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The full complement of homeobox transcription factor sequences, including genes and pseudogenes, was determined
from the analysis of 10 complete genomes from flowering plants, moss, Selaginella, unicellular green algae, and red
algae. Our exhaustive genome-wide searches resulted in the discovery in each class of a greater number of homeobox
genes than previously reported. All homeobox genes can be unambiguously classified by sequence evolutionary analysis
into 14 distinct classes also characterized by conserved intron–exon structure and by unique codomain architectures. We
identified many new genes belonging to previously defined classes (HD-ZIP I to IV, BEL, KNOX, PLINC, WOX). Other
newly identified genes allowed us to characterize PHD, DDT, NDX, and LD genes as members of four new evolutionary
classes and to define two additional classes, which we named SAWADEE and PINTOX. Our comprehensive analysis
allowed us to identify several newly characterized conserved motifs, including novel zinc finger motifs in SAWADEE
and DDT. Members of the BEL and KNOX classes were found in Chlorobionta (green plants) and in Rhodophyta. We
found representatives of the DDT, WOX, and PINTOX classes only in green plants, including unicellular green algae,
moss, and vascular plants. All 14 homeobox gene classes were represented in flowering plants, Selaginella, and moss,
suggesting that they had already differentiated in the last common ancestor of moss and vascular plants.

Introduction

Homeobox genes encode a typical DNA-binding do-
main of 60 amino acids, known as homeodomain (HD), that
characterizes a large family of transcription factors. The ho-
meodomain folds into a characteristic 3D structure contain-
ing three alpha-helices, of which the second and third form
a helix-turn-helix motif. The first homeobox genes were
isolated from the fruit fly Drosophila melanogaster and
were subsequently found to be involved in many aspects
of development (for review, see Gehring et al. 1994;
Bürglin 2005). Many more homeobox genes have been sub-
sequently identified from all major eukaryotic lineages
(Derelle et al. 2007). Based on sequence differentiation
and fusion with characteristic codomain sequences, animal
homeodomain proteins have been classified into several
distinct classes, including TALE, Antp, PRD, SIX, LIM,
POU, ZF, CUT, HNF, and PROS (Bürglin 1994, 2005;
Holland et al. 2007; Takatori et al. 2008). A distinction
has been made between ‘‘typical’’ homeodomains, charac-
terized by a length of 60 amino acids, versus ‘‘atypical’’
ones of different lengths (Bürglin 1994). The latter include
a group characterized by homeodomains of 63 aa, with
three extra residues inserted between helix 1 and 2 (Bürglin
1995), that have been named TALE (Three Amino acid
Loop Extension) homeobox genes (Bertolino et al. 1995;
Chen et al. 2003). Both TALE and typical homeobox genes
were found to be present in all major eukaryotic lineages
including plant, fungi, and animals, suggesting that these
two types of homeobox were present in the eukaryote an-
cestor (Bürglin 1995; Bharathan et al. 1997; Bürglin 1997,
1998a; Derelle et al. 2007). Besides TALE, other homeo-
box genes of noncanonical length have emerged from the
analysis of animal sequences (Bürglin 1997; Bürglin and
Cassata 2002). These can be clustered into separate classes

of atypical homeobox genes characterized by unique
homeodomain insertions and by class-specific codomain
architectures, making it apparent that insertions in homeo-
domain loops have independently occurred multiple times
in evolution.

Plant homeodomain proteins have been classified in
the literature into various groups based on sequence simi-
larity of their homeodomains and on the presence of char-
acteristic codomains. Bharathan et al. (1997) classified
them into seven classes: KNOX and BEL, belonging to
the TALE superclass (Bürglin 1997), ZM-HOX, HAT1,
HAT2, ATHB8, and GL2. The HAT1, HAT2, ATHB8,
and GL2 genes are all characterized by a leucine-zipper mo-
tif downstream of the homeodomain (Ruberti et al. 1991)
and have been successively renamed HD-ZIP I, HD-ZIP II,
HD-ZIP III, and HD-ZIP IV, respectively (Bharathan et al.
1997; Meijer et al. 1997; Aso et al. 1999; Sakakibara et al.
2001). Chan et al. (1998) proposed an alternative classifi-
cation into five groups (HD-ZIP, GLABRA, KNOTTED,
PHD, and BEL).

Although many homeobox genes have been reported
from plants, a complete survey and classification of all ho-
meobox genes in plant species from disparate evolutionary
groups is lacking. The completion of several high-quality
plant genome sequencing projects provided us with the
unique opportunity to make a complete assessment and
thorough comparative analysis of the homeodomain pro-
teins encoded in plants. The analysis of the full set of ho-
meobox genes in genomes from diverse species allows for
a definitive classification of plant homeodomain proteins
and an assessment of their origins, evolutionary relations,
patterns of differentiation, and proliferation in the various
phylogenetic groups. We are interested in finding answers
to the following questions: 1) What are the evolutionary
relations among plant homeodomain proteins?; 2) How
many classes of plant homeodomain proteins can we dis-
tinguish in the complete collections from multiple ge-
nomes?; 3) When did each class appear in evolutionary
time?; 4) What classes are present in which plant groups?;
5) How did each class proliferate in the different plant
groups?; 6) Can we classify plant homeodomain sequences
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based on a characteristic pattern of insertions in homeodo-
main loops?; 7) Can we characterize homeodomain evolu-
tion based on intron–exon structure?; 8) What is the relation
of plant homeodomain sequence evolution with the evolu-
tion of their codomain architecture?; 9) Can we relate ho-
meobox gene and class presence and differentiation within
each genome with the developmental properties of the spe-
cies bearing them?

Our thorough analyses provide a comprehensive clas-
sification scheme and suggest a reconstruction of the evo-
lutionary history of plant homeodomain protein codomain
architecture applicable to all plant homeodomain proteins.
The results of our study provide a clear picture of the pat-
terns of origin and differentiation of homeodomain classes
in different plant groups and suggest interpretations linking
their appearance to organism differentiation and increasing
developmental complexity. We recognize appearance of all
present-day classes of plant homeodomain proteins early in
land plant evolution and their differential proliferation into
variable numbers of paralogs within each class in different
plant groups. We identified and classified in this study
a higher number of homeobox genes than previously re-
ported, allowing us to identify several subclasses based
on phylogenetic clustering and presence of subclass-specific
motifs. We found that, compared with animal homeobox
genes, insertions in the homeodomain loops are quite com-
mon among plant homeobox genes. We newly characterized
several conserved codomain motifs, specific to each of the
classes, and predicted their functionality based on sequence
similarity to proteins available in databases. The resulting
rich data set of plant homeodomain proteins, comprising
over 1,000 sequences, is available for download.

Methods
Database Searches and Retrieval of Protein Sequences

Thorough TBlastN searches with several divergent ho-
meodomain proteins of plants and animals were performed
to retrieve homeobox genes of Arabidopsis through the
TAIR database server (http://www.arabidopsis.org) and
of rice through the Gramene database server (http://www.
gramene.org). Likewise, analogous searches were per-
formed for the maize genome, through the TAIR maize ge-
nome server (http://tigrblast.tigr.org/tgi_maize/) as well as
the Plant Genome Database server (http://www.plantgdb.
org/PlantGDB-cgi/blast/PlantGDBblast). The plant ge-
nome database server was also used to retrieve homeodo-
main sequences from other plants. The JGI Blast server
(http://genome.jgi-psf.org/Poptr1/) was used to retrieve
all the Selaginella, moss, and poplar homeobox genes using
TBlastN searches against the genomic sequence. Similarly,
the TIGR Medicago genome server (http://tigrblast.tigr.org/
er-blast/index.cgi?project5mtbe) was used to retrieve
Medicago homeodomain sequences. A local database
was created using Filemaker Pro 5 (Filemaker, Inc.) to store
the retrieved sequences, annotations, accession numbers,
expressed sequence tags (ESTs), and chromosomal loca-
tion. The National Center for Biotechnology Information
(NCBI) version of Mac Os X Blast (ftp.ncbi.nih.gov)
was installed on a PowerMacG4 computer. The protein
sequences in the Filemaker Pro 5 database were exported

