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Abstract
While marginal models, random-effects models, and conditional models are routinely considered to
be the three main modeling families for continuous and discrete repeated measures with linear and
generalized linear mean structures, respectively, it is less common to consider non-linear models, let
alone frame them within the above taxonomy. In the latter situation, indeed, when considered at all,
the focus is often exclusively on random-effects models. In this paper, we consider all three families,
exemplify their great flexibility and relative ease of use, and apply them to a simple but illustrative
set of data on tree circumference growth of orange trees.
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1. INTRODUCTION
In practice, data are often collected repeatedly over time on the same subject. Especially for
Gaussian data, quite a number of approaches for analyzing longitudinal data have been
developed and implemented in standard software packages (Verbeke and Molenberghs
2000). Most of the methodological work has been done in the setting of linear and generalized
linear models. While non-linear models have also been extended in various ways, the work is
not as taxonomically ‘complete’ as for the linear and generalized linear ones. Moreover, many
researchers coerce their problems, and hence models, in the linear and generalized linear
frameworks. Sometimes, but not always, this is a sensible route. Owing to methodological as
well as computational advances, non-linear models for hierarchical data are definitely a viable
option for routine use by anyone with a working knowledge on linear and generalized linear
models.

In its broadest sense, the term non-linear model refers to any function that depends on
parameters of interest in a non-linear fashion. The term also has been used to describe
formulations that involve more complicated non-linear dependence on parameters than that in
the generalized linear class, where parameters enter linearly at the level of a predictor function
(e.g., at the logit scale for binary data), but are then transformed through a well-defined non-
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linear link function (e.g., the logit link), to describe the mean at the natural scale (e.g., the
probability scale). In this paper, we consider the unrestricted type of non-linear model.

With linear models in general and linear mixed models in particular, although the estimation
of the regression parameters must take into account the correlation among measurements on
the same unit, in view of valid precision estimation, their interpretation is essentially
independent of the variance and correlation structures. With non-linear models, including
generalized linear mixed models, different assumptions about the sources of variability and
correlation can lead to regression parameters with distinct interpretations (Diggle et al 2002,
Molenberghs and Verbeke 2005) and often widely varying magnitudes. The data analyst must
therefore reflect ever so carefully about the objectives of the analysis and the sources of
variance and correlation in choosing an approach.

Diggle et al (2002) and Molenberghs and Verbeke (2005), among others, distinguish between
three different model families for longitudinal data: marginal, random-effects, and
conditional models, the latter family including so-called transition models. While this
taxonomy has been extensively used for both linear and generalized linear model settings, it
is less routinely encountered in a non-linear context. Arguably, it is common to make use of
mixed-effects models in this area, especially in such applications as pharmacokinetic and
pharmacodynamic modeling (Davidian and Giltinan 1995, Molenberghs and Verbeke 2005).
These are among the most important areas where the reason for adopting a non-linear model
is dictated by the science. This usually means that the non-linear model is derived from
mechanistic theoretical considerations, typically describing phenomena going on at the level
of a unit. This then naturally leads to a random-effects perspective. For example, the basic
logistic growth model, to which we will return in subsequent sections, can be derived by making
a mechanistic assumption about how the change in growth is related to current growth and then
solving a simple differential equation. At the same time, it is entirely legitimate to view the
logistic growth model, from an empirical perspective, as a function with an ‘S-shape’ and hence
that can approximate marginal mean functions or individual behavior observed in lots of
different areas. While the use of random-effects, or hierarchical, models is definitely sensible
in many settings, it is recommendable to also explore the use and relative merits of, the marginal
and conditional families.

In Section 2, a simple set of motivating data, the orange tree data, is introduced. The three
model families are surveyed and applied to the data in Section 3. Section 4 is devoted to a
comparative study in song birds, to which marginal and random-effects models are applied.
Concluding remarks are offered in Section 5.

2. ORANGE TREE DATA
Draper and Smith (1998, Exercise 24.N, p. 559) present data from an experiment in which
trunk circumference (in mm) was measured for 5 orange trees, on 7 different occasions, over
roughly a 4-year period of growth. The observed individual profiles are plotted in Figure 1.
The data are presented in Table 1.

