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Helicobacter pylori-initiated chronic gastritis is characterized
by the cag pathogenicity island-dependent upregulation of
proinflammatory cytokines, which is largely mediated by the
transcription factor nuclear factor (NF)-jB. However, the cag
pathogenicity island-encoded proteins and cellular signalling
molecules that are involved in H. pylori-induced NF-jB activa-
tion and inflammatory response remain unclear. Here, we show
that H. pylori virulence factor CagA and host protein trans-
forming growth factor-b-activated kinase 1 (TAK1) are essential
for H. pylori-induced activation of NF-jB. CagA physically
associates with TAK1 and enhances its activity and TAK1-induced
NF-jB activation through the tumour necrosis factor receptor-
associated factor 6-mediated, Lys 63-linked ubiquitination of
TAK1. These findings show that polyubiquitination of TAK1
regulates the activation of NF-jB, which in turn is used by
H. pylori CagA for the H. pylori-induced inflammatory response.
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INTRODUCTION
Helicobacter pylori infection causes chronic gastritis and peptic
ulceration, and is the strongest risk factor for the development
of gastric cancer (Peek & Blaser, 2002; Hatakeyama, 2008).

The inflammatory response associated with gastritis is characterized
by the expression of various proinflammatory cytokines, and trans-
cription factor nuclear factor (NF)-kB has an important role in
the regulation of their expression (Ghosh & Karin, 2002). H. pylori
infection activates NF-kB and the expression of interleukin-8 (IL-8)
in epithelial cells, which is believed to be critical for H. pylori-
initiated chronic inflammation (Sharma et al, 1998; Maeda et al,
2001; Naumann, 2001; Hirata et al, 2006).

The H. pylori cag pathogenicity island is required for activation
of NF-kB and expression of NF-kB target genes (Glocker et al,
1998; Foryst-Ludwig & Naumann, 2000), and its encoded
virulence factor, CagA, has an important role in the pathogenicity
of H. pylori, including H. pylori-induced inflammation (Brandt
et al, 2005; Kim et al, 2006). Infection with H. pylori cagA-
positive strains is associated with higher grades of gastric
inflammation and an increased risk of gastric cancer than infection
with cagA-negative strains (Blaser et al, 1995; Parsonnet et al,
1997), thereby highlighting the role of CagA in the H. pylori-
mediated inflammatory response. However, the exact function
of CagA in the activation of NF-kB and the NF-kB-dependent
inflammatory response is yet to be addressed.

CagA is injected into H. pylori-infected host epithelial cells—
by using a type-IV secretion system—where it is often activated by
tyrosine phosphorylation through the host src kinase and
targets host proteins to modify cellular responses (Peek, 2005;
Hatakeyama, 2008). For example, phosphorylated and non-
phosphorylated CagA interact, respectively, with Src homology 2
domain-containing protein tyrosine phosphatase (SHP2) and with
host proteins such as growth-factor-receptor-bound protein 2
(GRB2) and zona occludens 1 (ZO-1) to induce abnormal
proliferation and movement of gastric epithelial cells (Mimuro
et al, 2002; Amieva et al, 2003; Hatakeyama, 2004). Non-
phosphorylated CagA also destabilizes the E-cadherin/
b-catenin complex to induce the activation of the b-catenin
signal that underlies intestinal metaplasia (Franco et al,
2005; Murata-Kamiya et al, 2007). However, the cellular
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proteins CagA targets that are involved in inducing the inflammatory
response remain elusive.

NF-kB has an important role in the regulation of inflam-
matory responses in mammals. The prototypical NF-kB complex,
which is a heterodimer of p50 and RelA, is sequestered in the
cytoplasm by its inhibitor IkBa. On stimulation, the IkB kinase
(IKK) complex is activated, leading to phosphorylation and degra-
dation of IkBa, nuclear translocation of NF-kB and activation of its
target genes (Ghosh & Karin, 2002). Transforming growth factor-b
(TGF-b)-activated kinase 1 (TAK1) is a key regulator of signal
transduction cascades that lead to stimulus-coupled phospho-
rylation and activation of IKK (Adhikari et al, 2007). Emerging
evidence indicates that activation of TAK1 and IKK is regulated
by tumour necrosis factor receptor-associated factor 6 (TRAF6)-
mediated, Lys 63-linked ubiquitination of TRAF6, interleukin 1
receptor-associated kinase 1 and NF-kB essential modulator
(Adhikari et al, 2007). Recent studies also show that TAK1 is
polyubiquitinated by TRAF6 in response to TGF-b, and that
Lys 63-linked ubiquitination is required for TGF-b-induced activa-
tion of p38/Jun N-terminal kinase and AP-1 (Sorrentino et al,

