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Abstract
Cholesterol gallstone formation is a complex process mediated by genetic and environmental factors.
Until recently, the role of the immune system in the pathogenesis of cholesterol gallstones was not
considered a valid topic of research interest. This review collates and interprets an extensive body
of basic literature, some of which is not customarily considered to be related to cholelithogenesis,
describing the multiple facets of the immune system that appear to be involved in cholesterol
cholelithogenesis. A thorough understanding of the immune interactions with biliary lipids and
cholecystocytes should modify current views of the pathogenesis of cholesterol gallstones, promote
further research on the pathways involved, and lead to novel diagnostic tools, treatments, and
preventive measures.

Bile is a complex aqueous colloidal system that is essential for a wide range of physiologic
functions, including the excretion of lipids from the organism and intestinal fat absorption.1,
2 Bile is formed primarily in hepatic canaliculi, small (1–2 μm) spaces formed between the
tight junctions of hepatocytes. It is composed of water, electrolytes, and a variety of lipid solutes
dispersed in mixed micelles and vesicles including bile salts, phospholipids (>96% being mixed
phosphatidylcholines), and cholesterol, as well as proteins and bilirubin conjugates.3
Phospholipids and bile salts are essential for the removal from the organism of otherwise
insoluble cholesterol molecules in an aqueous environment by solubilizing the sterol in mixed
micelles, composed of the catabolic product bile salts, and unilamellar vesicles.2–4 Bile is
transported from the canaliculi along tubules of increasingly greater diameter until it egresses
into the gut at the midduodenum. In health, about half the secreted bile is stored, concentrated,
and slightly acidified in the gallbladder during the interdigestive interval. The gallbladder is
connected to the biliary tree via the cystic duct, which functions simultaneously as a gallbladder
filling and emptying conduit.3

Alterations in the relative or absolute proportions of cholesterol, phospholipids, and bile salts
can lead to phase separation of cholesterol from solution in bile. Most frequently these changes
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result from excess secretion of cholesterol from the liver.1–3 As the absolute cholesterol
concentration increases, the excess cholesterol phase separates, forming unilamellar vesicles
with biliary phospholipids (Figure 1). Under suitable physicochemical conditions, these can
aggregate to form multilamellar vesicles (lamellar liquid crystals), and eventually cholesterol
monohydrate crystals can separate from these and aggregate in the gallbladder.2,4 These
crystals can progress to form cholesterol gallstones by agglomeration within a gallbladder-
secreted mucin gel. Formation of cholesterol gallstones invariably occurs adjacent to the
gallbladder wall, where cholesterol monohydrate crystals nucleate in the gelled mucin
glycoprotein scaffolding.2,4–6 The majority of cholesterol gallstones form in the gallbladder;
however, in rare situations especially and perhaps uniquely from genetic deficiency of biliary
phospholipid secretion,7 the stones can form anywhere along the biliary tree, even
intrahepatically.1–3 Although a relative excess of cholesterol is necessary for formation of
cholesterol gallstones, it is not sufficient. Biliary sludge, composed of agglomerated cholesterol
crystals of an ultrasonically detectable size (∼50 μm) suspended in mucin gel, is frequently
observed and can progress to form cholesterol gallstones.8–10 Lee et al found that in 18% of
patients studied by ultrasonography for a mean of more than 3 years, biliary sludge disappeared
completely; in 60% of the patients, the biliary sludge disappeared and reappeared.10

The study of cholesterol gallstones relies on multiple methodologies, including physical-
chemical studies of model bile and ex vivo bile systems, biliary lipid secretory studies, animal
models with particular focus on cholesterol gallstone (Lith) genes, and epidemiologic studies
analyzing susceptible and resistant human populations.2,11–14 These studies provide the basis
for our understanding of the epidemiology and pathogenesis of cholesterol gallstones.
Formation of cholesterol gallstones is principally a polygenic trait with significant
contributions from the environment.3,15 Although these studies provide a strong basis for our
understanding of the etiology and pathogenesis of cholesterol gallstones, many issues remain
unresolved. For example, why do so few individuals with phase-separated and aggregated
cholesterol monohydrate crystals (such as the biliary sludge that is frequently observed in
pregnant women) proceed to gallstones?8–10 Additionally, why do genetically identical mouse
models challenged with the same lithogenic diet but housed at different research institutions
display such marked differences in their proclivity to form cholesterol gallstones?16

We proposed that the differences in the prevalence of gallstones in genetically identical mice
might arise from differences in their colonization status with gastrointestinal microbes.
Initially, we analyzed the ability of enterohepatic Helicobacter spp to contribute to
lithogenicity and identified several enterohepatic Helicobacter spp that contributed to
cholesterol gallstone nucleation and other Helicobacter strains that did not.16,17 The host
immune system might be the primary mechanism whereby these organisms (and perhaps
others) promote cholesterol gallstone formation as well as mucin gel and gallbladder
inflammation. Subsequent studies showed that the response of the adaptive immune system
was important, and probably essential, because Rag-deficient mice, which lack mature T and
B cells, rarely (<10%) develop cholesterol gallstones.18 A number of previous studies showed
invariably that gallbladder inflammation occurred concomitantly with cholesterol
supersaturation and gallstone formation; none, however, conclusively showed that this process
was a primary contributing factor rather than a secondary effect of the lithogenic process.19–
23

This review focuses on the immune aspects of the pathogenesis of cholesterol gallstones and
examines the role of infection, inflammation, and the response of the immune system during
the formation of cholesterol gallstones. There is an extensive body of immunity literature
related to cholesterol gallstones as well as a number of studies involving mouse models of
infection, inflammation, and immunity. This review describes the critical contributions of the
gallbladder epithelium and the immune system to modulation of cholesterol gallstone
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formation and progression, rather than the nonimmunologic factors (hypersecretion of
cholesterol, alterations in cholesterol to bile salt and phospholipid ratios and concentrations,
and so on) that are pivotal factors in the pathogenesis of cholesterol gallstones but have been
reviewed elsewhere.3,24 Most of the immunologic factors described in this review occur in
conjunction with the fundamental prolithogenic alterations in liver and bile; without these
alterations, inflammation would not be sufficient to induce cholesterol supersaturation of bile
and gallstone formation. The causes of biliary tree inflammation, as they relate to cholesterol
gallstone disease, are far from being fully elucidated; nonetheless, the literature indicates that
some noninfective inflammation occurs secondary to physical-chemical alterations of bile
(cholesterol supersaturation and early stages in the nucleation and phase-separation sequences;
Figure 1), whereas others occur independently of biliary lipid composition.

