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Abstract
Many lines of independent research have provided convergent evidence regarding oxidative stress,
cerebrovascular disease, dementia, and Alzheimer’s disease (AD). Clinical studies spurred by these
findings engage basic and clinical communities with tangible results regarding molecular targets and
patient outcomes. Focusing on recent progress in characterizing age-related diseases specifically
highlights oxidative stress and mechanisms for therapeutic action in AD. Oxidative stress has been
investigated independently for its relationship with aging and cardiovascular and neurodegenerative
diseases and provides evidence of shared pathophysiology across these conditions. The mechanisms
by which oxidative stress impacts the cerebrovasculature and blood-brain barrier are of critical
importance for evaluating antioxidant therapies. Clinical research has identified homocysteine as a
relevant risk factor for AD and dementia; basic research into molecular mechanisms associated with
homocysteine metabolism has revealed important findings. Oxidative stress has direct implications
in the pathogenesis of age-related neurodegenerative diseases and careful scrutiny of oxidative stress
in the CNS has therapeutic implications for future clinical trials. These mechanisms of dysfunction,
acting independently or in concert, through oxidative stress may provide the research community
with concise working concepts and promising new directions to yield new methods for evaluation
and treatment of dementia and AD.
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Introduction
Management of oxidative stress is essential to cellular and tissue-specific homeostasis, and
excess oxidative stress has been identified in the etiology and progression of numerous
pathological conditions including cancer, age-related diseases, diabetes, and various
mechanisms of toxicity. Oxidative stress is generally defined as an imbalance between
production of reactive oxygen species (ROS) and capacity for removing ROS. While free
radicals contributing to oxidative stress are generally unstable and decay spontaneously,
accumulated effects of reactive species are particularly relevant to cell injury. While
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Alzheimer’s disease (AD) has been defined primarily through molecular mechanisms of
neuronal dysfunction, a broad body of evidence indicates that ROS and oxidative stress
contribute to associated dementias through multiple mechanisms. Importantly, there is a
growing body of evidence that AD and oxidative stress are associated with profound
cerebrovascular changes [26,36,45,64,114,115]. While cerebrovascular dysfunction and
neurodegeneration exist independently, both conditions can impact cognition, and treatments
with antioxidants have shown broad therapeutic effects on these conditions.

ROS production under normal conditions is tied directly to well characterized biochemical
pathways [79]. Indeed, the production of ROS is an inescapable consequence of respiration
and also occurs through other oxidative processes generating multiple signaling molecules and
specific defensive oxidative species [65,111,112]. Importantly, the brain has a high rate of
oxygen utilization and consumes approximately 20% of cardiac output and must continually
compensate for the products of high oxygen metabolism and acute sensitivity to changes in
blood flow. This ROS balance is dependent on a number of cellular and tissue specific
antioxidant mechanisms such that impaired or suboptimal ability to remove ROS results in
conditions of oxidative stress. If these normal mechanisms of compensation and regulation
become ineffective in resolving cellular insults, dysregulated mechanisms of pathology
characteristic for disease processes are initiated. Mechanisms of dysfunction can ultimately
cause similar responses; notably age-related cardiovascular disease and age-related
neurodegenerative diseases including AD show remarkable convergence in inflammatory
mechanisms [20]. Pro-oxidant conditions are not limited to inflammation, ischemic conditions,
and aging, and therefore therapeutic treatments with broad action on the vasculature and central
nervous system (CNS) may well prevent these conditions from producing dementia. Indeed,
research on antioxidant therapies for CNS and peripheral conditions are generating a
foundation of information utilized by basic and clinical scientists. As the causes of AD have
yet to be successfully resolved, evaluating recent clinical studies and progress across all these
fields is exceedingly important and instructive.

Cerebrovascular Disease: Impact on Dementia
AD is the most prevalent form of age-related dementia, however, aging itself is more broadly
considered the most prominent determinant of disease in Western societies [28]. Noteworthy,
aging is a major risk factor for both vascular and cerebrovascular diseases. Cerebrovascular
integrity is critical for proper metabolism and perfusion of the brain and oxidative stress has
been widely characterized in vascular dysfunction. Considerations of the effects of oxidative
stress on CNS and cerebrovascular components should be made collectively due to parallels
in pathophysiology and associated mortality. Additionally, cerebrovascular dysfunction
directly impacts dementia, a broad clinical determination for specific impairments, and it is
unfortunate that cognitive testing does not have the sensitivity to always discriminate the
underlying specific pathological condition. Importantly, global evaluation of vascular
pathologies allows for greater attention to prevention of dementia and AD.

