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Abstract
Image noise in diffusion tensor MRI (DT-MRI) causes errors in the measured tensor, and hence
variance in the estimated fiber orientation. Uncertainty in fiber orientation has been described
using a circular “cone of uncertainty” (CU) around the principal eigenvector of the diffusion
tensor. The cone of uncertainty has proved to be a useful construct for quantifying and visualizing
the variability of DT-MRI parameters and fiber tractography. The assumption of circularity of the
CU has not been tested directly, however. In this work, bootstrap analysis and simple theoretical
arguments were used to show that the cone of uncertainty is elliptical and multivariate normal in
the vast majority of white matter voxels for typical measurement conditions. The dependence of
the cone angle on signal-to-noise ratio and eigenvalue contrast was established. The major and
minor cone axes are shown to be coincident with the second and third eigenvectors of the tensor,
respectively, in the limit of many uniformly spaced diffusion encoding directions. The deviation
between the major cone axis and the second eigenvector was quantified for typical sets of
diffusion weighting directions. The elliptical cone of uncertainty provides more realistic error
information for fiber tracking algorithms and a quantitative basis for selecting diffusion tensor
imaging acquisition protocols.
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INTRODUCTION
Diffusion tensor MRI (DT-MRI) provides information on water molecular diffusion based
on a series of images with diffusion weighting applied in at least six non-collinear directions
(1,2). Given the effective diffusion tensor, it is possible to characterize tissue microstructure
using the directional dependence of diffusion in vivo (3,4). In addition, this directional
information has been exploited to estimate the paths of fiber bundles in the brain in order to
infer axonal connectivity (5). In this case, the principal eigenvector (i.e., the estimated
direction of maximum diffusivity), v1, is taken to be parallel to the local fiber bundle. In the
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presence of image noise, however, perturbations of the diffusion tensor field introduce errors
in the estimated diffusion anisotropy (6-8) and fiber direction (9,10).

The directional uncertainty in v1 has been characterized by the ‘cone of uncertainty’ (11,12).
This was defined as a circular cone with axis along the expectation value of v1 and cone
angle equal to the uncertainty (i.e., confidence interval) in the orientation of v1 . The cone of
uncertainty (CU) is particularly useful for visualizing the uncertainty in fiber orientation and
predicting error in MR fiber tractography. However, Lazar and Alexander (13,14) showed
that errors in MR tractography typically have an elliptical distribution, and noted that an
elliptical CU is expected in voxels that lack axially symmetric diffusion. They measured the
dispersion of fiber tracking errors in a plane perpendicular to the fiber axis at some distance
from the seed points. They noted a strong correlation between the direction of the greatest
dispersion of tracking errors and the second eigenvector of the tensor (corresponding to the
second largest diffusivity). The same relationship existed between the direction of the
smallest dispersion of tracking errors and the third eigenvector of the tensor (corresponding
to the smallest diffusivity). In this paper, we provide a general explanation for this
observation, and present results of experimental and theoretical studies of the properties of
the CU. In particular, we tested the symmetry and multivariate normality of principal
eigenvector errors, and characterized the dependence of the associated CU on image noise,
diffusion anisotropy and eigenvalue contrast. In addition, we investigated the coincidence
between the tensor eigenvectors and the axes of the elliptical cone, and how this
correspondence depends on the diffusion gradient encoding scheme. Some of this work has
appeared previously in abstract form (15). Koay et al have recently proposed a similar
construction of the elliptical cone of uncertainty (16).

THEORY
The dependence of the major eigenvector (i.e., the eigenvector corresponding to the largest
eigenvalue), v1 , on tensor errors can be found from first order perturbation theory
(10,11,17) or simple error analysis (18). The major eigenvector of the diffusion tensor
satisfies the eigenvalue equation

[1]

where D and λ1 are the true tensor and major eigenvalue (i.e., λ1 > λ2 ≥ λ3), respectively.
Taking the differential of both sides of Eq. [1] gives a relation among the errors in these
quantities:

[2]

The tensor is represented by a 3 × 3 symmetric matrix and the principal eigenvector is a 3 ×
1 column vector. Multiplying Eq. [2] by the transpose of the middle eigenvector v2 , denoted
by , yields

[3]

Since the eigenvectors are orthogonal,

[4]
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The eigenvalue equation for v2 is

and the transpose of this relation is

Since D is symmetric. Multiplying on the right by δv1, the error in v1, gives

[5]

Substituting Eqs. [4,5] into Eq. [3] gives

The component of the v1 error (δ v1) in the v2 direction is therefore

[6]

Replacing v2 by v3 in Eq. [3] leads to an analogous expression for the component of the v1
error in the v3 direction:

[7]

The eigenvectors have unit length, so for example,

Differentiating both sides of this equation yields

Since the two terms on the left are scalars and each is the transpose of the other, they must
be equal. Hence,

[8]