A growth study such as this may have been conducted to address different scientific objectives.
Under Objective 1, interest may focus on characterizing the average growth pattern in the
population; here, how mean circumference in the population of trees changes over time. Under
Objective 2, the goal may be to understand how growth patterns of individual trees vary across
the population.

Figure 1 shows that both individual tree profiles and the marginal mean profile exhibit an ‘S
shape’ over time, suggesting that appropriate statistical models incorporate a function capable
of approximating this pattern. Letting t denote time, the logistic function
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(1)

is a natural choice; the interpretation of the parameters β1, β2, and β3 in (1) follows from the
right-hand panel of Figure 1, with β1 being the asymptotic circumference, β2 the time at which
half of the asymptotic value is realized, and β3 a measure for curvature at the time half of the
asymptotic value is reached. The logistic function not only is suitable for this purpose on
empirical grounds, but it also can be derived by making certain assumptions regarding the
mechanisms underlying growth of an individual tree. This route was followed by Draper and
Smith (1998), who advocated this model, among others, for representing patterns of growth.
In the following sections, we consider random-effects, marginal, and conditional models,
starting from (1) and varying to the theme.

3. MODEL FAMILIES
As mentioned earlier, we can distinguish between three model families. We will now give a
brief overview of these model families based on Diggle et al (2002) and Molenberghs and
Verbeke (2005).

Marginal regression methods characterize the marginal expectation of a Gaussian or non-
Gaussian response, Y, as a function of explanatory variables, X. By marginal expectation, we
mean the average response over the sub-population that shares a common value of X. The
methods are designed to permit separate modeling of the regression of Y on X on the one hand,
and the association among repeated observations of Y on each individual on the other hand.
Marginal models are appropriate when inferences about the population average are the focus.
This is to be contrasted with the random-effects and transitional models where the covariate
effects and the within-subject association are modeled through a single equation, even though
alternative representations are possible (Lee and Nelder 2001). All three approaches lead to
the same general class of linear models for Gaussian data. But in the non-Gaussian case,
different (non-linear) models can lead to different interpretations for the regression parameters.
The choice of model family should therefore be such that it allows for formulating an answer
to the research question posed. As we will see in what follows, this does not necessarily imply
that there is a one-to-one relationship between a research question and a model family. For
example, when the research question is of a marginal nature, the marginal family is obviously
a candidate but it is sometimes possible to derive marginal quantities from hierarchical and/or
conditional models, especially when there is no theory-prescribed model formulation.
Essentially, considerations of statistical and computational efficiency, as well as model
parsimony, need to be brought into the picture as well (Lee and Nelder 2004). Having said this,
three points should be kept in mind. First, within a model family, due consideration should be
given to model assessment, so as to ensure a parsimonious, well fitting model is chosen. Second,
often marginal quantities can be obtained from random-effects models as well, for example,
through analytical, numerical, or sampling-based marginalization. This means that quantities
in one family may result from applying appropriate manipulation to quantities from another
model family. Third, everything else equal, consideration may be given to model-formulation
elegance and therefore, often also, computational convenience (Lee and Nelder 2004).

In random-effects models, the response is assumed to be a function of explanatory variables
with regression parameters that may vary from one individual to the next. This variability
reflects natural heterogeneity stemming from unmeasured (latent) factors. Given these so-
called subject-specific parameters, the responses are often assumed independent. This does not
preclude that more elaborate models are possible if residual dependence is detected. A random-
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effects model is a reasonable paradigm if the set of parameters from a population of subjects
can be thought of as a sample from a distribution.

In conditional models, the sequence of repeated measures is modeled conditional upon (a subset
of) the other outcomes. This could be the set of all past measurements or a subset thereof. In
transition models, the subset is restricted to the past measurements, often further narrowed to
the immediately preceding (few) measurements.

Let us now analyze the orange tree data within each of the three model family settings.

3.1 Random-effect Models
In a random-effects model, we also condition upon a random-effects vector bi:

(2)

where xij and zij are design vectors for the fixed effects and random effects, respectively, and
β is a vector of fixed-effects regression parameters. Conventionally, but not always, is the
distribution of the random effects assumed to be of a normal type. A broad class of alternative
formulations can be found in Lee and Nelder (1996, 2001, 2003).