Biliary Epithelium and Immunity
Anatomically, the biliary tree is often divided into intrahepatic and extrahepatic portions that
include the gallbladder epithelium. However, with respect to biliary tissue and disease, this
distinction appears artificial when describing the interactions of the biliary epithelium with the
immune system; it appears that biliary epithelial cells from either location have similar
responses to immunogenic stimuli.25,26

Biliary epithelial cells participate in both innate and adaptive immunity.27–29 Briefly, the innate
immune system induces no immunologic memory to an antigen but responds instead to a
variety of evolutionarily conserved patterns present in foreign antigens. In addition to specific
cellular subsets that include neutrophils, macrophages, eosinophils, basophils, mast cells, and
natural killer cells, a variety of proteins also participate in innate immunity, including the
complement cascade, cytokines, and proteins of the acute phase response.30–32 In contrast, the
adaptive immune response induces “memory” to foreign antigens and is mediated by both B
and T cells. Following activation, the adaptive immune response can also stimulate the
production of a variety of cytokines and the recruitment of inflammatory cells.33–36 There is
overlap in these 2 pathways; perturbation of either can alter the ability of the other to respond
appropriately to a stimulus.36

Biliary epithelial cells express all known toll-like receptors (TLR), which mediate antigen-
pattern recognition—a key response of the innate immune system.28,37–39 Additionally,
myeloid differentiation protein 88 (MyD88), which is an important downstream effector of the
TLR pathway, is also present in these cells.28 Biliary epithelial cells that express dominant-
negative forms of MyD88 have increased susceptibility to infection with the intracellular
biliary pathogen Cryptosporidium parvum, indicating that the TLR/MyD88 system functions
in biliary epithelial cells.39 Additionally, C parvum infection up-regulates β-defensins in
infected wild-type cells, but β-defensin production is ablated in cells with reduced levels of
TLR2, TLR4, or nuclear factor κB, indicating an essential role for defensins in protection of
cholangiocytes and, by implication, bile itself from infection.38

The relationship between biliary epithelial cells and the adaptive immune response requires a
variety of receptor-ligand interactions that occur between epithelial cells, T cells, and
“professional” antigen-presenting cells such as dendritic cells. Human biliary epithelium cell
lines constitutively express HLA class I (major histocompatibility complex class I) antigens
but only low levels of class II antigens (Figure 2).25,26 However, after stimulation with
proinflammatory cytokines, the cells express a variety of HLA class II antigens, including
HLA-DR, HLA-DP, and HLA-DQ (Figure 2).25 Essentially, this expression profile shows that
biliary epithelial cells are likely to interact with both CD8+ T cells (cytotoxic T cells) and
CD4+ T cells (helper T cells). In addition to these primary immune receptors, biliary epithelial
cells also possess a variety of costimulatory molecules necessary for functional interaction with

Maurer et al. Page 3

Gastroenterology. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



these immune cells, including CD40, intercellular adhesion molecule 1, lymphocyte function-
associated antigen 3, and FAS (Figure 2).29,40–45 These protein expression profiles indicate
that the biliary epithelium actively participates in adaptive immunity through interaction with
T cells and local antigen-presenting cells.

The second aspect of adaptive immunity involves the B-cell response, mediated through
immunoglobulins (Igs). All Ig classes, including IgA, IgG, and IgM, are present in low
concentrations in bile.29 However, biliary epithelial cells have only minimal participation in
Ig secretion. In humans, IgA is synthesized by plasma cells that line the bile ducts and then is
bound to the polymeric Ig receptor at the basolateral surface of cholangiocytes.46–48 IgA is
then transcytosed to the apical surface of the cells and secreted into bile. This intracellular
transport system has an important role in protecting the biliary tree from intracellular pathogens
by binding these antigens in transit.49 Similar to IgA secretion, IgM is transported via the
polymeric Ig receptor, but in contrast, IgG is secreted using the FcRn.49–51 Igs that reach
intraluminal bile aid in protecting bile from colonization with gastrointestinal pathogens.52,53

Aside from expressing the necessary receptors and downstream activators for participation in
the immune response, biliary epithelial cells also secrete a variety of cytokines and undergo
phenotypic changes in response to these inflammatory mediators. Cultured murine
cholecystocytes (gallbladder epithelial cells) express Tnf-α, Ccl5 (RANTES), and Mip-2
(CXCL2) (Figure 2).54 Following treatment with lipopolysaccharide (LPS), these cells increase
expression of Mip-2 and Tnf-α. Additionally, expression of Il-1β, Il-6, and Mcp1 is induced
following exposure to LPS (Figure 2).54 Interestingly IL-10, the Th2 and T-regulatory
cytokine, is not expressed in resting or LPS-stimulated gallbladder epithelium.54 It has been
established that the biliary epithelium possess receptors for some of these cytokines and
chemokines (including tumor necrosis factor [TNF]-α), indicating that these secreted cytokines
can act in both an autocrine and a paracrine manner (Figure 2).29,55 The addition of exogenous
cytokines to cultured biliary epithelial cells induces phenotypic changes in these cells,
supporting an autocrine role for some of these cytokines (Figure 2). For example, the addition
of TNF-α, LPS, interleukin (IL)-1α, and prostaglandin E2 to cultured human cholecystocytes
alters the transport of sodium and chloride and diminishes the absorptive function of the
gallbladder epithelium.56 Studies in guinea pigs (Cavia porcellus) with ligated bile ducts
support these in vitro findings.57 Specifically, the instillation of IL-1 or LPS into the gallbladder
induces gallbladder wall inflammation and stimulates the release of myeloperoxidase,
prostaglandin E2, and water into the gallbladder lumen.57 Systemic administration of cytokines
during chemotherapeutic treatment is also associated with changes in the biliary epithelium.
For example, IL-2 administration to humans causes acalculous cholecystitis.58–60 The
administration of transforming growth factor (TGF)-β to cultured rabbit (Oryctolagus
cuniculi) gallbladder epithelium induces a mesenchymal, fibrotic phenotype.61 This in vitro
phenomenon appears to have an in vivo correlate because TGF-β expression is associated with
fibrosis and inflammation during formation of cholesterol gallstones in humans.62 Finally,
histamines released during mast cell degranulation induce gallbladder smooth muscle
contraction.63