The v1 error, δ v1, is perpendicular to the v1 direction. Taken together, Eqs. [6-8] specify the
three orthogonal components of the error in the major eigenvector corresponding to a given
tensor error, δ D .
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The covariance matrix, Σv1 , for v1 in the {v2, v3} plane gives the variance of δ v1 along v2
and v3 on the diagonal and the covariance of these components in the off-diagonal elements:

[9]

using Eqs. [6,7]. Diagonalizing the covariance matrix identifies the principal components of
v1 variation. To be explicit, suppose the z axis is chosen to be parallel to v1 . For
convenience we choose the x and y axes to be parallel to v2 and v3 , respectively. Because of
measurement errors in D, the estimated principal eigenvector will have components in the x
and y directions. Let the coordinates of δ v1 be (x, y). In this case, Eq. [9] can be written as

[10]

where , ,  and ex, ey, and ez are unit
vectors along the coordinate axes. If the errors δ v1 have a multivariate normal distribution
then they can be characterized concisely using the eigenvalues σ1 and σ2 (σ1 ≥ σ2) and
corresponding eigenvectors e1 and e2 of the covariance matrix. In this case, the probability
density function for δ v1 is

[11]

assuming the mean value of δv1 is zero. A contour of constant probability density is defined
by the set of coordinates (x, y) that satisfy the relation

[12]

with constant c. The solution to this equation is an ellipse with semi-major axis of length
 parallel to e1 and semi-minor axis of length  parallel to e2 (19). If the

eigenvalues of the covariance matrix are not equal, then the errors are not circularly
symmetric in the (x, y) plane. In the general multivariate normal case, the errors have an
ellipsoidal distribution, the major and minor axes of the ellipse given by the eigenvectors of
the covariance matrix. In the limit of many uniformly distributed diffusion measurement

directions, the off-diagonal terms go to zero, , so Σv1 is diagonal in the
eigenframe of the tensor (see Appendix). Further, it is shown that if λ2>λ3 then
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. This implies that the upper-left element in Eq. [10] is the largest eigenvalue
of Σv1 , and hence the major axis of the ellipsoidal distribution is parallel to v2. To test
whether this relation holds for practical (i.e., finite) diffusion encoding schemes, we
performed the experiments described below. Before leaving this topic, however, we should
note that if the tensor eigenvalues are equal (λ1 = λ2 or λ1 = λ2 = λ3 ), then Eqs. [6,7] fail. In
this case, degenerate perturbation theory must be used to evaluate the δ v1 errors (10).
However, the exactly degenerate situation is unlikely to arise in routine white matter
tractography.

METHODS
DT-MRI acquisition

The study protocol was approved by Vanderbilt University’s institutional review board.
Diffusion weighted images were acquired in a healthy adult using a 3 Tesla whole body GE
scanner (40 mT/m maximum gradient strength, 150 mT/m/ms maximum slew rate). A dual
spin echo EPI pulse sequence was used to acquire images with diffusion weighting (1000 s/
mm2), applied in six non-collinear directions (20), as well as a set of images with no
diffusion weighting. All images (7 images in each of 30 slice locations) had an 89 ms echo
time, 9 s repetition time, 128×128 acquisition reconstructed to a 256×256 image matrix, and
2×2×4 mm3 voxel size. A total of 37 identical scans were acquired in one imaging session.
Image alignment was assessed by visual inspection of the difference between the first and
the last images of each slice during the session (this revealed no significant differences in
head position). All of the image data were averaged in order to estimate the ‘true’ diffusion
tensor, and ‘true’ orientation of the principal eigenvector, v1, in each voxel with high
precision. Smaller sets of the image data were also averaged to investigate the dependence
of v1 errors on net image SNR.

Generation of principal components and CU
Bootstrap resampling (21) was used to select NA acquisitions to average (NA ≤ 37). Each set
of NA acquisitions is one sample. We formed 100, 200, 500 and 1000 samples with
replacement, then calculated the diffusion tensor and major eigenvector for each sample in
each voxel. The eigenvalue-eigenvector pairs were sorted according to their similarity with
the estimated ‘true’ values using a tensor overlap measure (9). Each estimate, , of the
major eigenvector was projected onto the plane perpendicular to the ‘true’ v1 (i.e., the plane
defined by the best estimates of the two other eigenvectors, v2 and v3):

[13]

A principal component (PC) analysis was used to analyze the distribution of  projections
on the {v2, v3} plane and hence determine the major and minor axes of the CU. The
covariance matrix of projection coordinates was diagonalized. The eigenvalues, σ1 and σ2 ,
and corresponding (normalized) eigenvectors, e1 and e2 , of the covariance matrix were used
to construct an ellipse parallel to the {v2, v3} plane and centered on v1 :

[14]

The eigenvectors, e1 and e2 , define the major and minor axes of the ellipse. The CU was
then defined as the set of line segments from the origin to the ellipse, which is the directrix
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of the conical surface (Eq. [14]). For display purposes, all dimensions were scaled by the
tensor’s fractional anisotropy (FA) (3) (see Fig. 1a).