2008), indicating that TAK1 ubiquitination might also be crucial
for the activation of IKK and NF-kB.

Here, we show that CagA is essential for H. pylori-induced activa-
tion of NF-kB, and identify TAK1 as a new cellular target of CagA.

RESULTS AND DISCUSSION
H. pylori-mediated activation of NF-jB requires CagA
To investigate the role of CagA in the H. pylori-induced
inflammatory response, we compared wild-type (wt) and cagA-
deficient H. pylori for their ability to induce the expression of
inflammatory genes in AGS gastric epithelial cells. Infection
of AGS cells with wt H. pylori strain G27, but not its cagA-
deficient isogenic mutant, induced the expression of IL-8 and
tumour necrosis factor-a (TNF-a) messenger RNA (mRNA; Fig 1A).
Similar results were obtained with two other H. pylori strains,
NCTC11637 and 7.13 (supplementary Fig S1 online). These
data indicate that induction of proinflammatory genes can be
generalized for most cagA-positive H. pylori strains and that
the defect from the cagA-deficient mutants is unlikely to be due
to a polar effect.
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Fig 1 | CagA is required for Helicobacter pylori-induced activation of NF-kB. (A) AGS cells were infected with G27 wt or DCagA H. pylori and

quantitative RT–PCR was performed to analyse the expression of NF-kB target genes IL-8 and TNF-a. (B) EMSA was performed using whole-cell

extracts from AGS cells infected with wt or DCagA H. pylori by using radiolabelled NF-kB and Oct1 probes. (C) Levels of IkBa, phosphorylated

Ser 536 RelA, RelA, CagA and tubulin were detected in lysates from AGS cells infected with G27 wt or DCagA H. pylori by immunoblotting

with the indicated antibodies. EMSA, electrophoretic mobility-shift assay; IL-8, interleukin-8; NF-kB, nuclear factor-kB; RT–PCR, real-time PCR;

TNF-a, tumour necrosis factor-a; wt, wild type.
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As NF-kB regulates the expression of many inflammatory
cytokines, including IL-8 and TNF-a, we next investigated whether
H. pylori infection activated NF-kB and whether this activation
was CagA-dependent. wt H. pylori, but not the cagA-deficient
mutant, activated all three kB luciferase reporters, including
two that contain natural promoters from NF-kB target genes IL-8
and E-selectin (supplementary Fig S2 online). Furthermore, only
wt H. pylori, but not the cagA-deficient mutant, stimulated the
binding of NF-kB, heterodimers of RelA and p50, to DNA (Fig 1B;
supplementary Fig S3 online).

To define the signalling pathway leading to the activation of
NF-kB, we examined the degradation and resynthesis of IkBa
and phosphorylation of RelA in AGS cells infected with wt and
cagA-deficient H. pylori. IkBa was degraded and resynthesized
in cells infected with wt but not in those infected with cagA-
deficient H. pylori (Fig 1C). In addition, wt H. pylori, but not
the cagA-deficient mutant, stimulated the phosphorylation of
RelA at Ser 536, which is also mediated by activated IKK (Fig 1C).
Altogether, these data indicate that H. pylori infection stimu-
lates CagA-dependent activation of NF-kB through the activation
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Fig 2 | TAK1 is required for Helicobacter pylori-induced NF-kB activation. (A) Levels of IkBa, phosphorylated Ser 536 RelA, RelA, TAK1 and tubulin

were detected in the lysates from wt or TAK1�/� MEFs infected with H. pylori. (B) EMSA was performed using whole-cell extracts from wt or