There are several disease states associated with immune-mediated destruction of the biliary
epithelium: primary biliary cirrhosis, primary sclerosing cholangitis, and graft-versus-host
disease.40,42,64–67 The biliary epithelium clearly participates in cellular and humoral immunity
through antigen presentation, cytokine and chemokine production, and Ig transport. Moreover,
biliary epithelial cells possess all of the necessary cellular components required to participate
in the innate immune system; perturbations of innate immunity appear to predispose to biliary
infection.28,37–39
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Role of Infection, Inflammation, and the Immune System in Formation of
Cholesterol Gallstones
Igs

In vitro studies with model bile created with various concentrations of purified lipids have
shown that biliary Igs, particularly IgM and IgG, promote the nucleation of solid cholesterol
crystals.68,69 Interestingly, the source of the Igs appears to influence the ability of these proteins
to nucleate solid cholesterol crystals from bile. IgM and IgA from commercial sources are
incapable of nucleating supersaturated bile, whereas commercially available IgG has
pronucleating activity.68,70 The anatomic source of the Igs also appears to influence the ability
of these molecules to cause cholesterol crystal phase separation. Specifically, biliary Igs seem
to promote solid cholesterol nucleation more than Igs isolated from blood.70 Of the biliary Igs,
IgM most potently nucleates supersaturated bile, whereas IgG has slightly less facility and IgA
has very little activity.68–70

Prospective studies utilizing animal models generally do not support a role for Igs in the
pathogenesis of cholesterol gallstones. AKR or C57L mice fed a lithogenic diet undergo an
initial decrease, followed by a temporary increase, in biliary IgM and IgA levels.22 In both
strains of mice, the total amount of IgG remained relatively unchanged. Van Erpecum et al
concluded that Igs are not likely to participate in formation of cholesterol gallstones because
both gallstone-resistant (AKR) and gallstone-susceptible (C57L) mice displayed alterations in
their Ig levels when placed on lithogenic diets.22 Actually, gallstone-resistant AKR mice had
higher concentrations of biliary Igs than the gallstone-susceptible C57L mice.22 Although these
changes appeared to negate any important role that Igs had in formation of cholesterol
gallstones, data interpretation was complicated by pronounced differences in cholesterol
saturation index (a quantifiable measurement of the relative amount of cholesterol in bile)
values between C57L mice (∼2.0) and AKR mice (∼1.5).71 Therefore, the variable
contributions of differing cholesterol saturation indexes of biliary lipids most likely
confounded these results. Moreover, results of human studies indicated that Igs did not
contribute to formation of cholesterol gallstones; in ex vivo bile samples from individuals with
or without gallstones, there was no correlation between biliary Igs and cholesterol crystal
detection times.72

One limitation of these studies is that the investigators focused primarily on the effect of Ig
concentrations on solid cholesterol monohydrate crystal nucleation. Although Ig
concentrations could be important, it is likely that other factors are relevant to this physical-
chemical interaction. For example, the antigen specificity of the Igs may be crucial. Indeed,
Fab fragments isolated from patients with cholesterol gallstones accelerated cholesterol crystal
observation times in vitro, whereas commercially available Fab fragments did not.73 These
data indicate that antigen-specific Fab fragments might contribute to cholesterol nucleation in
vitro.73 Therefore, merely quantifying Ig concentrations in bile appears to provide limited
functional information.

Recent studies have shown that mice that have only T cells (that lack B cells and Ig) develop
gallstones at a greater frequency than wild-type mice. In contrast, mice possessing only B cells
do not recapitulate the prevalence of gallstones observed in wild-type mice.18

Mucin Glycoproteins
Biliary mucin glycoproteins are the most thoroughly analyzed biliary proteins involved in the
pathogenesis of cholesterol gallstones. Mucin genes that are expressed in human biliary
epithelia include MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC5B, and MUC6.74 Mucin gel
accumulation appears to be important for formation of cholesterol gallstones in humans and
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in animal models.5,75–79 Moreover, these proteins promote solid cholesterol-phase nucleation
in vitro.76,80–83 In vitro and in vivo data suggest that mucin gel accumulation precedes and
promotes formation of cholesterol gallstones by nucleating cholesterol crystals from (liquid
crystal) phase-separated bile.

In cultured cholangiocytes, many mucin genes are regulated by inflammatory mediators.
Studies in 2 different cell culture systems have shown that mucin gel accumulation and mucin
gene expression increased following exogenous addition of LPS and TNF-α. In cultured
cholangiocytes, expression of Muc2 and Muc5ac increased following exposure to LPS or TNF-
α (Figures 3 and 4).84 Utilizing the same cell culture system, the investigators showed that
TNF-α stimulated protein kinase C, which appeared to signal increased production of Muc2
and Muc5ac (Figures 3 and 4).84 In the case of Muc3, its production was increased by LPS,
but not TNF-α, possibly due to an interaction of these molecules with CD14 (Figure 5).84 In
another study, LPS and other pathogen-associated molecular patterns were found to interact
with TLR2 or TLR4 on the surface of biliary epithelium.85 This interaction induced expression
of Cdx2, a gene whose product is associated with intestinal metaplasia of epithelial cells; CDX2
in turn induced expression of Muc2 (Figure 3).85 Furthermore, MUC2 protein expression is
increased in the gallbladders of humans with cholesterol gallstones.86