Symmetry, normality and cone angles of the CU
The equality of the major and minor axes of the ellipse (i.e., the standard deviations of the
PCs’) was tested using the method by Bartlett (22). The multivariate normality of the
distribution of  projections was tested using the method of Mardia (23,24) for multivariate
skewness and kurtosis and mapped for 200 bootstrap samples with two levels of image SNR
(i.e., NA). We define the cone angles as θi ≡ tan-1 (σi) , i = 1,2 . In the limit of many
uniformly distributed gradients, the cone angle can be approximated using Eq. [9] as

[15]

Bootstrap estimates of the cone angles were compared to this expression to verify the simple
theoretical model of fiber directional uncertainty. The cone angles were also compared in
voxels with different levels of FA and image SNR.

Coincidence between the CU and tensor principal axes
To quantify the alignment of the major cone axis with the tensor eigenvectors, we defined
the coincidence angle to be the angle between e1 and v2 (see Fig 1b). Because we used the
same 6 direction gradient vector set (20) during the entire experiment, simulations were used
to study how the coincidence angle depends on the choice of gradient vector set. Several
gradient sets were used, these were labeled ‘original #’ (# is the number of gradient vectors)
and included ‘original 6′ (20), ‘original 12′ (25), ‘original 21′ (second order icosahedral
tessellation of the unit sphere), ‘original 92′ (46 directions, given by third order icosahedral
tessellation, and their opposites). The ‘original #’ scheme is the set of gradient vectors
originally described in the corresponding references or determined numerically (26). The
‘rotated #’ scheme is labeled similarly, e.g., ‘rotated 6′, after 45 degrees rotation of the
‘original’ scheme around the Z axis in the gradient coordinate system. For the simulation,
we used the measured noise standard deviation and ‘true’ diffusion tensor (obtained by
averaging the entire data set) to generate diffusion weighted and non-weighted signals,
including simulated random noise, for each gradient vector scheme listed above. This
simulation was repeated 200 times, and the simulated data were then analyzed to determine
the coincidence angle between the major axis of the CU and the second eigenvector of the
‘true’ tensor. Hence, for this part of the study, the axes of the CU were estimated via Monte
Carlo simulation for each gradient vector set.

The dependence of the coincidence angle on the choice of gradient vector scheme can be
understood in terms of the  covariance matrix elements, Eq. [9], in the tensor eigenvector
frame. We selected a representative voxel in the splenium of corpus callosum and simulated
diffusion weighted signals (as described above) in the tensor eigenframe based on the
gradient schemes listed above. In the simulation, we used the coordinate naming convention
of the Appendix: , , and  and simulated the effect of noise using Monte Carlo
simulations. In each trial, the errors δ Dij of the diffusion tensor elements were calculated.
The covariance matrix elements of Eq. [9] were then plotted to show the dependence of the
matrix elements on the choice of gradient scheme.
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RESULTS
Comparison of bootstrap and theoretical results

Bootstrap estimates of the projection of  onto the {v2, v3} plane (i.e., the v1 error) are
shown schematically for a representative white matter voxel in the splenium of the corpus
callosum in Fig. 1b. The principal components of the distribution are also shown. The
principal components of v1 errors can be estimated from this distribution or from Eq. [9].
These two estimates were compared in order to test the accuracy of the simple theoretical
model applied to in vivo data. The standard deviation of v1 errors for the minor principal
component calculated using perturbation theory (σPT , the square root of the smaller
eigenvalue of the covariance matrix in Eq. [9]) was correlated with the bootstrap estimate
(σBS ) for the voxels whose linearity index (27) Cl > 0.3, to exclude voxels with nearly
isotropic diffusion, for example in the CSF (NA = 6 and 200 bootstrap samples were used).
The correlation was excellent (R2 = 0.998 and slope = 0.99 with offset ≈ 0). Results were
similar for the major principal component (R2 = 0.994 and slope = 0.98 with offset ≈ 0). The
agreement between the two estimates of v1 errors is excellent (for Cl > 0.3), with the R2 and
slope of the fit nearly equal to one.