Characterizing the relationship between cerebrovascular and CNS disorders has been evaluated
but additional research is clearly needed. Indeed, a report from The National Heart, Lung, and
Blood Institute (NHLBI) issued in 2006 prioritized a set of recommendations for research in
cerebrovascular biology and disease. The working group for NHLBI identified large gaps of
understanding in the following areas: (a) molecular and cellular neurobiology of cerebral blood
vessels focusing on genomics and proteomics; (b) resource development for new
methodological approaches and collaborative research in cerebrovascular pathobiology; and
(c) translational programs to address mechanisms of cerebrovascular disease. The report
highlights which information has yet to be collected regarding neurovascular relationships and
interactions with the brain [37].
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While these efforts are broadly focused on improving understanding for all cerebrovascular
disorders, specific cerebrovascular dysfunction is associated with dementia and occurs
simultaneously with AD. Indeed, chronic or acute ischemia, hypoperfusion, atrophy, and
hemorrhagic stroke can all independently induce indistinguishable cognitive deficits [3]. A
large body of evidence has emerged reflecting that many cases of age-related dementia have
cerebrovascular pathology affecting performance of the CNS [19]. Upon autopsy, substantial
vascular pathology is observed in both demented and non-demented elderly, and while AD and
vascular pathology are major pathological correlates with cognitive decline, there are no clear
thresholds for pathological features predicting dementia [56]. Clinical diagnosis of vascular
dementia and AD is distinguishable by mode of presentation, progression, and accompanying
clinical findings (reviewed by [70]). Latent AD, which progresses through structures of the
brain in a well-defined, hierarchical spatial sequence, may take years to impact executive
functions while vascular dementia pathology manifests in cognitive impairment.

Observations regarding cerebrovascular disease have revealed that interruption of prefrontal
subcortical areas by ischemic lesions increases the risk of clinical expression of dementia in
AD more than 20 fold [92]. Lacunes and microinfarcts are lesions of vascular disease and
reflect vascular dysfunction causing pathology in the brain. While 20 different lacunar lesions
have been described, almost all of these lesions are associated with small vessel disease and
hypertension [22], and often correlate with pathology and cognitive deficits [21]. While
overlapping pathologies are difficult to interpret, significant relationships have been found
providing evidence that microinfarcts and demyelination contribute to cognitive deficits in
aging and AD [41]. Lacunes and white matter hyperintensities have been shown to be
independently associated with cognitive function in the elderly as measured by magnetic
resonance imaging and cognitive scoring through Alzheimer’s Disease Assessment Scale-
cognitive subscale (ADAS-Cog) and mini-mental state examination scores [98]. These findings
have led to suggestions that magnetic resonance imaging will play an increasingly important
role in directing and evaluating treatments [99].

Relatedly, awareness and improvement for cardiovascular health has produced substantial
improvement in statistically evaluated measures of risk factor prevalence, disease incidence,
and mortality. Indeed, the 2008 Statistical Update from the American Heart Association reflects
that while vascular disease burden remains high, death rates from vascular disorders, as well
as heart disease, have declined recently. Specifically, the report describes that the death rate
from stroke declined 24.2% between 1994 and 2004, whereas the actual number of stroke only
declined 6.8% during that time [71]. This effect may be attributable to improved acute care,
or rather the outcome of better detection and treatment for hypertension [47]. A recent study
of hypertension in cognitively normal elderly has identified abnormal cerebral blood flow in
this population [14], a risk factor predisposing them to AD. Population studies have revealed
an elevated risk for AD in patients with hypertension [23]. Parallels in disease processes and
risk factors offer insight into disease management and strategies, in fact, angiotension
converting enzyme inhibitors improve daily living measures of AD patients [27]. Thus, strict
characterization for these conditions is beginning to falter as more evidence has been brought
to light that prevention of one condition can ultimately provide protection against other age-
related conditions. Future therapeutic strategies need to be considered within this context –
multiple factors act in coordination to produce ultimate disease states; broad therapeutic action
has the greatest probability for success in a diverse population.