and reformatted for the local Blast. In order to remove
the redundancy in the database, each sequence in the data-
base was blasted against the database, and redundant entries
were consolidated. New rounds of BlastP and TBlastN
searches of the nr protein and GenBank databases at NCBI
restricted to Arabidopsis thaliana using default values were
carried out using representative homeodomains of different
classes from plants and animals as a query (e.g., POU, LIM,
CUT, Antp, HD-ZIP, BEL [Bürglin 1994]). Hits from these
searches were checked against data in the local Filemaker
database using the ‘‘Search’’ feature (e.g., accession num-
bers, or N-terminal protein sequences), or a local Blast
search of a retrieved hit was performed against the local
database. New sequences identified in this fashion were
added to the database. A preliminary Neighbor-Joining tree
was generated, and PSI-Blast searches with a member of
each evolutionary group used as a query were carried
out against the nr protein database at NCBI, and iterations
were stopped when no new sequences were detected. Every
hit for the BlastP, TBlastN, and PSI-Blast searches was
manually examined for its potential to be a homeodomain,
according to the criteria outlined in the text. No particular
e value was taken as an automatic cut-off point, as the goal
was to detect as many homeobox genes as possible. In a few
instances, Blast matrix and expected value were relaxed to
include additional sequences, which were then checked
manually for their potential as homeodomain sequences.
Arabidopsis thaliana ESTs at NCBI were searched using
each entry of our local database as a query using TBlastN.
Searches of newly discovered conserved domains/motifs
linked to homeobox genes were carried out using BlastP
with default values and without species restriction, unless
the results would lead to too many hits (e.g., PHD, DDT).
All A. thaliana homeodomain protein entries (mislabeled as
Hox) in the SMART database were also checked against the
local database.

For rice, maize, and poplar, the genomic sequences of
the few thousand nucleotides upstream and downstream of
the homeodomain were analyzed to predict the complete
homeodomain protein sequences using either the MIT Gen-
escan server or the softberry FGENESHþ server, using the
most similar plant gene from the blast searches as a guide.
In the multiple sequence alignment, if the homeodomain
showed obvious misalignment, the most similar plant se-
quence was used as a guide to correct the homeodomain
following a three-frame translation of the sequence and
manual determination of potential intron and exon bound-
aries. A similar procedure was used in some sequences that
showed obvious gaps and misalignments within conserved
domains upon sequence alignment. In those cases, the ge-
nomic sequence was examined, and it was compared either
as three-frame translation with a closely related protein se-
quence or as DNA against a closely related DNA sequence,
using the dot matrix program PPCMatrix (Bürglin 1998b).
The genomic sequence was translated in all three frames in
PPCMatrix and examined for splice sites in the regions
where the sequence similarity terminated. In the case of
maize, part of the homeodomain could be found in one con-
tig and the other part in a different contig. In this case, man-
ual contig assemblies were carried out and finally confirmed
by Blast searches. In several cases, Arabidopsis homeobox
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genes were repredicted with FGENSHþ using the most
similar gene ortholog as a guide to obtain the full-length
protein.

The European Molecular Biology Open Software suite
was used for pairwise alignment and for locating the homeo-
domain sequence within a protein sequence. Sequences were
submitted also to the SMART and NCBI CDD (Schultz et al.
1998; Marchler-Bauer et al. 2003) to identify conserved do-
mains. These databases did not contain or identify many of
the conserved motifs and unusual homeodomain sequences.

The homeodomain DNA from representative mem-
bers of each class were blasted against the JGI Chlamydo-
monas project Blast server (http://genome.jgi-psf.org/
Chlre3/Chlre3.home.html) to retrieve the Chlamydomonas
reinhardtii homeodomain sequences. Similarly, to recover
the homeodomain protein sequences of Physcomitrella
patens, TBlastN searches were performed at JGI (http://
genome.jgi-psf.org/).

Multiple Sequence Alignment and Phylogenetic Analysis

The multiple sequence alignment tool MUSCLE
(Edgar 2004) was used for multiple protein sequence align-
ment. Sequences were further edited and aligned manually,
when necessary, using the ‘‘Seaview’’ multiple sequence
editor (Galtier et al. 1996). For phylogenetic analyses of
conserved domains, sequences were trimmed so that only
the relevant protein domains remained in the alignment.
Phylogenetic relationships were inferred using the maxi-
mum likelihood (ML) method as implemented in PHYML
(Guindon and Gascuel 2003). For the ML trees, the JTT
(Jones et al. 1992) substitution model was used and results
were evaluated with 100 or 1,000 bootstrap replicates. Use
of alternative substitution models (WAG, LG) did not affect
the results in any of the cases tested (results not shown). The
generated trees were displayed using TREEVIEW 1.6.6
(http://taxonomy.zoology.gla.ac.uk/rod/treeview.html) and
NJPLOT by M. Gouy (http://pbil.univ-lyon1.fr/software/
njplot.html).

Secondary Structure Prediction and Protein Homology
Modeling

We predicted the secondary structures of several di-
vergent homeodomain sequences using the PHD, JPRED,
and Predict Protein servers (Rost and Sander 1993; Cuff
et al. 1998). For homology modeling, the crystal structure
of the engrailed homeodomain (PDB id: 1enh) obtained
from Protein Data Bank (PDB) was used as a template.
The aligned sequences were submitted to SWISS-MODEL
(http://www.expasy.org/swissmod/) to obtain the 3D struc-
ture of some of the atypical homeodomains. The model was
viewed in Swiss-PDB Viewer (Kaplan and Littlejohn
2001), and the quality of the model was judged by the
phi–psi angle represented in Ramachandran Plots.

Results

We searched homeodomain sequences in several plant
genomes (table 1) including the genomes of the red alga

Cyanidioschyzon merolae (Rhodophyta), the unicellular
green algae Ostreococcus lucimarinus, Ostreococcus tauri
and Chl. reinhardtii (Chlorophyta), the moss P. patens
(Bryophyta), the spikemoss Selaginella moellendorffii (Ly-
copodiophyta), and the flowering plants A. thaliana, poplar
(eudicots), maize and rice (monocots), using the TBlastN
(Gertz et al. 2006) search engine with a variety of homeo-
domain sequences as queries. In most cases, whenever
significant similarity to a homeodomain sequence was iden-
tified, the genomic sequence was excised and homology-
based gene predictions were performed using the most
similar query as a guide. In many instances, regions of
conservation were manually reconstructed by multiple se-
quence alignment of three-frame translations of the geno-
mic sequence including the Blast hits. The results of our
extensive database searches are summarized in table 2.
In the genome of Arabidopsis (eudicot), we found 110
unique homeobox genes, and in the genome of rice (mono-
cot), we found 117 sequences (110 genes and 7 pseudo-
genes). Searches in the genomes of poplar (eudicot) and
maize (monocot) each yielded 149 homeobox sequences
(148 genes and 1 pseudogene) (table 2). In the genome
of Selaginella (Lycopodiophyta), we found 45 homeobox
genes and 1 pseudogene. In the genome of moss P. patens
(Bryophyta), we identified 66 homeobox genes and 1 pseu-
dogene. Among unicellular green algae (Chlorophyta), we
found five homeobox genes in the genome of Chl. rein-
hardtii and seven homeobox genes in the genomes of
O. lucimarinus and O. tauri. We retrieved a similar number
of homeobox genes (six genes) from the genome of the red
alga (Rhodophyta) Cy. merolae. An alignment of HD se-
quence representatives from one monocot (rice), one dicot
(Arabidopsis), moss, and Selaginella, showing sequence
features unique to each class, is shown in fig. 1. The
alignment of all sequences found in Arabidopsis, moss,
Selaginella, unicellular algae, and red algae is shown
in supplementary fig. 1 (Supplementary Material online).
See supplementary table 1 (Supplementary Material online)
for a complete catalog of all sequences identified in the
plant genomes analyzed in this study. Several groups of ho-
meodomains do not fit into the typical 60-residue pattern, as
they have insertions between helix 1 and helix 2, and/or