Test for symmetry and multivariate normality of CU
The directional uncertainty in  is represented by the cone of uncertainty centered on v1 as
shown in Fig. 2. The CUs for voxels in the outlined region of Figs. 2a and b are shown in
Fig. 2c for NA = 6 and 200 bootstrap samples. The CUs for voxels in the outlined region of
Fig. 2c are redrawn (inset in the lower right corner) as viewed along the local v1 axis to
show the cones’ eccentricity clearly. Each cone is color coded according to base 10
logarithm of the p-value from the test of the circular symmetry of  errors in the {v2, v3}
plane (i.e., the test of equality of the principal component variances). Hence, color indicates
the statistical significance of CU eccentricity. As the color varies from red to blue, the cones
of uncertainty change from nearly circular (for p > 0.05, log10(p) = log10(0.05) > -1.3) to
highly eccentric. Most of the voxels in the ROI exhibit non-circular CUs (Table 1) based on
bootstrap comparisons of major and minor cone axes. In the second analysis, every voxel in
the ROI was tested for multivariate normality of  errors using the test of multivariate
skewness and kurtosis (23,24). Figure 3 shows that most white matter voxels exhibit
multivariate normality of the error distribution based on this test. According to the circular
symmetry test, the estimated fraction of cones with significant eccentricity increases as the
number of bootstrap samples and NA increase (Table 1) and the fraction of voxels with
normally distributed error increases with increasing NA (Figure 3).

Characterization of fiber directional uncertainty as a cone angle
The cone angle, θ , was defined for both the major and minor axes of the cone base (θ1 and
θ2 , respectively). The cone angle is the arc tangent of the standard deviation of the  error
in the corresponding principal component direction (see Fig. 1a). The dependence of the
cone angle on image SNR is shown for a representative voxel in the splenium of the corpus
callosum in Fig. 4. Here the cone angle is plotted as a function of 1/SNR, where SNR =
NA

1/2 ·SNR0, and SNR0 is measured on a single non-weighted image (SNR0 = 31.3). As
expected, the cone angle is proportional to the standard deviation of image noise (i.e., to
SNR-1). All voxels tested showed similar dependence on SNR (data not shown).

The dependence of the cone angle on the eigenvalue contrast and tensor error is shown in
Fig. 5. To isolate the effect of eigenvalue contrast, we fixed other relevant parameters within
narrow ranges. Under the conditions of our experiment, the coincidence angle between the
major cone axis and the second principal eigenvector is near 90 degrees for the most of the
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white matter voxels in the ROI (Fig. 2a) as shown in Fig. 6a (this means that the upper-left
element of the covariance matrix, (Σv1)11 , in Eq. [9] is generally smaller than the lower-
right element, (Σv1)22). Therefore, we selected voxels with similar CU orientation (i.e.,
(Σv1)11 < (Σv1)22) and Cl > 0.3 (to exclude nearly isotropic voxels). For the selected voxels,

a histogram of , the root-mean-square (RMS) error in the D31
tensor element, was constructed (using NA = 6 with 200 bootstrap samples). The peak of the
histogram (i.e., the most likely value) was identified, and all voxels with ε31 within 5% of
this value were selected. A plot of the major cone angle (θ1) versus (λ1 — λ3)-1 for nearly
constant ε31 is shown in Fig. 5a. Similarly, a histogram was constructed for the eigenvalue
contrast, λ1 — λ3 . The peak of the histogram was identified and voxels with eigenvalue
contrast within 5% of this value were selected. A plot of θ1 versus ε31 for nearly constant
eigenvalue contrast is shown in Fig. 5b.

The two plots taken together verify the dependence of the major cone angle predicted by Eq.
[15], i.e., the major cone angle should be proportional to ε31 and inversely proportional to λ1
— λ3 . Furthermore, the slope of the line for θ1 versus (λ1 — λ3)-1 should be nearly equal to
the value at the peak of the ε31 histogram. Similarly, the slope of the line for θ1 versus ε31
should be nearly equal to (λ1 — λ3)-1 for the peak of the eigenvalue contrast histogram. In
fact, the 95% confidence interval for the slope contains the predicted value in both cases.
Hence, the data are consistent with the relation θ1/(λ1 — λ3) . Analogous results were

obtained for the minor cone angle using  and (λ1 — λ2)-1 (Figs. 5c
and d). The predictions of first order perturbation theory and bootstrap analysis are in good
agreement. However, for the conditions of this experiment both methods make the opposite
assignment of major and minor cone axes relative to the case of uniform angular sampling,
Eq. [15]. This is elaborated on below.

Figure 7 shows the dependence of the cone angles on FA and the number of averages (NA).
For all bootstrap samples, the maximum cone angles (NA = 2, low FA) lie between 24 and
25 degrees and 20 to 22 degrees for the major and minor axes, respectively. With increasing
numbers of averaged diffusion weighted signals (NA = 2, 6 and 24) and FA, the directional
uncertainty is reduced significantly as shown in Fig. 7.