Cerebrovascular Disease: Mechanisms and Direct Relationships with
Alzheimer’s Disease

Vascular dementia, stroke, and multi-infarct dementia are well-characterized age-related CNS
disorders and reflect shared pathophysiology. Indeed, the term Vascular Cognitive Impairment
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has been used recently to describe a heterogeneous group of cognitive disorders sharing a
presumed vascular cause [51]. Emerging evidence suggests that neurovascular dysfunction is
a feature of cerebrovascular diseases and neurodegenerative conditions such as AD [36].
Further characterization of cerebrovascular and neurodegenerative conditions is needed.

Hypertension is the strongest risk factor for AD and vascular dementia when these conditions
are considered together [82]. The penetrating arteries in the circle of Willis are particularly
sensitive to the effects of hypertension and suffer early and selective damage during chronic
hypertension [24,35]. Hypertension is closely associated with atherosclerosis and vascular
function, and in the brain this results in hypoperfusion and ischemic conditions of the nucleus
basalis Meynert. Targeting molecular mechanisms and using dietary methods and therapies
are grounded in reducing free radicals and associated oxidative stress related damage initiating
hypertension [96,100]. Animal models of induced hypertension include glutathione depletion
whereby disruption of nitric oxide (NO) signaling, and therefore depressed NO availability
and significant accumulations of nitrotyrosine result in severe hypertension [101]. Although
the initiating factors for hypertensive disorders may vary, oxidative stress and inflammation
have major roles in the pathogenesis of hypertension, and these three conditions participate in
a self-perpetuating cycle that can lead to progressive cardiovascular disease [102]. Clinical
evidence supports this hypothesis as biomarkers of systemic oxidative stress are observed in
hypertension [67]. Polymorphonuclear leukocytes and platelets rich with ROS have also been
identified in hypertensive patients, participating in the vascular oxidative stress [50,107].
Experimental evidence showing oxidative stress involvement in vascular damage has been of
great interest for targeting ROS for the treatment of hypertension and other cardiovascular
diseases (reviewed by [95]). Hypertension and resultant atherosclerosis reduce brain perfusion
and may precipitate chronic ischemic conditions inducing AD. While documented in AD cases,
it is speculative to indicate atherosclerosis is causal for AD, though these pathologies may have
independent and convergent processes [10].

Neurovascular changes and hypoperfusion associated with aging and AD have are also being
closely examined within the context of oxidative stress. Normal aging and neurodegenerative
diseases are associated with structural and functional alterations of the cerebrovasculature and
brain endothelial cells. This loss of endothelium function manifests as loss of responsiveness
to vasodilators such as NO and increased formation of ROS [9]. Histological changes include
loss of brain endothelial cell elongation and reduction of endothelial mitochondria. These
deficit,s working in concert, produce hypoperfusion, aberrant angiogenesis and remodeling,
potentially inducing neuronal injury and loss. It has been suggested that vascular hypoperfusion
may be a causal effect in neuronal mitochondrial dysfunction [3] and oxidative stress leading
to compensation mechanisms in the endothelium [61]. Recent findings with mouse models of
AD support the role of dysfunctional NO signaling in the pathogenesis of the disease.
Transgenic inducible nitric oxide synthase knockout mice develop pathology in the brain
characteristic of AD (amyloid plaques, tau phosphorylation, and neuronal loss) indicating the
NO has a protective role [13,104]. Additional considerations have identified that shared
cholinergic deficits occurring in vascular dementia and AD are due to susceptibility of basal
forebrain neurons to the effects of arterial hypertension, hypoperfusion, and ischemia [70]. The
exact manner in which neurovascular changes contribute to cognitive decline have yet to be
elucidated, however, present data suggest these mechanisms play a significant role in AD and
related dementias.