Table 1
Plant Genomes Analyzed in This Study

Species
Genome

Size (Mbp) Database

Eudicots Arabidopsis thaliana
(thale cress)

157 TAIR

Populus trichocarpa
(poplar)

500 JGI

Monocots Oryza sativa (rice) 430 Gramene
Zea mays (maize) 2,400 TAIR,

PlantGDB
Lycopodiophyta Selaginella moellendorffii 110 JGI
Bryophyta

(moss)
Physcomitrella patens 500 JGI

Chlorophyta Chlamydomonas reinhardtii 120 JGI
Unicellular

green algae
Ostreococcus lucimarinus 12.5 JGI
Ostreococcus tauri 11.6 JGI

Rhodophyta
(red algae)

Cyanodioschyzon merolae 16.5 Genome
project
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helix 2 and helix 3 (fig. 1). However, several criteria iden-
tify all these sequences as homeodomains: 1) The amino
acid sequences fit the profile of amino acids established
from 346 animal homeodomains (Bürglin 1994) when
the loop regions are removed; 2) The pattern of conserva-
tion, that is, which positions are conserved and which ones
are not, conforms to the profile established for the animal
homeodomains (Bürglin 1994), with positions 16, 20, 48,
49, 51, and 53 highly conserved among plant and animal
homeodomains; 3) Secondary structure prediction and ho-
mology modeling conform to the homeodomain structure;
4) Blast searches using as a query each newly identified ho-
meodomain confirmed their highest similarity to homeodo-
main proteins from other plants. All plant homeodomain
proteins that we retrieved conserve at least 36% identity
with animal homeodomain proteins.

By phylogenetic analyses based on the ML procedure
implemented in PHYML (Guindon and Gascuel 2003) and
other approaches (see Methods), we found that all plant
homeodomain proteins reliably group into 14 distinct clas-
ses with robust (generally 70% or more) bootstrap support
(fig. 2 and supplementary figs. 2 and 3, Supplementary Ma-
terial online). Furthermore, from the multiple sequence
alignments of full-length homeodomain proteins belonging
to the 14 classes, distinctive motifs were found conserved
and uniquely associated with each class across monocots,
eudicots, Selaginella, and moss and even among unicellular
green algae or red algae (fig. 3). Finally, the intron positions
within all the 110 homeodomain genes of Arabidopsis were
strikingly conserved within each class (fig. 4). Based on
previous classifications (see Introduction) and on the results
of our analysis, we propose the following classification
scheme for the plant homeobox genes.

The HD-ZIP Superclass (HD-ZIP I, HD-ZIP II, HD-ZIP
III, HD-ZIP IV)

The HD-ZIP superclass is composed of four individual
classes, HD-ZIP I, HD-ZIP II, HD-ZIP III, and HD-ZIP IV

(Sessa et al. 1994), all of which are characterized by pres-
ence of a leucine-zipper adjacent to the C-terminus of the
homeodomain (fig. 3). The HD-ZIP II class is distinguished
by a ‘‘CPSCE’’ motif conserved downstream of the leucine-
zipper (Chan et al. 1998). The HD-ZIP III and HD-ZIP IV
classes were characterized by the START (STeroidogenic
Acute Regulatory protein–related lipid Transfer) (Ponting
and Aravind 1999) and HD-SAD (START associated con-
served domain) (Schrick et al. 2004; Mukherjee and Bür-
glin 2006) domains. The HD-ZIP III class is distinguished
from HD-ZIP IV by an additional conserved C-terminal do-
main, previously named MEKHLA domain (Mukherjee
and Bürglin 2006). Our exhaustive database searches
yielded the 48 leucine-zipper homeodomain proteins re-
cently identified in the genome of Arabidopsis (Baima
et al. 2001; Henriksson et al. 2005; Nakamura et al.
2006; Ciarbelli et al. 2008). We identified a similar number
of leucine-zipper homeodomain proteins (47 genes) in the
genome of rice. In the genomes of poplar, maize, Selagi-
nella, and moss, we identified 61, 70, 13, and 33 leu-
cine-zipper homeodomain proteins, respectively (table 2).
Thus, the HD-ZIP superclass comprises from 40% to
50% of all homeobox genes of flowering plants and moss
(table 2). The classification of HD-ZIP proteins was based
on the evolutionary tree relations among HD sequences and
was also supported by the association of these sequences
with codomains characteristic of the different HD-ZIP clas-
ses (see above). From the alignment of all known and newly
identified proteins we also discovered that HD-ZIP III pro-
teins were distinguished from other HD-ZIP class genes by
four extra residues inserted between helices 2 and 3 of the
homeodomain (fig. 1). We propose this insertion as a diag-
nostic new feature for this class. We could not find any HD-
ZIP gene in unicellular green algae or in red algae.

The PLINC Zinc Finger Class

A PLINC zing finger HD class protein was first iden-
tified in Flaveria trinervia (Asteraceae) (Windhovel et al.

Table 2
Classification of All Homeobox Proteins Retrieved from Plant Genomes

Super Class Class

Eudicots Monocots
Bryophyta Lycopodiophyta

Unicellular Green Algae
Red Algae

At Poplar Rice Maize Moss Sm Cr Ol Ot Cm

HD-ZIP HD-ZIP I 17 22 14 24 17 4 — — — —
HD-ZIP II 10 16 14 (2) 17 7 2 — — — —
HD-ZIP III 5 8 7 (3) 8 5 3 — — — —
HD-ZIP IV 16 15 12 21 4 4 — — — —
PLINC 14 17 11 17 11 (1) 5 — — — —
WOX 16 19 15 16 3 6 — 1 1 —

TALE KNOX 8 15 12 (1) 13 5 5 (1) 1 1 1 1
BEL 13 19 14 17 (1) 4 2 1 2 2 1
Uncharacterized — — — — — 6 1 — — 2
DDT 4 7 3 (1) 4 3 2 1 1 1 —
PHD 2 4 2 5 2 1 — — — —
NDX 1 2 1 1 2 1 — — — —
LD 1 2 1 1 1 1 — — — —
PINTOX 1 1 (1) 1 1 1 1 1 1 1 —
SAWADEE 2 1 3 3 1 2 — — — —

Uncharacterized — — — — — — — 1 1 2
Total 110 148 (1) 110 (7) 148 (1) 66 (1) 45 (1) 5 7 7 6

NOTE.—Number of pseudogenes retrieved from each species is indicated in parentheses. At, Arabidopsis thaliana; Sm, Selaginella moellendorffii; Cr, Chlamydomonas

reinhardtii; Ol, Ostreococcus lucimarinus; Ot, Ostreococcus tauri; Cm, Cyanodioschyzon merolae.
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2001), where it was named ZF-HD for two highly con-
served zinc finger–like motifs upstream of the homeodo-
main (fig. 3). Subsequently 14 members of the same
class have been characterized in Arabidopsis (Tan and Irish
2006). In each of the four flowering plant genomes that we
analyzed, we identified between 11 and 17 gene sequences
belonging to this class, along with 5 genes from Selaginella
and 11 genes and 1 pseudogene in moss (table 2). The cor-
responding proteins were characterized by clustering in the
ML tree reconstruction and by the presence of the two di-
agnostic putative ‘‘zinc finger motifs’’ upstream of the
homeodomain (fig. 3). The first putative zinc finger has
a consensus sequence C-X3-H-X9-D-X1-C, where H is

not always conserved, and the second putative zinc finger
has the conserved pattern C-X2-C-X1-C-H-X3-H. We pro-
pose to name this class and the corresponding domain
‘‘PLINC’’ (Plant Zinc Finger), to distinguish it from the un-
related zinc finger class of homeodomain proteins, called
ZF, found in animals (Bürglin 1994). Most of these proteins
were also characterized by the substitution of the usually
conserved homeodomain residue F49 with a methionine
residue and by insertion of one amino acid between helix
1 and helix 2, which we propose to be two strong diagnostic
features of this class. Exceptions were two genes, one from
A. thaliana (At1g14687) and one from rice (03g50920),
which at the same position showed, respectively, 3 or 6

FIG. 1.—Multiple sequence alignment of homeodomain sequence representatives from Arabidopsis thaliana (At), rice Oryza sativa (Os), moss
Physcomitrella patens (Pp), and spikemoss Selaginella moellendorffii (Sm). Canonical homeodomain sequence numbering (excluding loops), the
TALE class three-residue insertion (abc), and the position of the three homeodomain helices are indicated. The alignments presented in this and other
figures were obtained using MUSCLE (Edgar 2004) and conserved amino acids of different physicochemical properties are highlighted in different
shades of gray using the Clustal-Qt (Larkin et al. 2007) alignment-drawing software.
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amino acid insertions (supplementary fig. 1, Supplementary
Material online). We could not identify any gene belonging
to this class in unicellular green algae or in red algae, sug-
gesting that this class originated within the Streptophyta
clade and that it was already present in the last common
ancestor of moss and vascular plants.