Coincidence of the tensor and v1 covariance matrix eigenvectors
The coincidence angle is defined as the angle between the major cone axis and the second
eigenvector of the ‘true’ diffusion tensor. The simulation results for all voxels in the slice
are shown in Fig. 6 for four different gradient sets, ‘original 6′, ‘original 12′, ‘original 21′
and ’original 92′. Because the major and minor cone axes are orthogonal to each other and
lie in the {v2, v3} plane, only the angle between the major cone axis and the second
eigenvector is presented. In Fig. 6(a-d), most of the white matter regions have small
coincidence angles, which mean the direction of the major cone axis is closer to the second
than the third eigenvector of ‘true’ diffusion tensor. Especially large coincidence angles
(near 90 degrees) are observed in the genu and splenium of corpus callosum in Fig. 6a using
the ‘original 6′ scheme, however these also become small as the number of gradient vector
directions increases, as shown in Fig. 6(b-d). Figure 8 shows the map of the coincidence
angle in the ROI calculated using bootstrap and simulated data. Simulation results (Fig. 8b)
based on the same gradient vector set that was used to acquire the image data agree closely
with the bootstrap results (‘original 6′ with 200 sample and 6 averages; Fig. 8a). Both
bootstrap (with actual noise) and Monte Carlo simulation (with modeled noise) results
indicate nearly 90 degree coincidence angles in the splenium of the corpus callosum. The
angular maps with the other sets (Fig. 8(c-f)), including the ‘rotated 6′ scheme, show much
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higher directional coincidence (small angles) across the ROI, including the same regions of
the corpus callosum. This implies that coincidence angles are dependent on the number of
gradient vectors (angular resolution) as well as the direction of each of the gradient vectors
relative to the tensor eigenvectors. Figure 9 shows this relationship in the tensor eigenframe.
The variances of the off-diagonal tensor elements (i.e., the elements that produce  errors)
in the tensor eigenvector frame are shown for a representative voxel in the splenium of the
corpus callosum in Fig. 9. As expected, the tensor element variances are different for the
‘original’ and ‘rotated’ gradient vector schemes at low angular resolution (hence the
variation shown in Fig. 8(b-c)), but converge for high angular resolution gradient sets (as
shown in Fig. 8(d-f)). The limit of infinitely many gradient directions is evaluated in the
Appendix.

DISCUSSION AND CONCLUSION
In this study, we evaluated the fiber directional uncertainty using bootstrap and perturbation
calculations and verified its dependence on diffusion anisotropy and SNR via time domain
signal averaging. The notion of time domain averaging for measuring diffusion parameters
was suggested by Skare et al. (8) as an alternative to spatial averaging schemes, as used in
the Lattice Index (LI) (4,7). Time domain averaging has the obvious disadvantage of
requiring more scanning time, but makes relatively few assumptions as long as a good
alignment between diffusion weighted images is guaranteed. Similar improvements in fiber
uncertainty are probably achievable using edge-preserving anisotropic spatial smoothing
routines developed for DT-MRI (28,29).

The perturbation calculation is in good agreement with the non-parametric bootstrap
analysis in estimating fiber directional uncertainty. The slope of the linear fit function and
the coefficient of determination are both very close to unity regardless of image SNR.
Figures 5 and 7 show that increasing either image SNR or eigenvalue contrast decreases the
fiber directional error in both the major and minor axes, as theory predicts.

We tested the symmetry and normality of the CU as shown in Figs. 2c and 3. Although most
of the tested CUs are significantly non-circular (Table 1 and Fig. 2c), some appeared to be
nearly symmetric. Most of these near-circular cones, colored dark red in Fig. 2c, lie in the
CSF or regions of likely partial volume averaging of non-parallel fibers. However, in
coherent white matter voxels, the cone of uncertainty is generally non-circular. The test for
multivariate normal distributions of fiber directional uncertainty is done using the
multivariate skewness and kurtosis test (23,24). When we increased the number of averages
from 4 to 12, the number of voxels in the ROI with normal distributions increased from 47
% to 64 % for 200 bootstrap samples. Hence, as SNR increases, the fraction of voxels with
multivariate normal error increases. Most of the white matter voxels, however, have normal
distributions of v1 error regardless of the number of averages as shown in Fig. 3.

The uncertainty in the principal eigenvector is characterized by the major and minor cone
angles. As shown in Figs. 4 and 7, the cone angle decreases (i.e., principal eigenvector
orientation errors decrease) with increasing voxel SNR and FA. We compared the local fiber
orientation when averaging NA = 2, 6 and 24 acquisitions and using different bootstrap
resampling schemes (100, 200, 500 and 1000) over a wide range of FA values (results are
shown only for 200 samples). The uncertainties for both the major and minor cone axes
decreased with increasing NA and FA. However, there were no significant changes for any of
the bootstrap schemes over 200 samples. The dependence on NA in our bootstrap analysis
agrees with the Monte Carlo simulations by Chang et al. (17).
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Figure 5 shows the expected dependence of the cone angles on eigenvalue contrast and
tensor error. The major and minor cone angles are closely predicted by the eigenvalues of
the  covariance matrix, Σv1, defined in Eq. [9]. For the conditions of our experiment, the
covariance matrix is nearly diagonal, so the diagonal values are very nearly equal to the
eigenvalues. Which of the two diagonal values is larger is determined by the orientation of
the gradient vector set relative to the tensor eigenframe for low angular resolution
measurements. To understand this phenomenon, consider the case of low angular resolution
where one diffusion weighting direction is nearly parallel to v3 , but no measurement
direction is correspondingly close to v2 . In this case, the signal is lower for the
measurement close to v3 , so the log signal is noisier than that for v2 (see Eq. [17] in the
Appendix). The increased noise for the log signal produces larger variance in the estimated
D13 tensor element (see Appendix, Eqs. [22, 25]). As the number of (uniformly distributed)
gradient directions increases, however, directions close to the two eigenvectors, v2 and v3 ,
are more equally sampled. In the limit of infinitely high angular resolution, the diagonal
values of the v1 covariance matrix satisfy the relation (Σv1)11) ≥ (Σv1)22), independent of
gradient set rotation (see the Appendix). In fact this relation seems to hold for very modest
angular resolution measurements. For the gradient schemes tested here, variance of the
principal eigenvector in the v2 direction was larger than the variance in the v3 direction for
all schemes with at least 12 directions (see Fig. 9). Ignoring very low angular resolution
experiments for the moment, the general implication is that fiber tracking errors are always
at least as large in the v2 direction as they are in v3 . Stated differently, the major cone axis
is nearly coincident with the major axis of diffusion in the plane perpendicular to v1.