The blood brain barrier (BBB) is essential for brain performance and considered substantially
compromised in a subpopulation of AD patients [6,8]. Normal functioning of the BBB is critical
for proper neuronal function including synaptic transmission, remodeling, angiogenesis, and
neurogenesis (reviewed by [116]). The BBB is characterized by tight junctions between
adjacent brain endothelial cells providing a unique boundary that is highly specialized with
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diverse transport systems. Integrity of the BBB is dependent on the health of the vasculature,
and in AD, the total length of capillaries is reduced [5] and microvascular endothethial
degeneration has been described [70]. Additional work has shown that a subset of genes is
considerably altered in brain endothelial cells [105] directly implicating altered gene
expression in this cell population in AD pathogenesis. Altered brain endothelial cells in AD
reflect dysfunctional angiogenesis, reduced lipoprotein receptor-related protein 1, and resultant
impairment of amyloid-β (Aβ) efflux from the brain, providing evidence that impaired BBB
contributes to the disease. Dysfunction of the BBB also has substantial effects on Aβ influx.
Receptor for advanced glycation endproducts (RAGE) is the major transporter of Aβ, affecting
influx of the peptide across the BBB and mediating pathophysiological responses. RAGE is
expressed in at least 3 major isoforms and the splice isoform soluble RAGE (sRAGE) lacks a
transmembrane domain and is thought to compete with membrane bound RAGE for circulating
ligands. Ligands include a variety of proinflammatory agents including advanced glycation
end products, S100/calgranulins, and Aβ that are known to be elevated in AD [11,84,85].
Elevations in circulating sRAGE are associated with reduced risk of coronary artery disease,
metabolic disorder, hypertension, arthritis, and AD (reviewed by [25]). Accumulation of
RAGE ligands, such as advanced glycation endproducts and Aβ, cause increased
cerebrovascular expression of RAGE resulting in the transcytosis of Aβ into the brain
parenchyma where it binds to neurons.

A pro-inflammatory state may be further promoted through nuclear factor κB (NFκB), redox-
sensitive transcription factors responding to loss of NO. Endothelium activation mediated
through NFκB signaling results in induction of proinflammatory cytokines directly acting on
local neurons. A more direct interaction has been shown for neurons expressing RAGE that
are directly susceptible to oxidative damage mediated death by activated microglia secreting
proinflammatory cytokines [106]. These mechanisms indicate that reductions of circulating
RAGE ligands can reduce Aβ influx to the brain by mediating BBB transcytosis and reduce
inflammatory cascades initiated through the endothelium and microglia impacting survival of
RAGE expression neurons.

Further investigations into the vascular components of AD are warranted due to the high
amount of overlap in risk factors with vascular dementia, atherosclerosis, stroke, homocysteine,
hypertension, hyperlipidemia, diabetes, and apolipoprotein expression [15,36,115]. Causal
relationships that have been identified with oxidative stress should be further investigated as
targets of intervention which prohibit or diminish clinical manifestations of AD and dementia.
Collectively this information indicates that oxidative stress and antioxidant therapies can
substantially impact clinically diagnosed dementia and AD.

Homocysteine, Alzheimer’s Disease and Dementia: Oxidative Stress
Mediates Broad Effects

Homocysteine has been identified as a peripheral marker directly relevant to oxidative stress
and reflecting a nefarious relationship with AD, neuropathy, and vascular dysfunction.
Epidemiogical evidence regarding the relationship between homocysteine and AD has
provided substantial evidence that homocysteine is an independent risk factor for development
of dementia and AD [80]. Plasma homocysteine concentrations above 14 μM increase the risk
for developing AD two-fold. Despite well characterized enzymes and biochemical pathways,
the pathophysiology of homocysteine remains largely unknown, however,
hyperhomocysteinemia has been correlated in other neurological disorders besides AD [12],
including Parkinson’s disease [54], and brain atrophy [74]. Homocysteine levels have also been
correlated to white matter hyperintensities and increased risk of small and large vessel disease
[73]. While generation of free radicals from oxidation of homocysteine has been evaluated as
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a mechanism of generalized oxidative stress, and these diseases involve multiple physiological
insults, it is not clear which mechanism of action is responsible for homocysteine toxicity.