The WOX Class

The homeodomain proteins of this class have one or
two extra residues between helices 1 and 2, and four to five
extra residues between helices 2 and 3 (fig. 1). Recently,
Haecker et al. (2004), based on their genome-wide search,
reported and annotated 14 WOX genes from Arabidopsis.
We found in Arabidopsis 16 WOX genes (table 2), charac-
terized by clustering in the evolutionary tree and by distinc-
tive conserved motifs both upstream and downstream of the
homeodomain, including the WUS Box (Haecker et al.

2004). The WOX class can be subdivided into several fam-
ilies (supplementary fig. 4, Supplementary Material online).
Among these, we found that families such as WOX 11/12
and WOX 8/9 had a C-terminal motif of about 60 aa in
length conserved between monocots and eudicots. We
found six WOX genes in Selaginella, three in moss, and
one WOX gene in the unicellular green algae O. lucimar-
inus and O. tauri (fig. 2 and supplementary fig. 1, Supple-
mentary Material online) but none in Chl. reinhardtii,
indicating that the WOX class of proteins was present in
the last common ancestors of green plants (Chlorobionta)
and was successively lost in the Chlamydomonas lineage.

The TALE Superclass (KNOX and BEL)

TALE homeodomain proteins are characterized by
three extra residues between helix 1 and helix 2 (Bertolino
et al. 1995; Bürglin 1997). In plants, TALE genes have been

FIG. 2.—Circular representation of the evolutionary tree of plant homeodomain sequences (branch lengths not drawn to scale), based on all
homeodomain sequences identified in Arabidopsis, Selaginella, moss, unicellular green algae, and red algae supplemented by selected sequences from
other flowering plant species wherever only one protein from Arabidopsis was found (see supplementary table 1 [Supplementary Material online] for
a complete list of species). The tree, which should be considered unrooted, was obtained with the ML procedure implemented in PHYML with the JTT
substitution model using an alignment of homeodomain sequences as shown in supplementary fig. 1 (Supplementary Material online). Bootstrap
support was based on 1,000 replicates and is indicated for relevant branches. Bootstrap support obtained after excluding all sequences from unicellular
green algae and red algae is shown in parentheses. Clades supported by robust bootstrap values (70% or more) are shown with thicker lines. Bootstrap
values for intraclass branches are omitted. Bootstrap values less than 5% for branches connecting different classes are not shown. All homeodomain
classes are identified as separate clades in this analysis and are consistently supported by conserved, class-specific domain architecture (see fig. 3) and
unique splice junctions (see fig. 4). Red-colored branches indicate sequences from red algae, blue-colored branches refer to the unicellular green alga
Chlamydomans reinhardtii, the light-blue color identifies the unicellular green algae Ostreococcus lucimarinus and Ostreococcus tauri, gold-colored
branches indicate moss proteins, and a light-green color is used to represent sequences from Selaginella.
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extensively studied and classified into the two classes KNOX
and BEL. Among the homeobox gene classes, KNOX and
BEL appeared to be the oldest classes, with members present
in single-cell green algae and in red algae (fig. 2).

Members of the KNOX class have been previously
classified into two families, KNOX I and KNOX II

(Kerstetter et al. 1994). We found eight members of the
KNOX class in A. thaliana, 15 in poplar, 12 (and one pseu-
dogene) in rice, 13 in maize, 5 (and 1 pseudogene) in Se-
laginella, 5 in moss, and a single unambiguously classified
gene in unicellular green and red algae (fig. 2). Five addi-
tional genes from Selaginella, one from Chlamydomonas,

FIG. 3.—Schematic overview of the domain architecture of all 14 classes of plant homeodomain proteins. The following domains and motifs are
indicated: HD, leucine-zipper (LZ), CPSCE motif, CESV motif, START domain, homeodomain-START associated domain (HD-SAD), MEKHLA
domain, PLINC zinc finger, BEL domain (A & B), KNOX domain (A & B), ELK motif, DDT domain, WSD motif, D-TOX ZF, PEX-PHD, PHD,
LUMI, conserved motifs in LD homeodomain proteins (LD1, LD2, LD4, AND LD5). Among DDT proteins, only D-TOX A is indicated with its full
symbol; D-TOX B, D-TOX C, D-TOX D, D-TOX E, D-TOX F, and D-TOX G are indicated as B, C, D, E, F or G, respectively.

FIG. 4.—Intron positions in the homeobox sequences of Arabidopsis thaliana. A consensus (majority) 60-residue homeodomain sequence is
shown above a ruler where individual codon base positions are separated by tick marks. Intron positions are indicated by vertical lines labeled by the
class names where each intron was found. The intron positions are generally conserved within each class. Exceptions are ATHB1, which has one intron,
whereas other HD-ZIP I genes are single-exon genes; and At4g12750, a DDT class member, which has an extra intron at the beginning of the
homeodomain. Gene classes not shown (HD-ZIP I, WOX, PLINC) do not have introns in the homeodomain. One of the splice sites in the NDX genes
lies in the loop between helix 2 and helix 3 where it cannot be placed accurately on the consensus sequence. Its approximate position is marked by
a crossbar at the end of the line.
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and two from the red alga clustered with the TALE class.
However, they did not confidently cluster within the
KNOX or BEL classes (fig. 2), and we could not recognize
in their sequence a typical KNOX or BEL codomain archi-
tecture. From the analysis of the codomain structure of
KNOX genes from flowering plants, we could further clas-
sify KNOX I genes into two subclasses, KNAT 2/6 and
KNAT1, while the KNOX II class could be separated into
the two subclasses KNAT7 and KNAT3/4/5 (fig. 5). Except
for the STM subclass, which appeared to be dicot specific,
all other subclasses had representatives from monocots and
eudicots, suggesting that they were present in flowering
plants prior to the separation of the two groups. KNOX
gene representatives from both Selaginella and moss
clustered within the KNOX I or the KNOX II subclasses
(fig. 5), confirming the results of a recently published

evolutionary analysis (Sakakibara et al. 2008) and suggest-
ing that both KNOX I and KNOX II genes were present
in the common ancestor of moss and vascular plants. Both
KNOX families conserve a diagnostic KNOX domain
upstream of the homeodomain, composed of two blocks
(KNOX A and KNOX B) separated by a variable region
(Bürglin 1997), as well as a shorter motif adjacent to the
homeodomain, named ELK (Vollbrecht et al. 1991). The
multiple sequence alignment of KNOX I and KNOX II
proteins (supplementary fig. 5, Supplementary Material
online) showed that in KNOX II proteins the KNOX B
subdomain is characterized by a 30-aa insertion. In addi-
tion, we could newly identify in all KNOX II genes a highly
conserved motif consisting of 20 amino acids that we
named ‘‘KNOX II C’’ (supplementary fig. 5, Supplemen-
tary Material online).

