
with black carbon (Table1). When we stratified
vehicle counts by type, statistical power was
limited given generally low diesel counts, but
there was evidence of a greater effect of diesel
vehicles on ultrafine particles and black carbon,
whereas nondiesel vehicles were significantly
associated with PM2.5 (Table 1).

When we stratified vehicle counts by speed,
vehicles traveling 15 mph or slower were
significantly associated with ultrafine particles
and black carbon, whereas vehicles traveling
faster than 15 mph were significantly associ-
ated with PM2.5. Across all models, concentra-
tions were significantly greater under down-
wind conditions for ultrafine particles and

black carbon, with higher concentrations ob-
served in the lower wind speed categories
(results not shown). In contrast, for PM2.5, the
effect of local wind speed and direction was
inconsistent and less statistically significant,
indicative of a lesser local contribution to
measured concentrations. Use of an AR1 auto-
correlation structure had no influence on our
conclusions, with minimal changes in regres-
sion coefficients and minor increases in stan-
dard errors.

For our stationary and mobile monitoring
analysis, the traffic flow log sheets were not
predictive of concentrations and are not pre-
sented, but the other 3 methods of traffic
characterization showed some predictive
power (Table 2). On both roads, total vehicle
counts were significantly related to increases in
ultrafine particles, whereas PM2.5 was only
associated with counts on Tremont and Francis
streets. When we stratified by vehicle type
(results not shown), the models were more

unstable given low diesel counts, but diesel
counts had a greater effect on ultrafine parti-
cles than nondiesel counts, supporting our
fixed-site models (Table 1). The total vehicle
count regression model also indicated a signif-
icant effect of distance from roadway for
ultrafine particles but not for PM2.5 (Table 2).
Traffic backups to the point of stationary
monitoring and the presence of idling vehicles
were associated with elevated ultrafine par-
ticle counts only on Tremont and Francis
streets.

For the mobile monitoring, distance from
each road was significantly negatively related
to ultrafine particle concentrations, but dem-
onstrated no predictive power for PM2.5 (Table
2). The coefficients from the mobile monitoring
model are similar to those from most of the
stationary monitoring models and indicate that
ultrafine particle counts drop approximately
1000 particles per centimeter cubed for each
50-meter increment away from each of the
major roadways. Maps of mean ultrafine con-
centrations by road segment (Figure 1) show
that most of the segments with elevated con-
centrations were along or proximate to the
major roadways.

When terms for wind speed and wind di-
rection were included in the mobile monitor-
ing models, the traffic and distance main
effects were robust, but the interactions with
wind speed and wind direction generally
lacked statistical significance and were difficult
to interpret. Similarly, because of a relatively
small sample size within bag and day, and
some missing data, application of an AR1
model influenced the regression coefficients
and standard errors and yielded uninterpret-
able models. As a result, these terms and
methods were not included in the models in
Table 2.

DISCUSSION

Our analysis demonstrated that a commu-
nity-scale mobile monitoring protocol can
determine both the spatial patterns of con-
centrations throughout a neighborhood and
the attributes of traffic associated with ele-
vated concentrations. Our models in Table 2
captured significant gradients as a function of
distance from both key roadways for ultrafine
particles but not PM2.5, both with stationary

Figure 2—Diurnal patterns of traffic volume and pollutant concentrations at the fixed site,

with pollutant concentrations presented as hourly averages throughout the monitoring

campaign as a percentage of the maximum hour-of-day average by pollutant: Mission Hill

Neighborhood, Boston, MA, 2007.
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and mobile measurements. Previous studies2

have shown that ultrafine particle levels
drop to 50% of the maximum concentration
within approximately 100 meters to 300

meters of a major roadway (usually high-
ways). Our mobile regression models imply
that mean ultrafine concentrations drop
from 32000 particles per centimeter cubed

at the intersection of the 2 roadways to
16000 particles per centimeter cubed at
a point 400 meters away from each of the
major roadways. The slightly greater dis-
tance in our study is likely attributable to
monitoring within an urban community
with traffic on many side roads, including
some large roads near the boundary of our
domain.