Homocysteine is a sulfur containing amino acid generated by hydrolysis of S-adenosyl
homocysteine. In this well known biochemical pathway, S-adenosyl methionine provides
methyl groups to various methyltransferases, directing normal methylation of proteins and
DNA. Importantly, it has been estimated that hyperhomocysteinemia occurs in 20–30% of the
elderly population [4], and this figure may be higher in the psychogeriatric population [57].
Oxidation to homocysteine thiols to disulfides occurs rapidly and is accompanied by the
generation of free radicals. This creates mixed disulfides with homocysteine bonding with
cysteine, homocysteine, and most predominantly albumin [68]. This pro-oxidant effect has
been hypothesized to explain increased lipid peroxidation associated with
hyperhomocysteinemia [18,103]. Information regarding intracellular homocysteine and
mechanisms of BBB transport have not been addressed and could provide insight into the
associated pathophysiology. Reports have been issued showing the homocysteine has a toxic
effect on microvessels and disrupts the BBB in transgenic models of hyperhomocysteinemia
[39]. These experimental observations regarding homocysteine have yielded insights into the
observed clinical relationships that have been reported. homocysteine decreases NO synthesis
and bioavailability in the endothelium. It has been suggested that NO plays an important role
in the detoxification of homocysteine by formation of S-nitrohomocysteine, which functions
as a vasodilator and inhibits platelet aggregation [94]. Indeed, primates with mild
hyperhomocysteinemia exhibit endothethial dysfunction [44]. Oxidation of homocysteine has
been shown to mediate toxic effects of the amino acid, however, other reports have shown
wide-ranging effects that are implicated in AD pathophysiology.

A number of findings demonstrate that the CNS is acutely sensitive to homocysteine.
Homocysteine is an agonist for N-methyl-D-aspartic acid receptors, stimulates calcium influx,
and promotes glutamate excitotoxicity [42,46]. In vitro experiments have also demonstrated
that homocysteine causes DNA damage, activation of poly(ADP-ribose)polymerase and p53
induction [42]. Attenuation of these neurotoxic mechanisms by superoxide dismutase, catalase,
and N-acetyl-L-cysteine are consistent with the role of ROS-mediated insults [32,40]. The S-
adenosyl methionine/S-adenosyl homocysteine ratio is of special consideration due to
regulation of specific methyltransferases; hypomethylation of enzyme PP2A has been
implicated in amyloid-β protein precursor pathophysiology [93] under conditions of
hyperhomocysteinemia.

The evidence around homocysteine supports clinical efforts that have been pursued to reduce
concentrations of plasma homocysteine. Indeed, given the broad effects that homocysteine may
have on vascular and neuronal cell populations, targeting this molecule directly may have
substantial benefits. However, because the evidence regarding the generation and toxicity of
homocysteine is not completely understood, is will be beneficial to use homocysteine as a
biomarker when evaluating various antioxidant therapies evaluated in the clinic.

Oxidative Stress, Neurodegeneration, and Alzheimer’s Disease
Thus, the elements addressed regarding aging and oxidative stress demonstrate many potential
mechanisms exist by which these conditions can induce cellular dysfunction. Observed
vascular dysfunctions influence CNS performance independent of changes in neuronal
environment. Direct evidence has also been collected suggesting the oxidative stress plays a
large role in neuronal susceptibility to cellular dysfunction and CNS lesions.

Oxidative stress, reduced glucose metabolism, and mitochondrial abnormalities are associated
with AD [31,52,58,60,69]; mitochondria are considered the primary source of oxidative stress
associated with normal respiration. Oxidative phosphorylation produces superoxide radicals
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subsequently transformed to hydrogen peroxide (H2O2) and highly reactive hydroxyl radicals
(•OH). While most of these free radicals are sequestered in the mitochondria, oxidative insult
is exacerbated by age, metabolic demand, and disease [83]. Heightened superoxide radical
formation in AD also correlates with heightened superoxide dismutase levels that may allow
the release of H2O2 from the mitochondria to the cytoplasm (H2O2 is diffusible through the
mitochondrial and cell membranes). Mitochondrial abnormalities have been associated with
deficiencies in enzymatic activities, specifically α-ketoglutarate dehydrogenase complex,
pyruvate dehydrogenase complex, and cytochrome oxidase in AD neurons [48,53,72,81,108],
which may increase either production of free radicals or alternatively alter cellular mechanisms
for clearance. It has been shown that metals are dysregulated in AD [90], specifically that
redox-active transition metals are aberrantly accumulated in the cytoplasm of AD susceptible
neurons [78,88]. Increased cytoplasmic H2O2 may cause localized increases in concentrations
of ROS in the presence of redox active metals [43]. The literature reflects that oxidative stress
is not limited to mitochondrial dysfunction and Fenton chemistry. Indeed, Aβ peptide and
oligomers have been widely characterized in the context of oxidative stress and neuronal
toxicity. Aβ peptide is considered a strong redox active agent capable of reducing transition
metals in the cytoplasm and allowing for conversion of molecular oxygen (O2) to H2O2 [7,
30,34,55,78].