FIG. 5.—ML tree obtained using the homeodomain and codomain sequence of KNOX class proteins. KNOX class can be subdivided into two
families: KNOX I and KNOX II. Each of these can be further subdivided into two subfamilies having members conserved in both monocots (light-
green boxes) and eudicots (light-blue boxes). Selaginella (Sm) proteins are shown in yellowish green–colored boxes, whereas moss (Pp) proteins are
shown inside the gold-colored boxes. Each subfamily harbors distinct signature motifs, schematically represented next to the subfamily name. The tree
has been rooted with BEL class protein representatives.
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The KNOX domain shares similarities with the
MEIS and PBC domains of animal TALE homeobox
genes, suggesting that these domains derived from a com-
mon ancestral domain that has been named MEINOX
(Bürglin 1997, 1998a). The ELK motif, situated between
the KNOX and HD domains of KNOX class proteins, is in
a position analogous to the PBC-B motif of animal PBC
class homeobox genes. From sequence analysis we found
that the ELK domain showed similarities with the PBC-B
motif, including highly conserved hydrophobic residues,
and that both motifs are predicted to fold into helical con-
formations (fig. 6). This reinforces the notion that genes of
the PBC class are also derived from an ancestral MEINOX
TALE homeobox gene (Bürglin 1998a). We propose that
the ELK domain, as well as the C-terminal end of the
PBC-B domain, should be considered part of the MEI-
NOX domain.

The BEL class of proteins is uniquely characterized
by two conserved domains upstream of the homeodomain,
called SKY and BEL (Bellaoui et al. 2001; Becker et al.
2002). We identified 13–19 BEL genes in flowering plants,
2 genes in Selaginella, 4 genes in moss, 1 or 2 genes in
unicellular green algae, and 1 gene in red alga (table 2).
By ML evolutionary tree reconstructions based on the ho-
meodomain and codomain amino acid sequences and by
similarities in codomain architecture, we could distinguish
within the BEL class five newly classified subclasses,
common to monocot and eudicot flowering plants (supple-
mentary fig. 6, Supplementary Material online). In addi-
tion to SKY and BEL, we have detected in this class
a third highly conserved 10-aa motif, which we named
‘‘ ZIBEL’’, repeated at both the C-terminal and N-terminal
ends of the BEL proteins (fig. 7, panel a). This motif was
conserved in all BEL subclasses except at the C-terminal
end of the ATH1 subclass, where the SKY domain
was also missing (supplementary fig. 6, Supplementary
Material online). Furthermore, we also found the ZIBEL
motif at the N-terminal end of HD-ZIP II proteins
(fig. 7, panel a).

Considering that the KNOX, PBC, and MEIS domains
are all bipartite, with a variable-length linker region
connecting two conserved regions, we propose that a corre-
sponding BEL domain should also be redefined as a bipar-
tite domain composed of a conserved N-terminal domain
(BEL-A), also including the SKY motif, and a conserved
C-terminal domain (BEL-B). This definition is also consis-
tent with the observation that both parts of the newly de-
fined BEL domain are necessary for interaction with
KNOX homeodomain proteins (Bellaoui et al. 2001; Smith
et al. 2002). We also identified in all BEL subclasses except
BLR a third conserved motif, that we named BEL-C, situ-
ated between the BEL-B and the homeodomain sequences
(supplementary fig. 6, Supplementary Material online). No
obvious conservation had been so far described between the
BEL and MEINOX domains (Becker et al. 2002). How-
ever, when the redefined BEL domain was aligned with
the MEIS domain, the BEL-A region aligned with the
MEIS-A domain, with two adjacent leucine residues highly
conserved in BEL-A and in the MEIS-A domain within
a segment predicted in both classes to be helical (fig. 7,
panel b).

New Classes of Plant Homeodomain Proteins

The DDT Class

One group of homeodomain proteins is characterized
by the presence of the DDT domain (Doerks et al. 2001),
located downstream of the homeodomain. Our extended
searches and evolutionary analyses allowed us to newly
define this group of proteins as a separate class of HD pro-
teins. This group encompasses the largest plant homeodo-
main proteins, with sequences of lengths up to about 1,900
amino acids. We identified three to seven genes encoding
a DDT domain in flowering plants, two genes in Selagi-
nella, three genes in moss, and one gene in each genome
of unicellular green algae (table 2). No DDT class genes
were identified in red algae. In addition to the DDT domain,
from the alignment of these proteins we identified seven
other conserved motifs, distributed throughout the entire
length of the protein, which we named D-TOX A to G
(DDT Homeobox Class Domain, fig. 3). The newly iden-
tified D-TOX F motif is a zinc finger motif highly con-
served between monocots and eudicots, characterized by
the pattern C-X2-C-X10-C-X2-C. To distinguish it from
other zinc finger domains, we propose to name the newly
identified zinc finger motif ‘‘D-TOX ZF’’ (fig. 8, panel a).
Using D-TOX E as a query in database searches, we iden-
tified other proteins from rice, Arabidopsis, and slime mold
that did not contain the homeodomain but conserved the D-
TOX E and the DDT domains, with 36–43% amino acid
identity. We also identified similarity with the animal Wil-
liams-Beuren syndrome transcription factor proteins, which
also contain the DDT domain, as well as PHD and bromo
domains, with 25–28% sequence identity (fig. 8, panel b).
We propose to uniquely identify the D-TOX E motif as the
Williams-Beuren syndrome DDT (WSD) motif. We classi-
fied genes belonging to the DDT class by phylogenetic
analyses and codomain architecture into three subclasses
(D-TOX1, D-TOX2, D-TOX3), of which D-TOX1 and
D-TOX2 are represented in both eudicots and monocots,
whereas D-TOX3 is eudicot specific (fig. 9). The D-
TOX3 subclass has lost all motifs characteristic of the
DDT class of genes except for the D-TOX A motif. The
DDT class of genes appears to have evolved early in green
plant (Chlorobionta) evolution because members of this
class were found in unicellular green algae and in land
plants (fig. 2).

The PHD Class

The pathogenesis-related homeobox gene A (PRHA)
(Plesch et al. 1997) and HAT3.1 gene (Schindler et al.
1993) from Arabidopsis were characterized by the presence
of the PHD codomain, located several hundred amino acids
upstream of the homeodomain. We found from two to five
PHD genes encoded in flowering plant genomes, one gene
in Selaginella, and two genes in moss. We did not detect
any PHD HD gene in unicellular green algae or in red algae.
These genes formed a distinct clade in the ML tree recon-
struction (fig. 2), which, together with the diagnostic pres-
ence of the PHD domain, allowed us to newly define the
class of PHD homeodomain proteins. Adjacent to the
PHD domain proteins of this class lies an additional
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conserved motif of about 90 aa, which we called PEX-PHD
(fig. 3). This region, which we found only in plant PHD
homeodomain proteins, is rich in charged residues. Other
smaller conserved motifs are found mainly between the
PHD domain and the homeodomain (fig. 3).

The ML evolutionary tree obtained from the alignment
of the homeodomain and PHD sequence regions suggests
that PHD proteins divide into two distinct subclasses (sup-
plementary fig. 7, Supplementary Material online), named
after the corresponding Arabidopsis genes: PRHA, with
a high bootstrap support (98%), and HAT3.1, with a lower
support (58%). Both subclasses are represented in all flow-
ering plant genomes examined, but only proteins classified
in the PRHA group are found in moss (two genes) and in
Selaginella (one gene). The most parsimonious scenario is
that the HAT3.1 subclass evolved in the flowering plant lin-
eage after separation of moss and Selaginella. However, the
topology of the rooted trees (fig. 2 and supplementary fig. 7,
Supplementary Material online) suggests that both sub-
classes were already present before separation of the moss
and Selaginella lineages and that HAT3.1 genes were suc-
cessively lost from these genomes.

The NDX Class

Homeobox genes expressed in the nodule (Nodulin
Homeobox genes, NDX) were first reported by Jørgensen
et al. (1999) from soybean and from Lotus japonicus. We
identified two NDX genes in the genomes of poplar and
moss; one NDX gene in A. thaliana, rice, maize, and Selag-
inella; and none in unicellular green or red algae, suggesting
that this class appeared early in the evolution of the land
plant clade before separation of moss and vascular plants.
We also searched NDX genes in several other unfinished
genome sequences and EST collections of other plant spe-
cies. A multiple sequence alignment of the corresponding
proteins is presented in supplementary fig. 8 (Supplemen-
tary Material online). The homeodomains of the NDX class
are atypical and highly divergent. We found that NDX pro-
teins have a diagnostic insertion of six amino acids between
helices 2 and 3 (fig. 1 and supplementary fig. 1, Supplemen-
tary Material online), conserved in moss, Selaginella, and
flowering plants. From the alignment of moss and flowering
plant sequences, we also newly identified two additional
motifs, which we named NDX-A and NDX-B. NDX-A
was a 540-aa-long domain located upstream of the homeo-
domain. NDX-B was an 80-aa-long domain located down-
stream of the homeodomain. Both domains are highly
conserved among flowering plants and in moss (supplemen-
tary fig. 8, Supplementary Material online).