Choi et al87 obtained similar results utilizing cultured canine (Canis familiaris) gallbladder
epithelial cells. The addition of LPS from any of 3 bacterial species stimulated mucin
production in cultured dog cholecystocytes. There appeared to be differences in the ability of
LPS from different bacterial species to induce mucin secretion. For example, LPS from
Escherichia coli produced the greatest stimulation, whereas LPS from Pseudomonas
aeruginosa stimulated the least mucin production. Furthermore, the addition of TNF-α to the
culture media promoted mucin production, albeit to a lesser degree than LPS. The diminished
response to TNF-α could have been due to the use of human rather than canine TNF-α. The
investigators noted that the changes in mucin accumulation were not due to cytotoxicity of
either LPS or TNF-α, because cell viability assays demonstrated survival of the cultured cells.
87

Recent studies have shown that TNF-α regulates MUC5AC expression via an epidermal growth
factor (EGF)-mediated pathway (Figure 4).88 Stimulation of gallbladder epithelium with TNF-
α induced production of the EGF receptor (EGFR). EGF then binds to the EGFR and this
interaction induces expression of Muc5ac, presumably through a second messenger
protein88; inhibition of the EGF-EGFR pathway prevented production of MUC5AC.88

Findings from these in vitro and in vivo studies indicate that production and secretion of the
mucin glycoproteins are influenced by inflammatory mediators. TNF-α, pathogen-associated
molecular patterns, and their second messengers are likely to be only “the tip of the iceberg”
with regard to inflammatory mediators that stimulate mucin production by the gallbladder.
Perhaps a more important question to ask is not whether inflammatory mediators alter mucin
production, but rather under what pathophysiological situations do inflammatory mediators
exert their effects on the biliary epithelium?

Other Putative Pronucleating Biliary Proteins
Many other proteins nucleate cholesterol monohydrate crystals in vitro.72,89,90 Some of these
putative pronucleating agents include haptoglobin, phospholipase C, α1-acid glycoprotein,
albumin, and aminopeptidase N.72,89,90 In general, in vivo studies that analyzed the role of
putative pronucleating proteins have been hampered by a number of factors: (1) large-scale
proteomic analysis has only recently been undertaken to systematically analyze the protein
complexity of gallbladder bile,91 (2) prior methods used to identify quantitative differences in
these biliary proteins were relatively insensitive and might be inadequate to demonstrate

Maurer et al. Page 6

Gastroenterology. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



significant differences in concentration, and (3) concentrations of individual proteins might
not be important, but rather a cumulative or cooperative effect of multiple proteins could be
required to promote phase separation of crystals or liquid crystals in bile and lead to formation
of cholesterol gallstones. Moreover, there is little understanding of the physical-chemical
interactions between these proteins. Large-scale, sensitive proteomic screens are becoming
easier to perform and more widely used in pathophysiology and translational research;
utilization of these techniques will likely increase our understanding of what role, if any, the
myriad of secreted biliary proteins may play in formation of cholesterol gallstones.

Gallbladder Inflammation
In both animal models and humans, formation of cholesterol gallstones is preceded by
histopathologic alterations in the gallbladder wall that indicate inflammation. These changes
include edema, increased gallbladder wall thickness, the presence of inflammatory cells, and
remodeling of the epithelium with concomitant increases in TGF-β production.19–21,62,92,93

These alterations are accompanied often by changes in gallbladder contractility and
modifications in the ability of the gallbladder epithelium to transport a variety of substances.
2,21,23,94,95 Furthermore, lithogenic bile can alter mechanisms associated with cytoprotection
in the gallbladder muscle, demonstrated by the ability of the gallbladder muscle to respond to
reactive oxygen species.96

A systematic histopathologic study23 showed that C57L mice, which are susceptible to
gallstones, increase gallbladder wall thickness progressively when fed a lithogenic diet. In
contrast, AKR mice, which are resistant to gallstones, display only a mild increase in thickness.
Both strains accumulate subepithelial inflammatory cells and edema; however, C57L mice do
so to a significantly greater degree. These changes coincide with decreases in the gallbladder
expression of the aquaporin genes Aqp1 and Aqp8.23 These findings suggest that during
formation of cholesterol gallstones, the gallbladder undergoes progressive changes that
ultimately result in decreased motility, increased edema, and altered transport functions. The
farnesoid X receptor (FXR) is a critical transcription factor that alters biliary lipid composition.
92 In Fxr−/− mice, the gallbladder becomes thickened, edematous, and infiltrated with
granulocytes following 1 week of lithogenic diet feeding; these changes were not observed in
wild-type mice.92 Additionally, levels of potentially cytotoxic hydrophobic bile salts, such as
deoxycholate conjugates, were significantly increased in Fxr−/− mice.92

It is likely that phase-separated cholesterol crystals and hydrophobic bile salts are responsible,
in part, for the histopathologic changes noted in the murine gallbladder during formation of
cholesterol gallstones. Ex vivo analysis of gallbladders from patients with cholesterol
gallstones revealed smooth muscle cells that contained excess cholesterol in their plasma
membranes.96 Furthermore, the isolated muscle tissues displayed less contractility and
decreased levels of scavengers of reactive oxygen species.96 These changes appeared to be
associated with dysfunction of the receptor for prostaglandin E2; prostaglandin E2 binding to
its receptor usually has a cytoprotective effect. Others have reported correlations between
human gallbladder muscle dysfunction, increases in the cholesterol saturation index of bile,
and the histopathologic inflammation score of the gallbladder.97 Additionally, oxysterols are
capable of inducing apoptosis in cultured gallbladder epithelial cells.98,99 The mechanism that
mediates apoptosis appears to involve incorporation of oxysterols into the mitochondria of
epithelial cells and subsequent cytochrome c activation.99