The following non-linear mixed model has been proposed by Pinheiro and Bates (2000) for
the orange-tree data:

(3)

with bi ~ N(0, d11) and εij ~ N(0, σ2).

A graphical representation of the model, with the interpretation of the associated fixed-effects
parameters, is given in Figure 1. Model (3) can be interpreted as a description of what is
happening at the individual-tree level, letting the logistic function describe the pattern for tree
i. The mixed intercept, β1 + bi, allows the asymptote to vary among the members of the tree
population, while the lack of random effects associated with the other two fixed effects implies
that these do not. In case one starts from a mechanistic point-of view (Objective 1 in Section
2), then a random-effects model like (5) or (6), to be introduced in what follows, would be a
natural choice.

To improve numerical stability, and hence convergence, while fitting the model, both the
response values, trunk circumferences, and the covariate values, age, were divided by 100. The
model was fitted using the SAS procedure NLMIXED.

A plot of the model fit can be found in Figure 2. The fitted mean profile is a smooth curve with
a sigmoidal shape, although the curvature is not pronounced. We will return to the way in which
the functional form of the marginal shape is derived. The marginal fit of the model seems
acceptable. Parameter estimates and standard errors are given in Table 2. Empirical Bayes
predictions, a term used to indicate estimates of the random effects (Verbeke and Molenberghs
2000,Molenberghs and Verbeke 2005) are graphed in Figure 2. The individual-tree model fit
seems acceptable, nicely combined with the three parameters' clear meaning.
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Note that this model is non-linear in the fixed-effect parameters, but linear in the random effect
bi, simplifying the calculation of the marginal mean over the random-effects distribution.
Indeed, the conditional mean:

(4)

In general, there will be situations where an analytical expression for the marginal mean will
either not exist or will impose excessive computational complexity. One can thence revert to
expansion-based, numerical-integration-based, or Monte Carlo methods. The expansion-based
methods may be poor in terms of accuracy, whereas the numerical-integration options may be
cumbersome computationaly. When also measures of precision are required, the issue is
compounded further. It is exactly these options that are at the analyst's disposition for
maximizing generalized linear and non-linear likelihood functions (Molenberghs and Verbeke
2005).

It is therefore instructive to consider alternative models, such as the following two
formulations:

(5)

(6)

In both cases, it is assumed that the vector of random effects (bi1, bi2)' is zero-mean bivariate
normally distributed with variance-covariance matrix:

In (5), the half-growth is assumed to be random, whereas (6) modulates the effect of time in a
tree-specific fashion. Parameter estimates are displayed in Table 2. Comparing each of these
models with (3) can be done via a likelihood-ratio test, with reference distribution a 50 : 50
mixture of  and  distributions, given that the null hypothesis lies on the boundary of the
parameter space (Self and Liang 1987,Stram and Lee 1994,1995,Verbeke and Molenberghs
2000,2003,Molenberghs and Verbeke 2007). For (5), the likelihood ratio test statistic is G2 =
1.4 (p = 0.3667). For (6), we find G2 = 0.4 (p = 0.6729). Thus, neither of these extensions
substantially improves the fit. This is not surprising, because from Figure 2(a) it is clear that
the initial random-effects model (3) is well fitting, both in terms of the overall mean, as well
as for the individual trees.

For (5) and (6), marginalization is not straightforward and has to be done numerically or
sampling based. Related to this, the fixed effects in models (5) and (6) no longer enjoy the
simple meaning of describing ‘the average tree,’ since, for example,

Serroyen et al. Page 5

Am Stat. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(7)

with the same holding for (6), of course. Rather, and this is a somewhat subtle point, the fixed-
effects parameters describe a hypothetical tree with the average values for the random
parameters. Generally, only when the random-effects enter linearly, then both interpretations
coincide. Evidently, the (negative) result of (7) is the norm, with model (3) being the exception.