The LD Class

A homeobox gene called LD (Luminidependens) has
been previously identified in Arabidopsis and in maize (van

Nocke et al. 2000). In addition to the genes from these spe-
cies, we found a single copy of LD genes in rice, maize,
Selaginella, and moss and two copies of the gene in poplar.
We did not find any LD gene in unicellular green algae or in
red algae (table 2). The distribution of LD genes suggests
that they were present in the last common ancestor of moss
and vascular plants and that they evolved after the diver-
gence of Chlorophyta and Streptophyta. The homeodomain
of this class is of typical length, but it is characterized by
several unusual substitutions of otherwise conserved resi-
dues, such as W48F and N51X (fig. 1). The sequence align-
ment of LD proteins revealed five conserved codomains,
which we named LD1–LD5 (supplementary fig. 9, Supple-
mentary Material online). PSI-Blast database searches re-
vealed that the 80-aa-long LD3 region was also
conserved within an unrelated group of plant transcription
factors (fig. 10, panel a). We refer to this newly identified
conserved domain as the ‘‘LUMI domain.’’

The PINTOX Class

Homeodomain proteins of the PINTOX class formed
another distinct clade with a strong bootstrap support of
84% (fig. 2). We named this class PINTOX from one of
the genes represented in this class, the Plant Interactor Ho-
meobox rice gene GF14c-int., which has been isolated and
named for its interaction with GF14-c in a two-hybrid screen
(Cooper et al. 2003). We newly identified at least one full-
length gene as belonging to this class in all other examined
green plant genomes, including Chl. reinhardtii and other
unicellular green algae, indicating that PINTOX genes orig-
inated before the divergence of Cholorophyta and Strepto-
phyta. PINTOX homeodomain proteins are characterized
by the substitution N51D within the homeodomain region
(fig. 1) and by a highly conserved basic domain of about 70
aa (named PINTOX domain) newly identified upstream of
the homeodomain (fig. 10, panel b). Further upstream of the
PINTOX domain is a conserved acidic domain, which we
named ‘‘Acid Pint’’ (fig. 3), whereas the N-terminal region
has conserved hydrophobic and basic residues.

The SAWADEE Class

In all examined genomes of flowering plants, in Selag-
inella and in moss we identified from one to three genes that
clustered with high (99%) bootstrap support in the ML evo-
lutionary tree (fig. 2) into a newly identified class that we
named SAWADEE. These genes are characterized by diag-
nostic insertions of 10 aa between the second and third ho-
meodomain helices (fig. 1), extending the second loop more
so than in any other plant homeodomain protein. C-terminal
to the homeodomain we identified a 130- to 140-aa-long
conserved region, the SAWADEE domain (fig. 10, panel
c). We found homologs of the SAWADEE domain also
in non-HD genes conserved among monocots and eudicots

 
FIG. 6.—Multiple sequence alignment of the ELK motif from KNOX proteins and of the C-terminal part of the PBC-B domain from PBC proteins

showing the sequence similarity and likely homology of the two regions. Helices predicted from the alignments of PBC or KNOX sequences are shown
above the alignment. At each position conserved amino acid types with similar physicochemical properties are highlighted in different shades of gray.
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(fig. 10, panel c). The SAWADEE domain is characterized
by several conserved cysteine and histidine residues, sug-
gesting that it may be involved in metal coordination.

Discussion

By exhaustive searches of complete genomes and
other sequence data we have identified the full repertoire
of homeodomain proteins found in diverse plant species,
improving previous reports of homeobox genes in A. thali-
ana and in rice, and newly identifying the complete set of
homeobox genes from the genomes of poplar and maize
(eudicot and monocot flowering plants); spikemoss S. moel-
lendorffii (Lycopodiophyta); moss P. patens (Bryophyta);
the unicellular green algae O. lucimarinus, O. tauri, and
Chl. reinhardtii (Chlorophyta); and the red alga Cy. mero-
lae (Rhodophyta). From these analyses we obtained a com-
prehensive perspective of the evolutionary history of plant
homeobox genes and gene classes and a reliable, exhaus-
tive, nonredundant source catalog of plant homeodomain
protein sequences. Our searches expanded the number of
plant homeobox genes previously reported in the literature.
In Arabidopsis we identified 110 genes versus the 87 ho-
meobox genes previously reported (Shiu et al. 2005). In
rice, the most recent report identified 107 homeobox genes

(Jain et al. 2008). From this collection we excluded eight
zinc finger domain proteins that did not contain a conserved
homeodomain, and we added 11 other homeobox genes not
previously reported. Among rice homeobox genes, 31 se-
quences have been recently identified as HD-ZIP genes
(Agalou et al. 2008). In our analysis of the rice genome,
we identified 47 HD-ZIP genes and 5 HD-ZIP pseudo-
genes. Although the genome of rice (400–430 Mb) is more
than three times larger than the genome of Arabidopsis (125
Mb), the total number of its predicted genes (37,544 pre-
dicted genes) is only 34% more than the number estimated
in Arabidopsis (28,000 predicted genes). We identified in
both genomes 110 homeobox genes. To our knowledge, no
data were previously available on the number of homeobox
genes in the genomes of poplar and maize. Although poplar
and maize have genomes of substantially different sizes
(550 Mb and 2,900 Mb, respectively), they are thought
to encode a similar total number of genes (58,000 and
54,000 predicted genes, respectively). Consistent with their
greater total number of predicted genes compared with Ara-
bidopsis or rice, we identified in both genomes 148 homeo-
box genes (vs. 110 genes in Arabidopsis and rice).
However, in the genome of the moss P. patens (Bryophyta),
with a genome size of 500 Mb and 30,000–35,000 esti-
mated genes, we found only 66 homeobox genes, whereas
we identified 45 homeobox genes in the 110-Mb genome of

 
FIG. 7.—Multiple sequence alignment of (a) ZIBEL motif sequences identified at the N-terminus and C-terminus of BEL class homeodomain

proteins and at the N-terminus of HD-ZIP II class proteins and (b) the BEL-A (SKY) region of plant BEL class proteins and the MEIS-A domain of
animal MEIS class proteins. Secondary structure predictions of BEL-A and MEIS proteins are shown above and below the sequence alignment,
respectively. At each position conserved amino acid types with similar physicochemical properties are highlighted in different shades of gray.

FIG. 8.—Multiple sequence alignment of (a) the zinc finger motif (D-TOX ZF) uniquely found in the plant DDT class. Conserved cysteine residues
are highlighted as ‘‘C.’’ (b) the WSD motif of the DDT class. At each position conserved amino acid types with similar physicochemical properties are
highlighted in different shades of gray. Alignment of the WSD motif of the DDT class found in plant and animal sequences showing the regions of
highest similarity (boxed residues).
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Selaginella. In unicellular algae we identified a much small-
er number of homeobox genes. Although the unicellular
green alga Chl. reinhardtii has a genome size similar to
Arabidopsis at 121 Mb and about half as many predicted
genes (15,000 genes), we identified in its genome only five
homeobox genes. Similarly, the other unicellular green al-
gae O. lucimarinus and O. tauri, with a genome size of
about 13 Mb and 7,700–7,900 predicted genes, contained
only seven homeobox genes each. Finally, six homeobox
genes were found in the genome (of 16.5 Mb and 5,331
predicted genes) of the red alga Cy. merolae (Rhodophyta).
Expression of about half of the homeobox genes of Arabi-
dopsis has been experimentally verified. Searching EST da-
tabases we found expression data for 92 Arabidopsis
homeobox genes (84%), and sequence conservation sug-
gests that all 110 genes play a biological role.