Increased intraneuronal ROS may have multiple effects on cellular metabolism, especially in
the context of inflammation, metabolic loss, and endocrine signaling mechanisms. Oxidation
of lipids and RNA has accurately been described by the field; 8-hydroxyguanosine is a marker
of RNA oxidation that is increased in the cytoplasm of neurons in AD [33]. Evaluating these
pathways in AD has identified multiple mechanisms by which oxidative stress may accumulate
and create dysfunctional neuronal responses, suggesting various insults are required for the
development of the AD phenotype [110,112,113].

Mechanisms for dealing with endogenous antioxidants may be compromised in AD and other
diseases characterized by oxidative stress. Metal homeostasis and the associated Fenton
chemistry that is associated with free metal ions induces pro-oxidant conditions in broad
neurological conditions. Only trace amounts of metals are necessary for redox cycling to occur;
these free metal ions or low-affinity complexes with amino acids mediate oxidative stress
reactions [77,87]. Oxidation of protein side chains by ROS or reactive nitrogen species
introduces hydroxyl groups or generates carbonyl groups detectable by 2,4,-
dinitrophenylhydrazine [86,89]. Oxidation to polyunsaturated lipids and membrane
lipoproteins, lipoxidation is of particular relevance in the brain which is rich in polyunsaturated
lipid [76]. Oxidative damage to nucleic acids, particularly RNA, has been documented in AD
[58–60].

Neurodegenerative diseases show conserved mechanisms of pathology and collectively
demonstrate that components of oxidative stress are involved with neurodegenerative diseases.
While Parkinson’s disease and amyotrophic lateral sclerosis have different genetic and
environmental characteristics, they are characterized by neuroinflammation and chronic
oxidative stress. Additionally, these conditions are characterized as protein conformational
diseases; accumulations of misfolded proteins have genetic and environmental contributions,
however, this conserved pathology demonstrates parallels in conserved cell biology.
Dysregulated metabolism of metal ions has also been observed in all three conditions providing
evidence of parallel but distinct mechanisms of compensation. Indeed, progress in identifying
the role oxidative stress in AD etiology and progression can provide substantial insight into
the multitude of neurodegenerative diseases.
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Relevant Clinical Studies and Future Opportunities
Clinical studies conducted with antioxidant therapies in the areas of vascular disease and AD
provide a wealth of new information due to the age-related nature of these conditions. Indeed,
research methodologies and evidence collected can provide insight into treatment paradigms
and the anticipated clinical outcomes; ultimately reviewing clinical studies utilizing
antioxidants may provide insight such that dramatic decreases in mortality, such as those
recently reported for stoke, can be observed.

The relationship between oxidative stress and vascular disease has been evaluated in at least
seven large clinical studies evaluating antioxidants; only one study showing that antioxidant
supplementation through vitamins E and C can reduce atherosclerosis [29]. These studies have
utilized patients with significant cardiovascular disease and additionally other considerations
should be made regarding failure to demonstrate beneficial effects. Accordingly, the American
Heart Association has not adopted recommendations for population-wide antioxidant
supplementation but have made recommendations that the general population consume a
balanced diet with antioxidant-rich fruit, vegetables, and grains [97].

The Gingko Evaluation of Memory Study was initiated to evaluate the effects of Gingko biloba
in prevention of dementia, targeting early intervention to impact clinical dementia [16].
Importantly, the Gingko Evaluation of Memory Study reflects that only recently has progress
in dementia research allowed for prevention of dementia trials. Gingko Evaluation of Memory
Study enrolled over 3000 participants and this large cohort will enable the investigators to
evaluate the effects of combinations of cardiovascular and cerebrovasculature status on
cognion and dementia. A preliminary report from the study was released in July 2007 [17].