3.2 Marginal Models
A marginal non-linear model for an outcome Yij at measurement occasion j for subject i,
conditional on a vector of covariates xi, would take the form:

(8)

where β is the vector of regression parameters and h is the non-linear link function. One might
start from such a formulation to address Objective 1. Expression (8) does not specify the full
joint distribution, and the association structure needs to be specified, linearly or non-linearly.
We can then consider full-likelihood approaches. However, these can become computationally
complex, even for outcome sequences of moderate length, except when the outcomes are
Gaussian. Classically, this has motivated the formulation of non-likelihood alternatives, such
as generalized estimating equations (GEE, Liang and Zeger 1986). One ought to be aware that
a method such as GEE is sensible only when the correlation structure is not of direct interest,
because it is treated merely as a nuisance characteristic in GEE. More generally, GEE does not
allow for probabilistic statements, an issue not occurring for fully specified model. Therefore,
the problem is rather rare with Gaussian data.

Note that, at this point, there is a fundamental difference between (non-linear) models for
continuous, normally distributed data and non-Gaussian data. For the former, next to the
correlation structure also the variance needs to be modeled, whereas for the latter one typically
starts from an exponential family formulation, where the variance is a deterministic function
of the mean, the so-called variance link.

We consider marginal model (4), with serially correlated errors, where the serial correlation is
assumed to be of an exponential type. This means that the correlation between pairs of
measurements on the same tree decreases linearly on the log-scale with increasing time lag u
between measurements, i.e., a functional form exp(−ϕu) is assumed. The resulting model is
given by

(9)

with ε(1)ij ~ N(0,σ2 and ε(2)i ~ N(0,τ2 Hi). Note that, even though the same parameters have
been used in (9) as in (3), they do have a different meaning. The same comment will apply to
transition model (14) as well.

Obviously ε(2)i = (ε(2)i1, ,…, ε(2)i7)′. The elements of Hi take the form hi,jk = exp(−ϕujk) = exp
(−ϕ|tij − tik|). It is possible to extend the model in such a way that it combines features of two,
or even all, model families. For example, when (9) is supplemented with random-effects, as in
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(3), a combined model would arise, i.e., a random-effects model, with the conditional
independence assumption replaced by one of residual association, in addition to the one
captured by random effects. Note that both the serial as well as the random-effect components
allow for subject-specific inferences. These are displayed, in Figure 2, for the orange tree data.

This marginal model was implemented in the software package R. Note that the R function
GNLS is available to this effect, as well. Our implementation also allows for the flexibility
typically required in a longitudinal context. The marginal log-likelihood function for the
multivariate normal distribution was constructed and then maximized using a general-purpose
numerical optimizer based on a quasi-Newton method, allowing to directly model the serial
correlation. The exponential serial correlation function was selected, because it leads to
convergence and fits well (see below). The orange tree data set is relatively small, forcing us
to keep the modeled correlation function reasonably simple. The parameter estimates of the
marginal model can be found in Table 2, while Figure 2 shows the observed and fitted profiles
for the marginal model. When comparing marginal with random-effects parameter estimates,
we observe that the parameter estimates are very similar. This is not surprising, because the
parameters in the random-effects model (3) have a marginal interpretation. Generally, when
marginal descriptions are desired from random-effects models, one may, once again, have to
resort to numerical methods.

Nevertheless, in spite of the similarity among the parameter estimates, Table 2 displays a much
wider gap between the random-effects-model-based and marginal standard errors, especially
for the half-growth and shape parameters. This combines with a rather large estimate for the
rate of exponential decay, ϕ. To shed some light on this issue, note that (9) implies a constant
variance over time, σ2 + τ2. Indeed, many commonly used models for serial correlation would
imply a constant variance and a correlation function that, among other things, depends solely
on the time lag between measurements. However, Figure 1 provides evidence, in harmony with
Table 1, for an increasing spread over time, and hence such assumptions would be too
restrictive. Random-effects model (3) allows for this because its marginal model has mean (9)
and covariance matrix  with obvious notation, and the components of Ni given
by Nij = {1+exp[−(tij−β2)/β3]}−1. Evidently, while tractable, this covariance matrix is
structured but not constant and, importantly, different from the covariance assumptions made
earlier for (9). In this case, the random-effects model does allow for a time-varying variance
function. The corresponding marginal covariance matrix, derived from random-effects model
(3), takes the form:

(10)

Details of the matrices are not shown here, but can be found in a web based appendix to this
manuscript. In contrast, the variance-covariance matrix resulting from marginal model (9) is:

Here, t ≡ ti = (ti1, …, ti7)′, the vector consisting of the seven measurement occasions and s is
another set of 7 measurement occasions. Comparing both of these estimated variance-
covariance matrices with the observed-data counterpart shows that the random-effects version,
while not perfect in terms of fit, is considerably closer than the marginal-model-based one. So
far, we have focused on the variance function. The dependence can be studied via the
corresponding correlation matrices. Inspection of these (not shown) reveals that the
discrepancies between the observed correlation and both sets of estimates is less dramatic than
for the variance function of the marginal model. Also here, while not perfect, the fit of the
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random-effects model is better than that of its marginal counterpart. However, the overall fit
is clearly acceptable as further evidenced, for example, from the non-significance of extended
random-effects models (5) and (6).

Overall, the conclusion would be that the marginal model, unlike in the random-effects case,
needs extension in primarily the variance structure and perhaps also somewhat in the
correlation structure. It is therefore useful to allow for a general decomposition of the form

, where Ai is a diagonal variance matrix for tree i and Ri a correlation structure.
For example, we could assume a linearly or quadratically increasing variance function and an
first-order auto-regressive correlation matrix. To make the latter consistent with the correlation
structure induced by marginal model (9), it is advisable to account for the varying time lags
between adjacent measurements. To implement this, we will retain the mean structure of model
(9) but change the correlation and variance structures. For the correlation matrix R = Ri, assume
the elements are ri,jk = exp(−ϕui,jk) where ui,jk = |tij − tik|. Further, two variance functions Ai
are considered:

(11)

(12)

The first one assumes a linear mean function on the logarithmic scale, whereas the second one
allows for a quadratic effect, too. Parameter estimates are displayed in Table 2. The variances,
corresponding to (11), are much closer to the observed variances. The variance function for
(12) is closer still to the observed variances than is the case for (11). Also here, the fit has
improved but is not perfect. Extending the model further is challenging, given the dataset
consists of only 5 trees, each of which provides 7 measurements, i.e., the number of
measurements is larger than the number of independent replicates.

Comparing nested models (12) and (9), the likelihood ratio test statistic equals G2 = 15.20 (p
< 0.0001). In comparison with the random-effects models, the fixed effects are less precisely
estimated across all marginal models. This underscores it can be of value to consider a random-
effects model, even when scientific interest predominantly is of a marginal nature.

3.3 Conditional and Transition Models
A conditional non-linear model would in addition allow Ȳ ij, the set of all outcomes save Yij,
as an argument of h:

(13)

where α is a vector grouping the auto-regressive effects as well as the variance-component
parameters.

From a mechanistic perspective on growth, in harmony with Objective 1, conditional models
are hard to justify; they really are solely empirical representations (Objective 2) that can induce
a marginal model and take account of correlation.
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Generally specifying a set of compatible models of the type (13) is not straightforward. Indeed,
even for two outcomes, it is far from automatic that specifying both f(yi1|yi2) and f(yi2|yi1) would
correspond to one and only one bivariate distribution. Often, no such distribution might exist.
This issue is well-known in, for example, spatial statistics (Cressie 1991), where the
Hammersley-Clifford result governs the conditions under which conditionally specified
distributions correspond to a joint distribution. For the log-linear model, elegant and tractable
conditions result, but this is generally not the case. Such issues have been studied by Arnold,
Castillo, and Sarabia (1992) as well.

For longitudinal data, the time-ordered nature of the measurements comes to rescue, because
restricting the conditioning in (13) to past measurements automatically ensures a coherent
specification, thanks to the law of total probability.

Inspired by the random-effects modeling exercise already undertaken, one possible conditional
model for the orange tree data is a transition model where the random effect in (3) is replaced
by the previous measurement Yi,j−1. This model can be expressed as

(14)

Additional calculations are required for the marginal mean, because it does not follow directly
from the conditionally specified model (14). However, it is relatively straightforward to
compute it in a recursive fashion. Indeed, the obvious recursive mean relationship is:

(15)

In Figure 2, we show a plot of the model fit. The fitted mean profile seems to provide an
acceptable fit. This curve is not as smooth as the random-effects model, but nevertheless
follows the data closely. Individual predictions are presented in Figure 2. Table 2 provides an
overview of the parameter estimates. The γ parameter estimate is positive, indicating an
increment over time, i.e., growth. As expected, parameter estimates for β1, β2, and β3 are clearly
different from the estimates for the random-effects model. The conditional parameter
interpretation renders answering the substantive question rather difficult (Diggle et al 2002, p.
142–144), when such a question is framed in marginal terms.