The fixed-site analyses appear to show that
slow-moving and diesel vehicles influence
ultrafine particles and black carbon, whereas
fast-moving and nondiesel vehicles influence
PM2.5. In addition, manual traffic counting,
characterization of traffic backups, and mon-
itoring of idling vehicles performed by field
staff are predictive of elevated concentra-
tions. Interestingly, the latter 2 traffic char-
acterizations were only predictive of ultrafine
particle counts on 1 of the 2 roadways, and
total traffic counts significantly predicted
PM2.5 concentrations on that same roadway
(both with mobile measurements and with
automatic counts at the fixed site). This may
be attributable to differences in traffic flow
and composition, road width and local to-
pography, or other local conditions, but gen-
erally emphasizes that different terms may
serve as useful proxies for traffic impacts in
different settings. Regardless, the utility of
these terms indicates that community-based
efforts to characterize traffic flows can be
informative in determining hot spots in both
space and time.

There are some key limitations in interpre-
tation of our findings. The lack of significance
for wind speed and wind direction terms in our
mobile models is concerning, because of their
physical linkage with atmospheric dispersion,
and is likely attributable to the very low wind
speeds measured in our study and the vari-
ability in wind fields within an urban area. We
could have tested meteorological data mea-
sured at the airport or other sites, but it is
unclear whether those adequately represent
local-scale phenomena that may be present
within complex urban terrain (including
a large hill and tall buildings along the major
roads).

Also, automated traffic count data were not
available throughout the mobile monitoring
period, given instrument limitations and miss-
ing data, which limits the predictive power of

TABLE 1—Results for Fixed-Site Modeling, Adjusted for Temperature, Relative Humidity, and

Wind Speed and Direction: Mission Hill Neighborhood, Boston, MA, July–September 2007

Ultrafine Particles PM2.5 Black Carbon

Estimate P Estimate P Estimate P

Total vehicle countsa 8.67 .032 4.09 · 10–5 .022 1.92 .105

Counts by fuel typeb

Diesel vehicle count 96.95 <.001 –3.71 · 10–5 .668 39.78 <.001

Nondiesel vehicle count –6.43 .204 5.43 · 10–5 .018 –4.51 .002

Speedc

Vehicles driving £ 15 mph 93.18 <.001 –7.07 · 10–5 .316 29.05 <.001

Vehicles driving > 15 mph 0.58 .89 5.90 · 10–5 .002 –0.3 .806

Notes. PM2.5 = fine particulate matter. Vehicle counts refer to number of vehicles per 10-min period.
aFor ultrafine particles: n = 436; R2 = 0.36. For PM2.5: n = 437; R2 = 0.19. For black carbon: n = 432; R2 = 0.25.
bFor ultrafine particles: n = 436; R2 = 0.39. For PM2.5: n = 437; R2 = 0.19. For black carbon: n = 432; R2 = 0.34.
cFor ultrafine particles: n = 439; R2 = 0.40. For PM2.5: n = 440; R2 = 0.19. For black carbon: n = 435; R2 = 0.32.

TABLE 2—Results From Stationary and Mobile Monitoring, Adjusted for Temperature and

Relative Humidity: Mission Hill Neighborhood, Boston, MA, July–September 2007

Ultrafine Particles PM2.5

Estimate P Estimate P

Vehicle countsa

Total count on Huntington Ave 329.02 .002 5.84 · 10–6 .918

Total count on Tremont/Francis St 369.03 .048 4.17 · 10–4 <.001

Distance from Huntington Ave while on Tremont/Francis St –49.18 <.001 –6.35 · 10–6 .229

Distance from Tremont/Francis St while on Huntington Ave –47.38 <.001 –8.23 · 10–7 .912

Backupsb

Backups while on Huntington Ave 495.49 .826 –1.06 · 10–3 .253

Backups while on Tremont/Francis St 5702.82 .003 –4.81 · 10–4 .623

Distance from Huntington Ave while on Tremont/Francis St –21.48 .014 6.99 · 10–6 .052