TAK1�/� MEFs infected with H. pylori, as in Fig 1B. (C) AGS cells transfected with control or TAK1 siRNA were infected with H. pylori and RT–PCR

was performed to analyse NF-kB target gene expression. Levels of TAK1 and tubulin are shown in the right panels. (D) AGS cells transfected with

control siRNA or TAK1 siRNA were reconstituted with mouse TAK1 (mTAK1), followed by infection for 4 h with H. pylori. Gene expression was

analysed as shown in (C). EMSA, electrophoretic mobility-shift assay; IL-8, interleukin-8; MEF, mouse embryonic fibroblast; NF-kB, nuclear factor-kB;

RT–PCR, real-time PCR; siRNA, short interfering RNA; TAK1, transforming growth factor-b-activated kinase 1; TNF-a, tumour necrosis factor-a;

wt, wild type.
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of IKK. Other studies also indicate that CagA induces cytokine
release through activation of NF-kB (Brandt et al, 2005; Shibata
et al, 2006); although some reports indicate that CagA might
not be required for activation of NF-kB (Viala et al, 2004), this
discrepancy is due to the different cell lines used in the studies.
In 293 cells and macrophages, CagA does not seem to be essential
for activation of NF-kB (Maeda et al, 2001; Viala et al, 2004).
However, in gastric epithelial cells—the most physiologically
relevant cells—CagA is essential for activation of NF-kB (Fig 1;
Brandt et al, 2005).

TAK1 is required for NF-jB activation by H. pylori
As TAK1 is the upstream kinase for IKK (Wang et al, 2001)—and
is also used by effectors from other pathogens, such as human
T-lymphotrophic virus-1 protein TAX (Wu & Sun, 2007)—we next
evaluated the role of TAK1 in the H. pylori-induced activation
of IKK and NF-kB. When wt or TAK1-deficient (TAK1�/�) mouse
embryonic fibroblasts (MEFs) were infected with H. pylori,
IkBa was degraded and resynthesized, and phosphorylation of
Ser 536 of RelA was induced in wt MEFs but not in TAK1�/� MEFs
(Fig 2A). Furthermore, H. pylori stimulated the DNA-binding
activity of NF-kB in wt but not in TAK1�/� MEFs (Fig 2B). These
data indicate that TAK1 is essential for the activation of IKK and
NF-kB after H. pylori infection. Consistently, infection of wt MEFs,
but not TAK1�/� MEFs, with H. pylori stimulated mRNA expres-
sion of TNF-a, IL-6 and E-selectin—three NF-kB target genes
(supplementary Fig S4 online).

To demonstrate further the role of TAK1 in H. pylori-induced
NF-kB activation, we knocked down the expression of TAK1
in AGS cells. Depletion of TAK1 by short interfering RNA
(siRNA) impaired the phosphorylation of RelA (supplemen-
tary Fig S5 online) and H. pylori-induced mRNA expression of
TNF-a and IL-8 (Fig 2C). The partial decrease in expression of
TNF-a and IL-8 mRNA in TAK1-knockdown cells (compared with
TAK1�/� MEFs) probably reflects the incomplete depletion of
TAK1 by siRNA in AGS cells (with B80% knockdown effici-
ency; Fig 2C). The impaired expression of TNF-a and IL-8 could
be restored when the siRNA-resistant mouse TAK1 was re-
introduced into the knockdown cells (Fig 2D). These data con-
firm that TAK1 is essential for H. pylori-induced activation
of NF-kB.

H. pylori stimulates ubiquitination of TAK1
As Lys 63-linked polyubiquitination is important for the activation
of TAK1 and IKK (Wang et al, 2001; Sorrentino et al, 2008), and
TAK1 is essential for H. pylori-induced activation of NF-kB (Fig 2),
we next examined whether H. pylori stimulated polyubiquitina-
tion of TAK1. Infection of AGS cells with wt, but not cagA-
deficient, H. pylori induced polyubiquitination of endogenous
TAK1 (Fig 3A), indicating that CagA is crucial for H. pylori-induced
polyubiquitination of TAK1.