Evidently, (14) is not the only option to formulate a transition model. To emphasize this, let
us add Yi,j−1 to the denominator of the model expression:

(16)

In this case, calculation of a recursive relationship is less obvious, owing to the non-linear
fashion in which Yi,j−1 enters (16). One can proceed by calculating a Taylor-series expansion.
Opting for a second-order expansion, the following approximate recursive relations are
sufficient to compute the mean and variance profiles:
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where πij = {1 + exp[−(tij − β2)/β3]}−. Checking the asymptotic correlation matrix of the
parameter estimates reveals signs of multicollinearity; strong correlations were observed
between β2 and β3 (0.99), between β3 and γ (0.96), and between β2 and γ (0.92). Thus, issues
of model stability can be raised. The parameter estimate for the asymptote (Table 2) is much
more in line with the estimate from the random-effects model, which is in contrast to the first
transition model, while the opposite is true for the half-growth and shape parameter. This
underscores that it is very difficult to make overall statements about the behavior of a particular
modeling family relative to another one in the non-linear case (Davidian and Giltinan 1995).

Note that fitting transition models is computationally rather simple. Thanks to the law of total
probability, a sequence of ni correlated outcomes is replaced by ni univariate outcomes, given
the history. When models would be linear, simple linear regression or generalized linear models
technology can be used. In our case the non-linearity persists. It is then still advisable to use a
tool such as the SAS procedure NLMIXED. Of course, given there is no need to include random
effects, reaching convergence will typically be considerably simplified and computation time,
when compared to random-effects and marginal models, often drastically shortened.

Generally speaking, convergence is a tricky, multi-faceted problem, of which the choice of
software tool is but one aspect. There is also similarity between the non-linear and generalized
linear cases. For example, Sheiner and Beal (1980) presented a method for non-linear mixed
models, which corresponds to Breslow and Clayton's (1993) MQL for GLMM. The same is
true for Lindstrom and Bates (1990) relative to PQL, and Vonesh (1996) to Laplace
approximation. Furthermore, there is also the hierarchical likelihood approach of Noh and Lee
(2008) for the non-linear case, which builds upon Lee and Nelder (1996, 2001, 2003, 2004).

4. A COMPARATIVE STUDY IN SONG BIRDS
We consider a study in song birds (Serroyen et al 2005). Earlier, Van der Linden et al
(2002) and Van Meir et al (2004) established a novel in-vivo magnetic resonance imaging
(MRI) approach to discern the functional characteristics of specific neuronal populations in a
strongly connected brain circuitry, the so-called song control system in the song bird brain.
The high vocal center (HVC), one of the major nuclei in this circuit, contains interneurons and
two distinct types of neurons projecting respectively to the so-called nucleus robustus arcopallii
(RA). This is graphically represented in Figure 3. Of interest is the effect of testosterone on
the dynamics of Mn2+ accumulation in RA of female starling in individual birds injected with
manganese in their HVC.

Precisely, ten first-year female starlings were caught in the wild during the winter before
February and housed in two indoor cages on a stable 10–14 h light-dark light cycle, selected
to maintain birds in a durable state of photo-sensitivity. All birds were studied by MRI for the
first time between March 15 and April 30, 2001. One or two days after the first MRI
measurement, the five treated birds were implanted subcutaneously in the neck region with a
capsule of crystalline testosterone. The capsule was left empty for the five control birds. Birds
were studied by MRI again five to six weeks after the treatment.