Lazar and Alexander (13,14) described fiber tract dispersion in the plane perpendicular to
the mean fiber axis using the bootstrap method. They quantified tracking errors as a function
of distance from the seed point and image SNR. Their analysis showed that the distribution
of tract dispersion was typically elliptical rather than circular, and there was high correlation
between the direction of the major axis of the ellipse and the second eigenvector of the
diffusion tensor. We verified this observation using numerical simulations (Fig. 6,8-9) and
provided a theoretical explanation for the case of many diffusion weighting directions (see
the Appendix). The major axis of the ellipse is not always coincident with the second
eigenvector of the tensor at very low angular resolution, for example when one of the
gradient vectors is nearly parallel to the third eigenvector of the tensor. This points to an
advantage of high angular resolution measurements of the tensor: the orientation of the CU
is invariant under rotations of the gradient set. Taken together, the work of Lazar et al. and
this study show that the statistical properties of tracking errors can be understood in terms of
the cone of uncertainty. This connection has also been made recently by Koay et al. (16).
The CU serves as a convenient conceptual link between local diffusion properties and the
reliability of extended fiber paths. In addition, the statistical information contained in the CU
can be used to make more realistic probabilistic algorithms for fiber tractography (30) and to
evaluate the benefits of diffusion weighted image acquisition and gradient vector schemes
for improving fiber path accuracy.
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APPENDIX

Eigenvector covariance in the limit of high angular resolution
We assume that the measured DTI signal in a voxel in the brain is
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[16]

where S0 is the non-diffusion weighted signal, b is the scalar diffusion weighting factor, and
ni is the ith component of a unit vector along the diffusion weighting direction ( n1 , n2 , and
n3 are the x, y, and z components, respectively). The Dij are elements of the diffusion tensor
and ε a random sample of normally distributed (mean zero, variance σ2) noise. Assuming the
signal-to-noise ratio in the diffusion weighted images is >> 1, this relation can be linearized
as follows

[17]

where ⟨S⟩ is the expectation value of the signal. Suppose N measurements are made using
the same diffusion weighting factor, b, but different directions. Writing Eq. [17] explicitly
for the kth measurement,

[18]

where ηk ≡ εk/⟨Sk⟩ is a random variable equal to the image noise scaled by the mean signal
for that measurement direction. Since the variance of ηk will generally depend on direction,
a weighted least squares calculation should be used to estimate the Dij . Let y be a column
vector of elements yk = ln(Sk) and η be a column vector of values ηk . The variables we wish
to estimate can be placed in a column vector β with elements

[19]

Finally, the design matrix,  , relates β to y . The kth row of  is

[20]

So Eq. [18] can be written simultaneously for all k as (2)

[21]

Defining a diagonal matrix  with nonzero elements equal to the signal-to-noise ratio (SNR)
of the kth measurement,
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[22]

where σ2 is the variance of the εk , we can multiply Eq. [21] by  from the left:

[23]

The last term on the right is a random vector, each element of which has zero mean and unit
variance. The linear least-squares solution to this uniform-variance problem is

[24]

The covariance matrix for β is

[25]

We can use the approach of Batchelor (31) to evaluate elements of the covariance matrix in
the limit of many diffusion encoding directions. Let the number of diffusion weighting
directions, N, approach infinity and the directions be uniformly distributed in space. In this
case, the labeling of the coordinate axes is arbitrary, so we are free to make  (the unit
vector in the Z direction) parallel to the major eigenvector, v1 , of the tensor. Similarly, we
take  and  in the v2 and v3 directions, respectively. In this coordinate system,

[26]

The first term on the right hand side is the SNR in an unweighted image. Consider the
matrix