Next, we determined the potential effect of CagA on the
ubiquitination of TAK1. TAK1 is modestly ubiquitinated in
the presence of ubiquitin, and this ubiquitination is markedly
enhanced by co-transfection of CagA, independently of the tyro-
sine phosphorylation of CagA (Fig 3B; supplementary Figs S6 and
S7 online). The enhanced ubiquitination of TAK1 is Lys 63-linked
rather than Lys 48-linked, as enhanced ubiquitination of TAK1
could only be detected in the presence of wt or Lys 63-only

ubiquitin, but not in the presence of Lys 48-only ubiquitin
(Fig 3C), indicating that ubiquitination of TAK1 enhanced by
CagA probably promotes the activity of TAK1 rather than its
proteasomal degradation.
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CagA physically associates with TAK1 in vitro and in vivo
As CagA often elicits its cellular functions by interacting with
cellular proteins (Hatakeyama, 2008), we next assessed the
physical interaction between CagA and TAK1. Immunoprecipita-
tion of CagA from transfected human embryonic kidney (HEK)
293T cells co-immunoprecipitated TAK1 (Fig 4A). Furthermore,
CagA colocalized with TAK1 on the plasma membrane in
transfected AGS cells (supplementary Fig S8 online). An in vitro
glutathione-S-transferase (GST) pull-down assay showed that
CagA associated directly with TAK1 through the amino (N)-
terminal and carboxy (C)-terminal regions of CagA and the
N-terminal region of TAK1 (supplementary Figs S9–S11 online).
More importantly, endogenous TAK1 associated with CagA after
H. pylori infection (Fig 4B). Collectively, these data show that
CagA associates with TAK1 in vitro and in vivo in response to
H. pylori infection.

CagA enhances the activity of TAK1
As CagA interacts with, and enhances the ubiquitination of, TAK1
(Figs 3 and 4), we next examined whether CagA could activate
TAK1. Co-expression of CagA enhanced the kinase activity of
TAK1, which is demonstrated by the auto-phosphorylation of
TAK1 at Thr 187 (Fig 4C). TAK1-mediated activation of NF-kB was
consistently enhanced by CagA in a dose-dependent manner in
a kB luciferase reporter assay (Fig 4D). H. pylori infection in AGS
cells also activated TAK1 and IKK with similar kinetics in a CagA-
dependent manner (Fig 4E; supplementary Figs S12 and S13
online). Together, these data indicate that the association of
CagA with TAK1 enhances the ability of TAK1 to activate IKK
and NF-kB, and that CagA is essential for H. pylori-induced
TAK1 activation.

CagA is localized to the plasma membrane and undergoes
oligomerization—two events that are essential for its signal
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transduction activity (Hatakeyama, 2008). As CagA colocalizes
with TAK1 on the plasma membrane (supplementary Fig S8
online), and the oligomerization-defective mutant of CagA fails
to induce the ubiquitination of TAK1 or the activation of NF-kB
(supplementary Figs S14 and S15 online), the membrane-binding
and oligomerization properties of CagA might be important for the
activation of TAK1 and NF-kB.

Ubiquitination and activation of TAK1 require TRAF6
As TRAF6-mediated Lys 63-linked ubiquitination is crucial for
activation of TAK1 (Wang et al, 2001; Sorrentino et al, 2008),
we next determined the role of TRAF6 in CagA-induced
ubiquitination of TAK1. We first assessed the effect of a
dominant-negative mutant of TRAF6 (TRAF6-DN; Jono et al,
2004) on the polyubiquitination of TAK1. TRAF6-DN not only
blocked the ubiquitination of TAK1 but also inhibited the

enhanced ubiquitination of TAK1 facilitated by CagA (Fig 5A).
The ability of CagA to enhance TAK1-mediated NF-kB activation
was also inhibited by TRAF6-DN (Fig 5B), indicating that ubiquiti-
nation of TAK1 is crucial for its activation. Although Lys 34 of
TAK1 is ubiquitinated by TRAF6 in response to TGF-b, mutation
of Lys 34 to arginine did not affect TAK1 ubiquitination or its
ability to activate NF-kB (supplementary Figs S16 and S17 online),
indicating that other unidentified lysine residues might also
undergo Lys 63-linked ubiquitination, leading to activation of
IKK and NF-kB.