Distance from T/F while on Huntington Ave –14.9 .176 –1.09 · 10–5 .042

Idlingc

Idling while on Huntington Ave –4705.91 .112 –1.84 · 10–3 .306

Idling while on Tremont/Francis St 9229.91 .01 –1.67 · 10–3 .468

Distance from Huntington Ave while on Tremont/Francis St –23.97 .006 7.38 · 10–6 .039

Distance from Tremont/Francis St while on Huntington Ave –19.05 .077 –1.08 · 10–5 .037

Mobile monitoringd

Distance from Tremont/Francis St –18.49 <.001 2.41 · 10–6 .572

Distance from Huntington Ave –19.5 <.001 –3.20 · 10–6 .332

Notes. PM2.5 = fine particulate matter. Vehicle counts refer to number of vehicles per 1-min period, and distance is measured
in meters.
aFor ultrafine particles: n = 1710; R2 = 0.08. For PM2.5: n = 3363; R2 = 0.22.
bFor ultrafine particles: n = 2072; R2 = 0.06. For PM2.5: n = 4126; R2 = 0.21.
cFor ultrafine particles: n = 2076; R2 = 0.06. For PM2.5: n = 4127; R2 = 0.21.
dFor ultrafine particles: n = 3815; R2 = 0.11. For PM2.5: n = 9914; R2 = 0.30.
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our mobile regression models. That being said,
traffic volumes were fairly consistent between
9:00 AM and 5:00 PM (Figure 2), and our
mobile regression models were robust in spite
of these missing data. Our mobile regression
models were sensitive to the approach for
addressing autocorrelated measurements, but
this is more likely related to missing data within
shorter sampling sessions than inherent prop-
erties of the measurements because fixed-site
regression outputs were insensitive to assump-
tions about autocorrelation. The partial auto-
correlation of the residuals for both fixed-site
and mobile models dissipated after 2 lagged
observations, showing a small influence of
autocorrelation. In general, missing data across
multiple variables led to greatly reduced sam-
ple sizes for our multivariate regressions.
Because these data appear to be missing at
random, this does not influence our overall
conclusions but clearly reduced our power to
detect subtle effects or interactions among
predictors.

In addition, it is possible that the traffic
covariates had some measurement error or
were proxies for other factors, so we cannot
necessarily conclude (for example) that ultra-
fine particle concentrations are only influenced
by diesel vehicles. Our regression models, in-
cluding the significance of different forms of
traffic characterization, may not be directly
applicable to other cities, because of differ-
ences in traffic composition, meteorology, and
urban topography. The fact that the mobile
and fixed-site models are not contemporane-
ous and are affected by differences in mea-
surement height and length of tubing limits
the joint interpretation of their coefficients,
but the general consistency in findings in-
dicates the robustness of our models. Finally,
because mobile monitoring occurred only
during the summer during daytime hours, the
spatial gradients may not be generalizable to
all times of the year. For example, background
concentrations of particulate sulfate are high-
est in Boston in the summer, which will tend
to dampen spatial variability of PM2.5. Addi-
tional monitoring during other seasons would
clearly be warranted, although the use of high
school students complicates intensive efforts
during the school year.

In spite of these limitations, our study
showed that continuous portable air-pollution

monitoring, largely conducted by local high
school students, can provide insight about air
pollution patterns and the characteristics of
traffic associated with air pollution. Monitoring
campaigns can provide geospatial data that can
be compared with population attributes or
disease patterns, informing environmental
justice considerations, and can more generally
be used to help communities understand
local air quality and develop mitigation strate-
gies.

According to CBPR practices, results from
this study have been disseminated directly to
the Mission Hill Health Movement, commu-
nity members, and the city of Boston, with
some tangible impacts. For example, the
Mission Hill Health Movement has initiated
walking groups to increase physical activity
rates among residents of Mission Hill, and
our results can help determine which routes
would minimize air pollution exposures. In
general, the existence of significant spatial
gradients for ultrafine particles within urban
neighborhoods emphasizes the potential
for environmental justice issues, especially
with the presence of susceptible populations
along major roadways, and the need for
partnerships between researchers and com-
munity groups to characterize air pollution
patterns in a manner that informs intervention
strategies. j
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