[27]

the matrix elements of which are

[28]
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since  is diagonal. The sum is over diffusion weighting directions, each of which
corresponds to a point (xk,yk,zk) on the unit sphere. The rows of  correspond to different
directions and the columns to different functions of those directions. We can write

[29]

where

[30]

Hence,

[31]

As N → ∞ , we can define ds = 4π/N as the area on the unit sphere surrounding each
measurement direction (xk,yk,zk), and replace the summation in Eq. [31] with an integral
over the unit sphere:

[32]

where Eq. [26] was used to substitute for Vkk. Note that the ai for i = 1,2,3,4 and the
exponential term are even functions in x, y, and z. On the other hand, the ai for i = 5,6,7 are
odd in two of the three coordinates. This implies that

[33]

or vice versa. Hence  is block diagonal and can be written as

[34]

where  is 4×4,  is 3×3  is an n×m matrix of zeros. Furthermore,  is diagonal, since
the product of any two of the functions xy, xz, and yz is also odd in two of the coordinates.

The diagonal elements of  are
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[35]

[36]

[37]

Next, we show that Q33 ≥ Q22. We can rewrite the Qii explicitly in terms of the polar and
azimuthal angles, θ and φ , describing each diffusion weighting direction. First, note that

[38]

Hence the lower two diagonal elements are

[39]

[40]

These differ only in the φ integrals. The φ integrals for Q22 and Q33 are

[41]

[42]

respectively, with α = 2b(λ2 — λ3)sin2 θ≥0. These integrals can be expressed as modified
Bessel functions using the relation

[43]
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I0 (z) is the modified Bessel functions of order zero. Making the change of variables to φ =
φ’/2 and using the half angle relation cos(2φ) = 2cos2φ—1 we have

[44]

Hence

[45]

Differentiating both sides of this relation with respect to z gives

[46]

The zero order modified Bessel function obeys the relation

[47]

where I1 (z) is the first order modified Bessel function. Using this relation and Eq. [45] in
Eq. [46], we have

[48]

or

[49]

Similarly,

[50]

using Eqs. [45] and [49] on the second line. Substituting Eqs. [49] and [50] in Eq. [41] and
[42], respectively,

[51]
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[52]

Since the modified Bessel functions are real and positive for α ≥ 0 , we have

[53]

The equality holds if and only if α = 0 (since I1 (0) = 0). Because these terms are the only
difference between the integrands of Q22 and Q33 (and the integrands are non-negative), we
have

[54]

For the case of interest ( b > 0) the equality holds only when λ2 = λ3.

Since the matrix  is block diagonal (Eq. [34]), its inverse is also block diagonal:

[55]

and since  is diagonal,

[56]

Substituting Eqs. [55] and [56] into Eq. [27] and solving for the covariance matrix, we find

[57]

where

[58]
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Referring to the order of tensor elements in Eq. [19], this shows that the variance of Dxz is
greater than or equal to the variance of Dyz. In terms of the principal axis indices, we have

[59]

The equality holds only when λ2 = λ3 . Further, since the lower-right block of  is diagonal,
the errors in D12 are uncorrelated with errors in D13. A similar calculation shows that the
same results hold if the tensor is calculated using standard (unweighted) linear least squares
estimation. To summarize, in the case of many, uniformly distributed measurement
directions and λ2 > λ3, the errors in D12 are larger than the errors in D13, and the two are
uncorrelated.

LIST OF SYMBOLS

b Italic b

Cl Upper case italic C, subscript l (letter ‘ell’)

D Bold D

e1 Bold e, subscript 1 (one)

e2 Bold e, subscript 2

ε31 Greek epsilon, subscript ‘31’

λ1 Greek lambda, subscript 1 (one)

λ2 Same, but subscript 2

λ3 Same, but subscript 3

S0 S, subscript 0 (zero)

SNR0 SNR, subscript zero

σ1 Greek lower case sigma, subscript one

σ2 Greek sigma, subscript 2

σPT Greek sigma, subscript ‘PT’

σBS Greek sigma, subscript ‘BS’

Σv1 Greek upper case sigma, subscript v, sub-subscript 1 (one)

θ Greek lower case theta

v1 v subscript 1 (one)