We consider two non-linear mixed model and a triplet of marginal models. The first non-linear
mixed model we consider, in line with Serroyen et al (2005), takes the form:
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(17)

where SIij(RA) is the measurement of MRI signal intensity for a region of interest (RA) at
occasion j for bird i, Gi is an indicator for group membership (1 for testosterone treated birds
and 0 otherwise), and tij is the measurement time, referring to the before versus after treatment
epoch. The fixed-effects portion of the maximal signal intensity, SImax, is denoted by ϕ0i for
an untreated bird and ϕ0i + ϕ1i for a treated one. Likewise for time required to reach 50% of
this maximum (t50): τ0i and τ0i + τ1i, respectively. Finally, this holds true as well for the shape
of the curve, which is governed by the parameters η0i and η0i + η1i. The vector (fi,ni,ki) is a
bird-specific vector of random effects, assumed to follow a trivariate normal distribution with
mean 0 and variance D. Finally, εij ~ N(0,σ2).

The second random-effects model is (5), while for the marginal model, we choose models (9),
with extensions (11) and (12). In all four cases, treatment effect is allowed for on the shape
parameter β3 = β30 + β31Gi. Parameter estimates (standard errors) are reported in Table 3. Let
us now discuss these.

In the first non-linear mixed model, using likelihood ratio tests, a number of non-significant
fixed-effects and variance components were removed. The final model reported features one
significant treatment effect parameter η1. For the second mixed model and for the marginal
models, there is evidence that the third, most complicated marginal model, is necessary to
adequately describe the within-bird correlation as well as the non-constant variance functions.
It is interesting to see that in the simplest marginal model (9), the treatment has a significant
effect, p = 0.0354, whereas it does neither in the second mixed model nor in the other two
marginal models, with p = 0.8733, p = 0.0922, and p = 0.0924, respectively.

It is striking that the evidence for treatment effect is radically different between both random-
effects models. An obvious choice is to extend the model with three random effects, one per
β parameter. However, this still produces non-significant treatment effects, for each of these
parameters separately, as well as overall (details not shown). Within the marginal family, it is
important to adequately address the variance-covariance structure, because otherwise spurious
effects will come to surface. This leaves us with the question as to why the first random-effects
model is able to find a treatment effect that the marginal model does not. First note, as is clear
from Figure 4, that the model fits well. The second random-effects model fits well too, though
slightly less so than the first one (graph not shown). The same figure reveals that there is quite
a bit of between-bird variability, both within the untreated group (birds 1-5) as the treated
groups (birds 6–10). This heterogeneity is carefully separated out in the random-effects model.
The marginal model, on the contrary, does not separate the between-and within-bird variability,
hence a reduced power, in this case, to detect a treatment effect. Finally, note that one could
consider in principle a transition model as well. This is omitted here for brevity.

5. CONCLUDING REMARKS
Exactly like in the linear and generalized linear cases, one can divide non-linear models for
repeated measures and otherwise hierarchical data into marginal, random-effects, and
conditional models. Somehow, this taxonomy has received less consideration, because focus
has been, to a large extent spear-headed by pharmacokinetic/pharmacodynamic research, on
random-effects models.
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We have shown here, in a simple but instructive tree growth data example, that one can
insightfully construct models within every one of the three families. For the aforementioned
ubiquity of random-effects models, fitting is slightly less of a problem, thanks to the availability
of dedicated tools, such as the SAS procedure NLMIXED and the nlme library in R and S-
Plus. Nevertheless, reaching convergence can be challenging and some patience on the analyst's
side may be called upon. Conditional models are usually of a transition type in longitudinal
designs, in the sense that measurements are independent of each other, apart from a dependence
on a usually small number of previous measurements. This implies that one can fit such models
using software for non-linear models, fitted to cross-sectional data.

Marginal models are a little more challenging, because they require explicitly addressing the
covariance structure. In fully specified models, specific parametric functions for the variance
and correlation structure need to be considered, such as spatial Gaussian and spatial exponential
structures. When the association is not of direct interest, generalized estimating equations type
ideas can be used (Liang and Zeger 1986, Vonesh et al 2002). This would be possible for
continuous and non-continuous data alike. Furthermore, nothing precludes the consideration
of non-linear mean functions, neither.