A randomized, placebo controlled trial that involved traditionally identified antioxidants
provided evidence that antioxidant therapies can significantly impact AD patient outcomes.
When severity of dementia at baseline is used as a covariate for analysis, significant delays in
time-to-death, placement in a nursing home, development of severe dementia, or a defined
severity of impairment of activities of daily living were observed for patients in the selegiline,
α-tocopherol, and combination-therapy groups [75].

Previous studies have found that antioxidants may ablate cognitive decline [38,62].
Randomized trials have shown that selegiline hydrochloride or vitamin E may slow progression
of AD. A large epidemiological study has shown that use of vitamin E and C in combination
was associated with reduced AD prevalence and incidence [109]. The authors of this report
suggest that vitamin E and C may offer protection if taken together at high doses. This evidence
suggests the antioxidant strategies are beneficial for reducing the risk of developing AD;
however, once a disease state has been initiated, reversal through the use of antioxidants is
mechanistically improbable. Indeed, therapy outcomes should be evaluated with the realization
that multiple disease factors are acting in conjunction.

As discussed, homocysteine has also been a central target in the association of oxidative stress
with AD. Clinical trials have been conducted to evaluate the impact of high-dose vitamin
supplementation on plasma homocysteine levels in patients with AD [1]. This study provides
evidence that high-dose vitamins can lower homocysteine in AD patients. More recent
evidence has been collected, reflecting that both elevated plasma homocysteine and low serum
levels of folate are independent predictors for the development of dementia and AD [66]. These
finding have spurred placebo controlled studies regarding the efficacy of folic acid
supplementation on dementia and AD. The Alzheimer’s Disease Cooperative Study
Homocysteine Trial was initiated to explore supplementation for AD patients over an 18 month
period. Treatment groups demonstrated reduction of homocysteine levels by high-dose folic
acid/B6/B12 supplementation in a multicenter, randomized, controlled clinical trial. Treatment
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resulted in 20–30% reduction in peripheral homocysteine, however, ADAS-Cog scores showed
no change. In elevated homocysteine population (>13 uM homocysteine), no significant
change in ADAS-Cog testing was observed. Post-hoc analysis on mildly demented patients
(Clinical Dementia Rating = 0.5) demonstrated B vitamin supplementation provided clinically
significant stabilization in ADAS-Cog scores from three months through 18 months.
Depression was reported as an adverse event in the vitamin supplement group [2].

Alternatively, antioxidants B12 and N-acetyl-L-cysteine have been administered to patients
with dementia. While the size of these studies in general clinical settings are quite small, these
reports have found that antioxidants may indeed have an apparent clinical benefit. It is well
noted that patients responses are quite varied as the circumstances under which these
hyperhomocysteimic patients are enrolled in the trials [49].

Conclusions
AD is recognized as a chronic condition with a long asymptomatic period preceding
recognizable clinical deterioration and dementia. Collected evidence has shown strong
implications that oxidative stress plays an early and important role in the pathogenesis of the
disease through a number of mechanisms. Collectively examining the role of oxidative stress
on cerebrovasculature, hypertension, BBB, and neurons, provides substantial evidence that
therapies impacting these conditions independently may ultimately influence onset, severity,
or progression of clinical AD. These therapies should therefore be considered as disease
modifying and continued to be pursued as more information regarding antecedent biomarkers
becomes available [63,91].

Currently large collaborations are underway in the United States and Europe to improve clinical
trials by characterizing mild cognitive impaired and AD patients. The Alzheimer Disease
Neuroimaging Initiative is an unprecedented study in size and scope; this partnership between
the National Institutes of Health and private industry is generating parallel data from magnetic
resonance imaging, positron emission tomography, cognitive scores, and biomarkers in a
longitudinal study, creating a wealth of data that will allow for improved treatment trials.

In June 2007, in concert with the Alzheimer’s Association, the Centers for Disease Control
released the “Healthy Brain Initiative: A National Public Roadmap to Maintaining Cognitive
Health”; the roadmap is intended to give the public and scientific communities insights into
the progress that is being made in the areas of progress and prevention for AD and dementia.
While the direct relationships between vascular and cognitive health are still not fully
understood, sufficient evidence exists to support the association between vascular health and
cognitive health, clinical trials are necessary to establish the effectiveness of interventions
targeted to vascular risk factors.
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Figure 1.
Cerebrovascular oxidative stress and diminished neuronal redox capacity both independently
and coordinately impact dementia and AD.
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