The total number of homeobox genes found among
plant genomes somewhat reflects the complex patterns of
genome duplication and gene duplication or loss that have
characterized the evolutionary histories of these species.
Three genome duplications are recognized in the evolution
of A. thaliana, poplar, and maize, two duplications in rice

(see Adams and Wendel [2005] for a review), and one du-
plication in moss (Rensing et al. 2008). These duplications
are likely to be related to the increased number of homeobox
genes found in flowering plants compared with moss. How-
ever, conservation of a greater number of genes in flowering
plants is also likely to be related to the increased develop-
mental and organizational complexity of these species.

New Classes and Conserved Motifs

Based on our analysis, we propose that plant homeo-
box genes can be classified into 14 classes (HD-ZIP I to IV,
PLINC, WOX, NDX, DDT, PHD, LD, PINTOX, SAWA-
DEE, KNOX, and BEL), of which four are grouped into the
HD-ZIP superclass (HD-ZIP I to IV) and two (KNOX and
BEL) belong to the TALE superclass. All homeobox genes
found in the genomes of flowering plants, Selaginella, and
moss were unambiguously clustered by evolutionary tree
reconstructions into 14 distinct groups (classes) with gen-
erally high bootstrap support (70% or more). Each class was
additionally supported by distinctive signature motifs or co-
domains and by typical intron–exon structures. Among

FIG 9.—ML tree obtained using the homeodomain and associated signature codomains of DDT class proteins, outgrouped by PINTOX class
proteins (At_At5g11270 and St_Pint1). Proteins from monocots are shown within light-green–colored boxes; from eudicots in light-blue–colored
boxes; from moss in musky-green–colored boxes, and from Selaginella yellowish green–colored boxes. The DDT class can be subdivided into three
families: D-TOX1, D-TOX2, and D-TOX3. D-TOX3 is eudicot specific and has secondarily lost all signature codomains found in D-TOX1 and D-
TOX2 with the exception of the D-TOX A codomain. A DDT protein from Chlamydomonas reinhardtii (Cr_C460085), three proteins from moss
(Pp_sca_419, Pp_sca_15b and Pp_sca_89), and two proteins from Selaginella (Sm_422900 and Sm_447019) cannot be classified with certainty within
any of the three families.
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these, the classes PHD, DDT, NDX, LD, SAWADEE, and
PINTOX are here for the first time defined. We discovered
and characterized numerous new motifs, which appeared to
be highly conserved in moss and flowering plants, and,
whenever present, also in unicellular green and red algae,
suggestive of a common, evolutionarily conserved func-

tional role. Notable examples are the LUMI domain, the
ZIBEL motif, the WSD motif, and the PINTOX domain.
The ZIBEL motif is conserved at both the N-terminal
and C-terminal ends of the BEL class of proteins and at
the N-terminal end of the HD-ZIP II class of proteins.
We speculate that through the ZIBEL motif the HD-ZIP

FIG. 10.—Multiple alignments of (a) the LUMI domain of the LD class; (b) the PINTOX domain of PINTOX class proteins; and (c) the
SAWADEE domain of SAWADEE class proteins. The position of conserved cysteine and histidine residues is highlighted below the alignment. At
each position conserved amino acid types with similar physicochemical properties are highlighted in different shades of gray.
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II and BEL homeodomain proteins may interact with each
other or may interact with the same target proteins. We
found that the WSD motif of plant DDT proteins shows
high sequence similarities with a protein that causes
Williams-Beuren syndrome (WSTF) in humans (Cus et al.
2006), suggesting that the WSD motif was already present
in the common ancestor of plants and animals. The WSTF
gene was found to play an important role in chromatin re-
modeling and was associated with other motifs such as
the PHD, DDT, and bromo domains (Bozhenok et al.
2002; Poot et al. 2004). Similarly, the PINTOX domain
was also found conserved in unicellular green algae, moss,
and vascular plants. PINTOX proteins have been recently
found to exert resistance against necrotrophic fungal patho-
gens (Coego et al. 2005). We have also characterized a novel

zinc finger motif of Cys2/Cys2 type in the DDT class of pro-
teins that we named D-TOX ZF. This type of zinc finger
DNA-binding domain is common among glucocorticoid hor-
mone receptors and also among GATA transcription factors,
suggesting a possible common functional role in this group
of DDT proteins. A typical characteristic of the Cys2/Cys2

type zinc finger domain is its ability to interact with DNA
as well as with proteins, allowing it to play an essential role
in chromatin rearrangement (Gronenborn 2004; Matsushita
et al. 2007). Specifically, the DDT domain is known to bind
DNA and to take part in chromosome remodeling (Doerks
et al. 2001). It is also found to be associated with codomains,
such as the PHD, bromo, MBD, and ring finger domains.
Little experimental information on the function of the SA-
WADEE homeodomain proteins is available, and their roles
can only be speculated from sequence features and expres-
sion data. Conservation of basic, cysteine, and histidine res-
idues suggest that SAWADEE may be a DNA-binding
domain. EST data indicate that SAWADEE is expressed
in roots, leaves, developing seeds, embryos, flower buds,
and endosperm.

Some of the newly identified domains, as well as pre-
viously known domains, are also found fused with other
nonhomeodomain proteins (DDT, LUMI, PHD, and
WSD) or as independent proteins (KNOX, SAWADEE,
PLINC, START, and HD-SAD). It is possible that these
proteins act as negative regulators of the corresponding
HD proteins by competing for protein–protein interaction
or DNA-binding sites. This has been recently shown in
the case of the non-HD, KNOX domain–containing protein
PTS of tomato, which competes for protein–protein inter-
action sites with the HD proteins KNOX I and BIP (Kimura
et al. 2008).

Evolutionary History of Plant Homeobox Genes

Identification of the different classes and codomains of
homeodomain proteins in various plants and other evolu-
tionary groups allows us to coherently reconstruct the over-
all evolutionary history of this protein family in plants,
summarized in fig. 11. The overall picture that emerges
from our analysis is that the family of homeobox genes
has expanded and differentiated together with the differen-
tiation of plants into organisms of increasing complexity.
The functional differentiation of homeodomain proteins ap-
pears to have first been achieved through the acquisition of
different codomain architectures. This stage had already
achieved its current state during the evolution of land plants
before separation of moss and vascular plants, when all 14
different codomain architectures represented in modern ho-
meodomain classes must have been already present. Further
specialization was successively achieved by the prolifera-
tion of gene paralogs within each class, as observed in mod-
ern flowering plants. It must be noted that our interpretation
of a progressive increase in the number of homeobox genes
in the lineage leading to flowering plants could be equiv-
alently interpreted as corresponding loss of genes in the re-
spective lineages. Although this interpretation is in
principle coherent, we find the alternative view of a progres-
sive lineage-specific expansion of the homeobox gene

FIG. 11.—Schematic representation of the proposed evolutionary
history of plant homeobox gene classes and codomains. A class or motif
represented in a parental branch indicates that the same class/motif is also
present in all of its child-branches unless otherwise indicated. The HD-
ZIP I to IV classes are represented by the single domain architecture HD-
LZ-CPSC-START-HD-SAD-MEKHLA. In this representation, arrows
separate motif groups whose addition defines, in the order, HD-ZIP
classes I, II, IV, and III. Loss of the START domain in the genomes of
unicellular green algae and red algae is represented by the domain crossed
in red. Acquisition of the MEKHLA domain through the cyanobacteria/
chloroplast is indicated by an arrow.
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family more plausible because 1) it is more parsimonious,
requiring for each new gene one lineage-specific duplica-
tion event rather than one duplication in a common ancestor
plus one or more lineage-specific gene loss(es), and 2) it
correlates with a corresponding increase in organism devel-
opmental and functional complexity. Nevertheless, some of
the results suggest gene loss events. For example, a repre-
sentative of the WOX class is found in the genome of the
Ostreococcus unicellular green algae, but not in the other
green alga Chl. reinhardtii.