In terms of complexity, random-effects models arguably take a position in between conditional
and marginal models. This suggests that one may want to consider random-effects or
conditional formulations, even when the research question is in marginal terms. In such a case,
the marginal question would require the model to be marginalized. We have argued that this,
too, requires additional work. It is conceivable though, that marginalizing a conditional or
random-effects model might still be computationally more economical than turning straight to
a marginal model. In addition, it can be beneficial from a precision standpoint. This is clear in
the song birds study, where the first random-effects model leads to significant treatment effects,
whereas the other models do not. Evidently, it depends on the situation whether a marginalized
model is sufficient to answer the research question at hand. For many non-linear functions,
such a marginalization may be in terms of (graphical) summaries and not directly in terms of
one or a few model parameters. Thus, in conclusion, the researcher must judge carefully the
advantages and disadvantages of the various model families in terms of computational
requirements on the one hand, and inferential goals on the other hand. Given the vast class of
non-linear models, and their defying general rules, principles, and computational schemes,
unlike with linear models, general guidelines are hard to provide. Decisions will often be ad
hoc, ideally supplemented with experience.

Note that, by presenting the taxonomy and providing illustrations in terms of both the orange
tree data and the song birds study, the complexity of fully non-linear model is seen not to
excessively go beyond that of (generalized) linear models for hierarchical data. Non-linear
hierarchical models are very flexible and have been implemented in a variety of standard
software tools. Arguably, therefore, they ought to be considered by the practicing statistician
more than they currently do.

Practically, the methods were implemented using the SAS procedure NLMIXED and a user-
written function in R. In principle, it is possible to write user-defined programs in any
sufficiently generic statistical programming package with decent matrix manipulation
facilities. The SAS and R code is available from the first author's web site and upon simple
request.

SAS, R, and GAUSS programs for the models fitted in this paper can be found in the web based
supplementary materials.
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Figure 1.
Orange Tree Data. Left hand panel: Growth curves of trunk circumference for each of the five
trees. Right hand panel: Interpretation of the fixed-effects parameters in the random-effects
model.
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Figure 2.
Orange Tree Data. Left hand panels: Plots of observed and fitted mean profiles. Right hand
sides: Observed (solid line) and fitted (dashed line) individual profiles. (a) Random-effects
model (3); (b) Marginal model (9); (c) Transition model (14).
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Figure 3.
Song Bird Data. Schematic representation of song control nuclei in the songbird brain
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Figure 4.
Song Bird Data. Fitted curves for SIij(RA) at the second period, for each individual bird
separately.
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Table 2

Orange Tree Data. Parameter estimates (standard errors) for various models.

Effect Par. R.E. (3) R.E. (5) R.E. (6)

Asymptote β1 1.921(0.157) 1.913(0.167) 1.940(0.164)

Half-growth β2 7.279(0.353) 7.170(0.381) 7.417(0.587)

Shape parameter β3 3.481(0.271) 3.465(0.258) 3.583(0.416)

R.E. variance d11 0.100(0.065) 0.120(0.079) 0.080(0.002)

R.E. variance d22 0.147(0.303) 0.0002(0.0022)

R.E. covariance d12 0.102(0.118) 0.004(0.021)

Residual variance σ2 0.006(0.002) 0.006(0.002) 0.006(0.002)

Effect Par. marg. (9) marg. (11) marg. (12)

Asymptote β1 1.910(0.144) 1.924(0.183) 2.131(0.327)

Half-growth β2 7.246(0.618) 7.250(0.797) 9.701(2.811)

Shape parameter β3 3.461(0.497) 3.499(0.422) 4.785(1.087)

Serial variance τ2 0.042(0.022)

Rate of exp. decay ϕ 24.72(17.65) 6.278(2.789) 12.011(10.515)

Residual variance σ2 0.005(0.002)

Constant var. term θ0 −5.090(0.757) −9.945(0.883)

Linear var. term θ1 0.168(0.064) 1.413(0.245)

Quadr. var. term θ2 −0.060(0.012)

Effect Par. trans. (14) trans. (16)

Asymptote β1 0.421(0.082) 2.079(0.089)

Half-growth β2 −0.419(1.778) −8.386(3.729)

Shape parameter β3 1.782(0.953) −6.668(2.402)

Renewal parameter γ 0.841(0.059) 0.034(0.006)

Residual variance σ2 0.014(0.003) 0.012(0.003)
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