v2 v subscript 2

v3 v subscript 3

v caret, subscript 1 (one)
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Figure 1.
Construction of the cone of uncertainty (a) based on the projection of  (circles) onto the
{v2, v3} plane (b) for a representative white matter voxel with 6 scans averaged (FA = 0.73,
200 bootstrap samples). The size of the cone (i.e., its height and major and minor axes) is
scaled by FA, and the directions of the major and minor cone axes (denoted by e1 and e2 ,
respectively) are given by the principal components (σ1 ·e1 and σ2 ·e2) of the v1 error
distribution shown as circles in (b). The coincidence angle (↼) between e1 and v2 is also
shown (b).
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Figure 2.
A T2-weighted image (a) showing an ROI and its FA map (b). The white dotted area in (b) is
used in (c) for CU visualization. The CUs (using 6 averages, 200 bootstrap samples) are
color coded according to base 10 logarithm of the p-value from the test for zero eccentricity.
Low probability of circularity (zero eccentricity) is shown as dark blue, while high
probability is shown as red (c). The base of each cone in the square region in (c) is shown in
the local v2 (horizontal in the inset) - v3 (vertical) plane at the lower right corner in (c).
Those cones are uniformly scaled for clear visualization.
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Figure 3.
Mapped results of the test of multivariate normality (skewness and kurtosis) for the ROI
(Fig. 2a) superimposed on the FA map. Dots indicate multivariate normality in fiber
directional error with 4 (a) and 12 (b) averaged scans and 200 bootstrap samples for p-value
of 0.05. The fractional number of voxels with multivariate normal error over the whole ROI
is approximately 47 % (a) and 64 % (b), and increases as NA increases.
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Figure 4.
Cone angle of the major (θ1) and minor (θ2) axes fit to a linear function of SNR-1

( ) for a typical white matter voxel (FA = 0.71 and 200 bootstrap samples).
SNR0 is measured using the non-weighted image. The equation of the line is shown as a
function of x = SNR-1. As SNR decreases, the cone angle increases in proportion to SNR-1.
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Figure 5.
The major (a and b) and minor (c and d) cone angles (θ1 and θ2) are calculated over the ROI
(Fig. 2a) and plotted as a function of the reciprocal of the eigenvalue contrast (with fixed
tensor error, ε31 for (a) and ε21 for (c)) and as a function of the tensor error ε31 for (b) and
ε21 for (d) (with fixed eigenvalue contrast). The slope for the linear fit is 0.4634 (a), 0.0675
(b), 0.4985 (c) and 0.0446 (d) with R2 values close to one. The 95 % confidence interval for
the slope is (0.31, 0.61) (a), (0.062, 0.073) (b), (0.41, 0.59) (c) and (0.035, 0.054) (d). These
intervals include the nearly constant values of ε31 ≅ 0.50 (a) and ε21 ≅ 0.42 (c), and (λ1 —
λ3)-1 ≅ 0.064 (b) and (λ1 — λ2)-1 ≅ 0.054 (d). Hence, the data are consistent with the
relations θ1 ≅ ε31/(λ1 — λ3) and θ2 ≅ ε21/(λ1 — λ2).
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Figure 6.
Simulated coincidence angles are shown for the whole brain slice with gradient schemes
‘original 6′ (a), ‘original 12′ (b), ‘original 21′ (c) and ‘original 92′ (d). The simulation is
repeated 200 times by generating DW signals using the ‘true’ diffusion tensor with
simulated random noise. The coincidence angle measures the difference in orientation
between the major cone axis and the second eigenvector of the diffusion tensor (see Fig. 1b).
As the number of gradient directions (i.e., angular resolution) increases, the directional
coincidence increases (i.e., the coincidence angle decreases).
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Figure 7.
Fiber directional uncertainty quantified as cone angles for the major (θ1 , a) and minor axis
(θ2 , b) and NA = 2 (green), 6 (red) and 24 (blue) acquisitions with 200 bootstrap samples are
shown over the ROI (Fig. 2a). The cone angle decreases with increasing NA (i.e., SNR) and
FA for both axes.
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Figure 8.
Bootstrap and simulation coincidence angle maps for the ROI are shown. The coincidence
map from the bootstrap analysis (200 samples and 6 averages) of actual data using the
gradient scheme ‘original 6′ (a) is in good agreement with simulation results for the same
scheme (b). Simulations show the maps of coincidence angle for other gradient schemes:
‘rotated 6′ (c), ‘original 12′ (d), ‘original 21′ (e) and ‘original 92′ (f). Coincidence angles
vary as low-resolution gradient vector sets are rotated (compare b and c). As angular
resolution improves, however, coincidence angles converge (d-f).
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Figure 9.

Variance of the off-diagonal tensor elements, (σ2 (D12) and σ2 (D13), scaled by  shown
for a representative voxel (10th row and 23rd column in the ROI) in the corpus callosum for
‘original’ (a) and ‘rotated’ (b) ‘6′, ‘12′, ‘21′ and ‘92′ gradient vector schemes. These
variances, along with eigenvalue contrast, determine the CU cone angles. The variances, and
hence cone angles, are dependent on the gradient vector directions at low angular resolution,
but converge at high angular resolution.
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Table 1

Percentage of voxels in the ROI (Fig. 2a) with eccentric cones of uncertainty (p-value ≤ 0.05) from bootstrap
results.

Number of
acquisitions
averaged

Number of bootstrap samples

100 200 500 1000

2 67.9 81.1 90.5 94.8

4 76.0 84.8 93.6 96.2

6 77.4 86.3 93.6 96.3

12 79.1 88.0 95.0 97.0

24 81.5 88.4 94.4 97.3
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