HD Classes and Domains Common to All Examined
Plant Groups (Rhodophyta, Chlorophyta, Moss, and
Vascular Plants)

The two classes of TALE HD proteins found in plants,
KNOX and BEL, are characterized by a conserved codo-
main structure that is also recognized in two of the several
classes of animal TALE HD proteins, MEIS and PBC. This
suggests that these proteins derived from a common ances-
tor, and their codomain was named MEINOX (Bürglin
1997). The duplication of MEINOX genes observed in an-
imals and plants has been previously described as two in-
dependent events in the plant and animal lineages (Bürglin
1998a). However, the presence of a common intron inser-
tion position in the plant BEL class and in the animal PBC
class but not in the KNOX (plant) and MEIS (animal) clas-
ses suggests that their common ancestor duplicated and that
one intron was acquired by one of the two gene copies be-
fore separation of animals and plants. In either case, KNOX
and BEL HD proteins must have been already present in the
last common ancestor of the plant clade. Typical (non-
TALE) HD proteins are also found in animals, plants, in-
cluding unicellular green and red algae, and many other an-
ciently diverged eukaryotic groups (Derelle et al. 2007),
suggesting that TALE and non-TALE HD proteins were
already present in the common ancestor of plants and ani-
mals. However, none of the animal non-TALE HD proteins
can be reliably associated with a specific non-TALE plant
class. The START, PHD, and DDT-WSD protein domains
are found associated with HD in modern land plants and
associated with other proteins (PHD and DDT-WSD) or ab-
sent (START) in unicellular green and red algae. Because
these domains are also found in animals not associated with
HD, we most parsimoniously predict that they were present
but separated from HD in the common ancestor of plants
and animals (fig. 11). Among these domains, START is
not found in unicellular green algae and red algae, suggest-
ing that it has been secondarily lost in these groups.

Appearance of Three New HD Classes in the Common
Ancestor Lineage of Green Plants

In moss, vascular plants, and unicellular green algae,
we found the DDT-WSD domain associated with HD, iden-
tifying the presence of the homeodomain protein DDT class
in the last common ancestor of green plants (Chlorobionta).
We also infer that at this time HD was also associated with
the green plant–specific PINTOX and WUS motifs, giving
rise to the corresponding PINTOX and WOX classes. The
evolution of green plants can then be associated with the

addition of three more HD classes to the KNOX and
BEL classes present in all plants. Presumably each of these
classes was originally represented by one gene, as observed
in modern-day unicellular green algae. In the genome of
Chl. reinhardtii, we found the bacterial PAS-like MEKH-
LA domain, so far found associated with HD in land plants,
including the liverwort Marchantia polymorpha, and in the
charophycean green alga Chara corallina (Floyd et al.
2006). We speculated that this domain was acquired from
the cyanobacterial genome of the chloroplast at the onset of
the green plant clade (Mukherjee and Bürglin 2006).

Multiple HD Genes and HD Classes in Embryophyta
(Land Plants)

Embryophyta are characterized by the appearance, at
least in the lineage leading to moss and vascular plants, of
nine classes of HD proteins not present in Rhodophyta or
Chlorophyta, namely HD-ZIP I to IV, LD, SAWADEE,
NDX, PHD, and PLINC. These classes are identified by
fusion of HD with codomains (PHD, START, MEKHLA,
CPSC, HD-SAD, LD, SAWADEE, NDX, and PLINC). All
HD classes not found in Rhodophyta and Chlorophyta were
found both in moss and in flowering plants, suggesting that
they originated early in land plant evolution (at least before
separation of moss and vascular plants and possibly before
transition to land) in relation to newly acquired develop-
mental features. In fact, a full-length HD-ZIP III gene with
all functional domains conserved has been recently detected
also in Cha. corallina (Floyd et al. 2006), a freshwater
green alga belonging to the charophycean group Charales,
believed to be a sister group to land plants (Karol et al.
2001; McCourt et al. 2004). This suggests that at least
HD-ZIP III homeobox genes (and presumably all HD-
ZIP homeobox gene classes) must have been present in
the last common ancestor of Charales algae and land plants.
Interestingly, no new HD classes (defined by their codo-
main associations) developed in the evolution of vascular
plants or moss after their separation. Instead, further com-
plexity and functional differentiation have been achieved, at
least in flowering plants and in moss, through a great pro-
liferation of gene paralogs within each of the original 14
classes.

Rooting the Tree of Plant Homeodomain Proteins

The evolutionary trees based on homeodomain se-
quences (fig. 2 and supplementary figs. 2 and 3, Supple-
mentary Material online) robustly identify the different
classes of plant homeodomain proteins, which are also fully
supported by their characteristic codomain architectures.
However, the trees do not provide reliable information
on the evolutionary relations among most of the classes,
which are connected by poorly supported topologies. These
are also contradicted by the partial information provided by
intron insertion analysis, including two parsimony-infor-
mative intron insertion sites (fig. 4). One intron insertion
site is conserved between the non-TALE classes LD, SA-
WADEE, and PHD. The same intron insertion site is also
found in the TALE class BEL and in some animal and fun-
gus TALE HD classes—PBC, TGIF, IRO (Bürglin 1997),
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and in MKX (Mukherjee K, unpublished data). However,
this intron is not present in KNOX, the other plant TALE
class. KNOX instead has an intron insertion position in
common with the non-TALE class PINTOX, neither pres-
ent in BEL nor in any animal or fungus HD gene. This ar-
rangement would question the monophyletic origins of
plant TALE as well as of plant non-TALE proteins. The
evolutionary significance of these few common intron in-
sertions is, however, dubious because we do not know
the likelihood of parallel intron insertion or deletion events
in different lineages. For example, we also find an intron
insertion position conserved between the SAWADEE class
and the Arabidopsis gene ATHB1, which clearly belongs to
the HD-ZIP I class, suggesting homoplasy or multiple in-
tron losses in different classes. In fig. 12 we show a sum-
mary representation of the results from the trees of fig. 2 and
supplementary figs. 2 and 3 (Supplementary Material on-
line), where each class is represented by a single branch,
and the topology of branches connecting TALE or non-
TALE classes with a bootstrap support of less than 50%
is replaced by circles representing their uncertainty. Se-
quence representatives of animal TALE and non-TALE
proteins cluster with plant TALE and non-TALE proteins,
respectively (supplementary fig. 3 [Supplementary Material
online] and Derelle et al. [2007]), consistent with previous
observations that both types of homeodomain proteins are
found in anciently diverged eukaryotic groups (Derelle
et al. 2007) and must have been present early in eukaryote
evolution. However, TALE proteins from plants, animals,
or any other phylogenetic group cannot be used as an out-
group to root the subtree of plant non-TALE proteins unless
we assume that all modern classes of plant non-TALE ho-
meodomain proteins originated monophyletically after sep-
aration of TALE and non-TALE genes. With this
assumption, the root of plant non-TALE proteins would
lie in the branch connecting the two types (bold faced in
fig. 12). If this is not the case (i.e., some non-TALE classes
separated before TALE genes separated from other non-
TALE classes), the root of all non-TALE proteins should
be positioned within the circle of uncertain topology shown
in fig. 12 connecting the different non-TALE plant classes.
Similar arguments apply to the rooting of TALE proteins,
although conservation of their signature insertion suggests
that all TALE genes have a monophyletic origin, a notion

that is challenged, however, by the pattern of intron conser-
vation (see above). The two TALE gene classes found in
plants resulted either from a duplication in the common an-
cestor of plants and animals or after separation of the two
phyla (Bürglin 1997).

Throughout plant evolution, the homeobox gene fam-
ily has proliferated and diversified in accordance with the
growth in structural and developmental complexity of the
organisms in which they were expressed. Some homeodo-
main proteins have been intensely studied, but little or noth-
ing is known about the functionality of many other
homeobox genes and classes. In this study of multiple plant
genomes, we newly uncovered HD protein classes and
a greater abundance of homeobox genes than previously
known. We also identified many previously unnoticed con-
served motifs whose specific role in protein–protein or pro-
tein–DNA interaction remains to be experimentally
verified. Our findings provide a rich data set for future ex-
perimental analyses and characterizations.

Supplementary Material

Supplementary figures 1–9 and table 1 are available
at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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