Based on these studies, it is not possible to determine whether the functional and
histopathologic changes that occur in the gallbladder are due to cytotoxicity or inflammation;
however, studies in the prairie dog model of cholelithogenesis indicated that inflammation is
an essential element of cholesterol gallstone formation.100 Specifically, prairie dogs fed high
doses of acetylsalicylic acid (aspirin) failed to form gallstones, whereas 100% of controls
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developed gallstones.100 Because both groups supersaturated their gallbladder biles, this study
shows that cholesterol supersaturation is necessary but not sufficient for formation of
cholesterol gallstones. Therefore, the proinflammatory effects of solid cholesterol itself, and
likely other proinflammatory mediators, have an integral role in cholelithogenesis. However,
subsequent studies failed to fully recapitulate these findings; it is difficult to make direct
comparisons between these types of studies because they all used different doses of
acetylsalicylic acid, dosing regimens, parameters of measured success, and lithogenic diets.
101–105

Further evidence for the role of the immune system in the pathogenesis of cholesterol gallstones
arose from studies with Rag-deficient mice, which do not have mature T or B cells (Rag mice).
Both wild-type and Rag-deficient mice exhibited supersaturated gallbladder biles, evidenced
by the phase separation of liquid crystals; however, only the wild-type mice had a high
prevalence of cholesterol gallstones.18 Gallstone formation in this case appeared to be due in
part to a potent Th1 immune response, which accompanied the formation of solid cholesterol
monohydrate crystals in the gallbladder. These data indicate that most likely solid cholesterol
crystals promote inflammation via the adaptive immune system, specifically via T-cell
function.18

Hydrophobic bile salts promote inflammation and apoptosis in vitro and are likely to do so in
vivo.106–108 In contrast, the hydrophilic bile acid ursodeoxycholic acid decreases mucosal
inflammation and biliary protein concentrations.109 In C57L mice infected with
Helicobacter spp, the relative concentration of hydrophobic bile salts (such as deoxycholate
conjugates) increased in hepatic bile whereas that of hydrophilic bile salts (such as α- and β-
muricholate conjugates) decreased compared with uninfected mice.110 It appears that one
downstream effect of hydrophobic bile salts is the induction of proinflammatory cytokines.
108 An increase in hydrophobic bile salts, principally deoxycholate conjugates, is a common
finding in patients with cholesterol gallstone disease and in animal models; it is likely that bile
salt–mediated inflammation is also important in cholelithogenesis.111–114

Bacterial Colonization of the Biliary Tract and Formation of Cholesterol Gallstones
Bacteria have historically been implicated in the pathogenesis of cholesterol gallstones;
however, a definitive cause-and-effect relationship has never been established.115–117 A major
factor contributing to this confusion is the chronic nature of cholecystolithiasis. The formation
of cholesterol gallstones requires a long time, often decades. When gallstones do form, they
do not disappear spontaneously except by migration into the duodenum, which is invariably
followed by reformation.118–120 Furthermore, after cholesterol gallstones form in a patient,
they do not always lead to symptoms; when they do, clinical expression can also take years.
2,4,121 In prospective mouse models, organisms need not colonize the gallbladder to promote
formation of cholesterol gallstones.16 Therefore, the identification of bacteria in bile or
gallbladder tissue of patients with cholesterol gallstones does not mean that these organisms
caused the gallstones. More likely, the bile, gallbladder mucosa, and biliary motility might
have been altered to allow for subsequent bacterial colonization. Furthermore, bacteria that
might have been present at the time of initial stone formation could have been cleared and
therefore not detected by conventional culture techniques. Another issue is that some bacteria
alter the composition of bile directly via β-glucuronidase, cholyl-glycyl hydrolase,
phospholipase A1, or urease activities, thereby promoting calcium bilirubinate (brown pigment
stone) formation.122

Despite these deficiencies, numerous studies have identified bacteria in bile, cholesterol stones,
and gallbladder tissue from patients with cholesterol gallstones.123–127 Some propose that
bacteria, through their β-glucuronidase activity, are responsible for nucleation and calcium salt
deposition.128,129 Although this hypothesis is biologically plausible, no studies have shown

Maurer et al. Page 8

Gastroenterology. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



conclusively that it occurs. In fact, in vitro studies utilizing E coli or calcium salts have failed
to induce cholesterol crystal nucleation from supersaturated bile.130

Recently, there has been a great deal of interest in a possible connection between the gastric
pathogen Helicobacter pylori and cholesterol gallstones.17,131–134 Interestingly, growth of this
organism is inhibited by bile salts both in vivo and in vitro, and chemotactic assays show that
bile salts actually repel the organism,17,135,136 findings that contradict the ability of H pylori
to colonize a healthy gallbladder. Nonetheless, a number of groups claimed to have identified
H pylori DNA in biliary tissue and gallstones.131,132,134,137 However, there are several
problems with these studies. First, some samples were collected at endoscopic retrograde
cholangiopancreatography134; because H pylori colonizes the gastric mucosa of more than half
the world's population, the statistical chances for sample contamination by gastric H pylori are
high. Additionally, 16S ribosomal RNA genus-specific primers are commonly used to identify
these organisms in polymerase chain reaction (PCR) analysis, despite the fact that these primer
sets can amplify other non–H pylori helicobacters.16,17 Furthermore, sequence evaluation of
these primer products is generally inadequate to speciate H pylori properly, because of high
homology with non–H pylori Helicobacter spp.138 For example, Avenaud et al139 identified
H pylori–like organisms based on sequencing of the 16S ribosomal RNA gene from human
liver samples; however, rigorous follow-up tests proved that these organisms were an
unclassified Helicobacter spp.139 The development of species-specific primers to other regions
of the genome may alleviate some of these concerns. Nonetheless, the efficacy of species-
specific primers depends on their precise level of specificity. Finally, these organisms could
invade the biliary tree following alterations in the biliary microenvironment and especially
biliary dysmotility. Supporting this hypothesis is a recent study showing that H pylori DNA
was present in gallbladder bile of patients with chronic cholecystitis, consistent with
obstruction, but not in asymptomatic patients with cholesterol gallstones.131

In addition to the gastric pathogen H pylori, a variety of enterohepatic helicobacters (eg,
Helicobacter bilis and Helicobacter hepaticus) exist.140,141 These reside in the small and large
intestines and canalicular spaces of the liver of experimentally and naturally infected animals,
including humans.140,141 DNA from these organisms was detected in nonwhite patients with
chronic cholecystitis, gallstones, and malignant biliary tract diseases.142,143 Studies with
experimental animal models indicate that these enterohepatic helicobacters promote formation
of cholesterol gallstones in vivo.16 In contrast, in the same experimental model, H pylori did
not promote formation of cholesterol gallstones.17 Interestingly, a follow-up study showed that
urease-positive Helicobacter spp can precipitate calcium salts in vitro.144 The investigators of
this study proposed that this activity might contribute, at least in part, to the ability of these
organisms to promote cholesterol gallstones by inducing the formation of a calcium salt nidus,
because monoinfection with urease-positive helicobacters or coinfection with at least one
urease-positive helicobacter is necessary to induce cholesterol gallstones.16,144

Because PCR was used to identify Helicobacter spp and other bacteria in many of these studies,
data interpretation can be challenging. PCR can detect relatively small quantities of bacterial
DNA, a marker for colonization with organisms that might not be identified with standard
culture methods. Unfortunately, the presence of bacterial DNA at the time of examination does
not mean that it contributed to formation of gallstones. Theoretically, analyzing the core of
stones might provide more reliable data on the inciting cause; however, due to the sensitive
nature of PCR, the mere act of trying to isolate the core can contaminate it with nucleic acid
from the external stone surface or from other sources. Additionally, no studies have analyzed
the ability of cholesterol gallstones to absorb DNA.145 If stones are capable of imbibing DNA,
then regardless of the analysis (be it core or external), the DNA detected might represent only
the most recent DNA encountered. Furthermore, when multiple DNA fragments are present
and nonspecific primers are used (designed to amplify 16S ribosomal RNA genes from multiple
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bacteria), there is the possibility that the DNA present at the highest concentration was
preferentially amplified.146 Because PCR amplification is nonlinear, even a small bias in initial
amplification can lead to logarithmic differences in the final DNA concentration.
Unfortunately, the most prevalent bacteria are not necessarily the most important bacteria or
might not be important at all. The use of more discriminatory PCR techniques such as those
utilized to analyze complex environmental samples could circumvent this problem in the
future.147,148

One of the classic bacterial pathogens of the biliary tree in humans is Salmonella enterica ser
Typhi, which causes typhoid fever.149,150 This organism crosses the intestinal epithelial
barrier, invades macrophages, and spreads systemically.151 After colonizing the liver, the
organism can be shed into the gallbladder and chronically colonize the gallbladder wall (3%–
5% of those infected).149,150 Although chronic colonization with S typhi is associated with
gallstones and gallbladder cancer,149,150 it is not clear whether this organism contributes to
stone formation or alternatively if the presence of gallstones promotes chronic colonization.
Recent evidence indicates that S typhi forms bacterial biofilms on the surface of cholesterol
gallstones.151 This biofilm formation would allow for chronic colonization and protect the
organism during antibiotic treatment. Biofilm formation is dependent on the presence of bile
because organisms cultured without bile do not readily form biofilms.151 This indicates that
this organism is exquisitely adapted to survival in a gallbladder that contains cholesterol
gallstones. Furthermore, biofilm formation is reduced when pebbles or glass beads are utilized
instead of cholesterol gallstones, indicating that both bile and cholesterol gallstones are
essential for biofilm formation. Moreover, colonization in the presence of cholesterol
gallstones requires expression of several bacterial genetic components.151,152 These data argue
that cholesterol gallstones promote chronic colonization with S typhi rather than S typhi–
promoting gallstones. Regardless of whether gallstones promote colonization or vice versa,
the concomitant presence of gallstones and S typhi markedly promotes the risk of gallbladder
cancer, making the interaction between S typhi and cholesterol gallstones an important topic
of clinical interest.149,151

It is not clear whether there is a causative role for bacteria in formation of cholesterol gallstones
in humans. It is likely that some bacteria identified in humans with cholesterol gallstones are
at least partially responsible for those gallstones due to their ability to promote inflammation
and precipitate calcium salts. Unfortunately, most of these studies are primarily descriptive
and fail to thoroughly analyze the organisms identified. For example, it is important to
determine whether any of the organisms possess virulence factors that would allow for their
invasion or colonization of a nondiseased biliary tree. Additional information could be garnered
by culturing these organisms and utilizing them to prospectively infect mouse models. For
example, when the C57L/J mouse model is acquired directly from The Jackson Laboratory
(Bar Harbor, ME) and the mice are housed in microisolator cages under specific pathogen-free
conditions and free of enzootic Helicobacter spp, they rarely (∼10%) develop cholesterol
gallstones. However, purposeful infection with some enterohepatic strains of Helicobacter spp
significantly increases the prevalence of gallstones to a high of 80%.16,17 It will prove valuable
to test other putative lithogenic organisms utilizing this model system approach, bearing in
mind the caveat that for the assay to be effective the organisms must be capable of colonizing
the mouse strain being utilized.

Chronic Inflammatory Conditions and Gallstones
Chronic hepatitis C virus (HCV) infection is associated with cholesterol and pigment gallstone
formation.153–156 Chronic hepatic damage might be responsible for this effect, leading to
deranged liver function and cirrhosis.155,156 However, recent studies have shown that HCV
infection, independent of liver cirrhosis, is associated with increased prevalence of cholesterol
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gallstones.153,154 HCV can replicate in the gallbladder epithelium,157,158 and damage of the
biliary tree was noted in 22%–91% of biopsy specimens from patients with HCV.154 It is
therefore possible that the association between noncirrhotic patients with HCV and gallstones
depends on HCV replication in biliary epithelia, leading to local inflammation, alterations in
gallbladder contraction, and inflammation-mediated alterations in mucin gene production.
Interestingly, one such study reported a correlation between HCV and peaks in the prevalence
of gallstones at 2 time points. The first peak occurred in patients between the ages of 31 and
40 years (7% gallstone prevalence) and the second peak occurred much later, at 61–70 years
of age (16% gallstone prevalence).154 Perhaps the first peak represents the direct effect of HCV
infection itself, whereas the second peak represents the effect of chronic liver dysfunction and
hepatic cirrhosis. Future studies using biochemical and molecular techniques that focus on
changes in the gallbladder itself could provide greater insight into the mechanistic relationships
between HCV infection and formation of cholesterol gallstones.

Patients with Crohn's disease (CD) are at increased risk for the development of gallstones.
159–162 Results vary regarding which factors correlate with pigment or cholesterol gallstone
formation. Factors mentioned include age, female sex, site of disease, surgical resection, and
duration of disease (independent of age).160,161,163 Some investigators noted that patients with
CD with ileal disease or colonic resection supersaturated their bile with cholesterol, probably
because of alterations in cholesterol and bile acid absorption from the small intestine.164,165

However, several studies have described a decrease in the cholesterol saturation in bile of
patients with CD, especially when the ileum is involved.166,167 Furthermore, bile acid
composition is altered in patients with CD, and these alterations are often characterized by a
decrease in deoxycholate and an increase in ursodeoxycholate conjugates.164,166,167 These
changes seem paradoxical, because ursodeoxycholate enrichment would seem to favor
prevention of cholesterol gallstones.118,168,169 Unlike patients with CD, patients with
ulcerative colitis are not at increased risk for cholesterol gallstones.159,161 Gallstone formation
might vary between patients with ulcerative colitis and patients with CD because of differences
in inflammatory changes.170–172 Although not true in all cases, CD is most commonly
associated with a Th1 proinflammatory response whereas ulcerative colitis is more often
associated with a Th2 response.170–172 No studies have described the gallbladder inflammatory
profile of patients with either ulcerative colitis or CD; this would provide insight into the
relationship of CD, inflammation, and gallstones.

Inflammation, Cholesterol Metabolism, and Gallstones
Inflammation, and more specifically the acute phase response, produces marked alterations in
the metabolism of a variety of proteins and lipids; these changes are extensive and beyond the
scope of this review (see Heller et al172 for a leading account). However, metabolic changes
of the liver that alter cholesterol and bile acid metabolism can directly alter the composition
of bile. Most studies of these phenomena were conducted using exogenous, acute
administration of cytokines or LPS,173–177 which causes rapid (minutes to hours), relatively
short-lived (24 hours or less) alterations in hepatic gene transcription and translation. Although
these changes are significant, it is not clear if they are maintained for prolonged periods (days
to weeks).176 In the case of cholesterol gallstone formation this could prove to be very
important, because short-lived (hours to days) alterations in bile composition are less likely to
promote disease than prolonged and sustained alterations.

With this proviso in mind, it is clear from these studies that acute inflammation does alter the
hepatic metabolism of both cholesterol and bile salts. In rodents, administration of LPS or
proinflammatory cytokines (IL-1, TNF) raises serum cholesterol levels and increases the
production of HMG-CoA reductase at both the transcription and translational levels.173,175,
178 This change augments de novo cholesterol synthesis. However, the increase in cholesterol
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production is rather modest because other enzymes involved in cholesterol biosynthesis,
including squalene synthase and enzymes downstream of HMG-CoA reductase in the
mevalonate pathway, are down-regulated.173,177–179 Some investigators propose that these
changes maintain adequate cholesterol synthesis while redirecting mevalonate metabolites into
non-sterol pathways.176 This hypothesis is supported by the observed increases in dolichol
phosphate and glycosylated plasma proteins during the acute phase response.180,181 In contrast,
primates decrease their serum cholesterol levels in response to a variety of proinflammatory
mediators.182–184 Unfortunately, the mechanism underlying this change is less well understood
but might arise from alterations in cholesterol secretion or ApoB synthesis.185,186

Profound alterations in bile salt production also occur under these conditions. Specifically,
LPS down-regulates the classic and alternative pathways of bile salt synthesis by decreasing
production of CYP7A1 (classic) and CYP7B1 or CYP27A1 (alternative) proteins.187,188

Additionally, exogenous administration of LPS decreases hepatocellular uptake and secretion
of bile salts by down-regulating basolateral and apical bile salt transporters.189–193 Not
surprisingly, because bile salts stimulate the biliary secretion of both phospholipids and
cholesterol, administration of LPS also decreases expression of phospholipid (MDR2) and
cholesterol transporters (ABCG5/ABCG8) on the canalicular (apical) membranes of the
hepatocytes.190,193,194

These observations indicate that acute infections would decrease cholesterol secretion into bile
due to intrahepatic cholestasis. Because formation of cholesterol gallstones requires only a
relative excess of cholesterol, these changes may or may not be lithogenic. Additionally, the
studies do not necessarily reflect the events following chronic immune and inflammatory
stimulation. In fact, during chronic (10 weeks) infection with enterohepatic Helicobacter spp,
hepatic bile salt secretion rate and bile flow increase.110 Interestingly, infection also alters the
composition of the bile salt pool, rendering it more hydrophobic consistent with a
proinflammatory response. These findings highlight the differences between acute studies
involving exogenous administration of cytokines and LPS and those studies involving chronic
infection. Furthermore, these data highlight the need for studies with pathogens that cause
either or both chronic and acute infections, which could provide entirely different results than
studies utilizing exogenous cytokine and LPS administration.

Lith (LITH) Genes
Large genetic screens have identified a variety of mouse Lith loci; products of genes at this
loci promote cholesterol cholelithogenesis.3,93 Most of these alleles span large chromosomal
regions, and the genes responsible for gallstone proclivity have not been identified (see Lyons
et al93 for a detailed review of Lith alleles and their potential to encode inflammatory
mediators). Unfortunately, the Lith loci identified to date occur on virtually every mouse
chromosome and span relatively large regions encompassing numerous genes14; the
proinflammatory genes are likely to be located in many, if not most, of these loci. Therefore,
a more plausible and productive approach to study the role of inflammation in gallstone
pathogenesis would be to utilize currently available transgenic and knockout mouse models,
with alterations in genes important in inflammation and immune responses, and compare these
with their wild-type counterparts. With the creation of these new models, the genetic loci
involved in gallstone pathogenesis will become more refined and can be used to study the
influence of potential roles of inflammation and immunity on formation of cholesterol
gallstones.

Conclusions
The gallbladder, despite its simple structure and function, is a complex organ. Like most organs,
when it becomes inflamed and damaged, it loses its ability to perform concentrative, pH
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modification, absorptive, and contractive functions. Unlike most other organs in the body, the
gallbladder can be exposed to large concentrations of free (unesterified) cholesterol and
potentially cytotoxic detergent-like bile salts. These molecules, as well as other
proinflammatory molecules, can induce potent inflammatory responses under certain
circumstances.23,106–108 Such inflammatory damage, through a variety of undetermined
mediators, then induces gallbladder hypomotility and promotes the production of pronucleating
agents.23,84,87 These effects appear to be due, at least in part, to T cells and a proinflammatory
Th1 immune response.18 Furthermore, inflammation, at least in short-term studies, modifies
hepatic lipid metabolism and secretion, which could promote cholelithogenesis by altering
biliary cholesterol secretion and bile concentration.173,175,178 These findings raise the
possibility that inflammatory mediators or their subsets are serologic biomarkers of cholesterol
gallstone formation. If identified, these biomarkers could prove valuable for diagnosis and
interventional therapy. Specifically, abatement of prolonged immune stimulation might prove
useful in the prevention or treatment of cholesterol gallstones, either alone or in conjunction
with other lipid-altering therapies.

It is important to note that many of the studies described in this review relied principally on
observation using genetically homozygous mice (>99% identify among genomes). In contrast,
even the most consanguineous of human populations are relatively heterogeneous. The role of
inflammation in human cholesterol gallstone disease is therefore likely to be subtle and involve
a wide variety of overlapping factors. Both environmental (exposure to pathogens and
proinflammatory conditions) and genetic immune factors (polymorphisms in genes that
promote the response to immune stimuli) are likely to contribute to pathogenesis. Clearly, much
remains to be learned in this regard, and further in vitro, animal model, and human studies are
likely to clarify many of these exciting possibilities.
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Figure 1.
The physical-chemical processes involved in formation of cholesterol gallstones. The classic
physical-chemical symbols for cholesterol (pink), phospholipid (green), and bile salt (purple)
molecules are shown, along with the macromolecular structures they form. Cholesterol,
phospholipids, and bile salts combine by hydrophobic interactions to form mixed micelles
(micelles) and cholesterol and phospholipids form unilamellar vesicles. Normally the
unilamellar vesicles would be ∼5–10 times larger than micelles (∼40 Å in radius), but for
illustration purposes they are depicted here nonproportionately. As cholesterol concentration
in gallbladder bile increases principally from hepatic hypersecretion of cholesterol, the true
supersaturated state forms transiently. Supersaturated bile usually implies that phase separation
of excess cholesterol from micelles has occurred, forming unilamellar vesicles with biliary
phospholipids (mostly >95% phosphatidylcholine). In the most common nucleation sequence,
unilamellar vesicles fuse to form multilamellar vesicles, or liquid crystals, which are visible
by low-power polarizing microscopy. From these, plate-like cholesterol monohydrate crystals
(solid cholesterol crystals) nucleate heterogeneously, usually in a mucin gel. The dotted
arrow indicates how cholesterol can occasionally phase separate directly from supersaturated
micelles. The solid resulting cholesterol monohydrate crystals are a polymorph of the classic
cholesterol monohydrate plates into which they transform with passage of time. Once the
nucleation sequence has occurred and solid cholesterol crystals have formed, the phase
sequence is not repeated if bile remains continuously supersaturated. Gallbladder dysmotility
and mucin gel formation also contribute to the aggregation of the plate-like cholesterol
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monohydrate crystals and contribute to their agglomeration and growth into macroscopic
cholesterol gallstones.
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Figure 2.
Receptors and ligands expressed by biliary epithelial cells. The receptors (displayed on the
basolateral surface of the cell) and ligands (displayed extracellularly) expressed by biliary
epithelial cells are shown in the unstimulated (right panel) and stimulated (left panel) state.
The receptors, ligands, and cells that interact with these biliary expressed proteins are also
shown. CCL, chemokine CC motif ligand; CCR, chemokine CC motif receptor; CXCL,
chemokine CXC ligand; CXCR, chemokine CXC receptor; LFA, lymphocyte function-
associated antigen; MHC, major histocompatibility complex.
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Figure 3.
Immune system–stimulated production of MUC2. Various pathogen-associated molecular
patterns (PAMPs), through their interaction with TLR molecules, increase the production of
mucin 2 (MUC2). A portion of this increase seems to be due to increased production of caudal
type homeobox transcription factor 2 (CDX2), which feeds back to stimulate MUC2
production. Further, LPS and TNF-α stimulate the production of MUC2. In the case of LPS,
this stimulation seems to be mediated through the TNF-α pathway because inhibition of TNF-
α blocks the effects of LPS treatment on MUC2 production.
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Figure 4.
The points at which the immune system stimulates production of MUC5AC. As described for
mucin 2, LPS stimulation leads to production of mucin 5AC (MUC5AC) in a TNF-α dependent
manner (not shown). TNF-α acts via protein kinase C (PKC)-dependent and EGF-mediated
pathways to up-regulate MUC5AC production. In the case of the EGF pathway, this up-
regulation results from the production of apical EGF receptors and subsequent binding to apical
EGF.
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Figure 5.
Stimulation of mucin 3 (MUC3) production by LPS via CD14 and likely TLR molecules.
Stimulation of MUC3 by LPS is independent of TNF-α, in contrast to MUC2 and MUC5AC.
It is currently unclear what downstream pathways are important in LPS stimulation of MUC3
production.

Maurer et al. Page 28

Gastroenterology. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