To analyse further the role of TRAF6 in H. pylori-induced
ubiquitination of TAK1 and NF-kB activation, we generated
an AGS cell line stably expressing short hairpin RNA (shRNA)
against TRAF6 and examined the ubiquitination of TAK1 in
these cells. H. pylori-induced ubiquitination of TAK1 and mRNA
expression of IL-8 and TNF-a were markedly attenuated in the
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TRAF6-depleted cells compared with AGS cells stably expressing
control shRNA (Fig 5C; supplementary Fig S18 online). These data
demonstrate that ubiquitination of TAK1 is crucial for CagA-
enhanced NF-kB activation and that TRAF6 is probably the E3
ubiquitin ligase for H. pylori-induced TAK1 ubiquitination.

Although CagA enhances TRAF6-mediated Lys 63-linked ubiquiti-
nation of TAK1 (Figs 3,5), it is not clear as to how this occurs.
CagA fails to enhance the interaction between TRAF6 and TAK1
(supplementary Fig S19 online), excluding the possibility that
CagA might function as a bridging factor to facilitate the TAK1–
TRAF6 interaction. It is possible that CagA could target TRAF6
and enhance its E3 ligase activity or prevent TAK1 from inter-
acting with deubiquitination enzymes such as CYLD, which inhibit
ubiquitination and auto-activation of TAK1 (Reiley et al, 2007).
Supporting this argument, we found that CagA also interacts
with TRAF6 in vitro and enhances its auto-ubiquitination (supple-
mentary Figs S20,S21 online). However, binding of TRAF6 to CagA
does not seem to affect the interaction between CagA and TAK1
(supplementary Fig S22 online).

In addition to NF-kB, other transcription factors, including
AP-1, are activated by H. pylori and are involved in the induction
of proinflammatory cytokines, including IL-8 (Mitsuno et al, 2001;
O’Hara et al, 2006). Interestingly, AP-1 is also a downstream
target of activated TAK1 (Adhikari et al, 2007). Further studies
are needed to determine whether CagA-enhanced ubiquitination
of TAK1 also contributes to H. pylori-induced AP-1 activation.
It is probable that H. pylori uses CagA for activation of several
signalling pathways that, in combination, contribute to the ultimate
inflammatory response.

In conclusion, our current studies explore the mechanism
by which H. pylori stimulates NF-kB activation and expression
of inflammatory cytokines through the CagA-dependent, TRAF6-
mediated Lys 63-ubiquitination and activation of TAK1 (Fig 5D).
These studies also contribute to a more comprehensive under-
standing of how H. pylori infection stimulates inflammation and
how pathogens, in general, might use cellular signalling molecules
to induce cellular responses.

METHODS
Cell lines, H. pylori culture and infection. Human AGS gastric
adenocarcinoma, HEK293T and MEF cells were cultured in
DMEM supplemented with 10% fetal bovine serum. H. pylori
G27, NCTC11637 and 7.13 strains and their cagA-deficient
mutants were cultured in bisulphite-free Brucella broth on agar
media containing Ham’s F-12 medium supplemented with 10%
fetal bovine serum and 5 mg/ml vancomycin at 37 1C in the
presence of 10% CO2. H. pylori was added to AGS or MEF cells
for infection at a multiplicity of infection of 50–100. All wt
H. pylori and the corresponding cagA-deficient strains have
similar abilities to adhere to the cells.
Immunoprecipitation, immunoblotting analysis and EMSA.
Immunoprecipitation and immunoblotting analysis were per-
formed as described previously (Chen et al, 2002). For electro-
phoretic mobility-shift assay (EMSA), whole-cell extracts were
collected from infected cells by freeze–thaw lysis (Chen &
Greene, 2005) and used for DNA binding assay as described
previously (Chen et al, 2001).
Quantitative real-time PCR analysis. AGS or MEF cell lines were
infected with H. pylori for various times and total RNA was

extracted using the RNeasy Mini kit (Qiagen, Valencia, CA, USA).
Complementary DNA was synthesized using the Omniscript RT
kit (Qiagen). Quantitative real-time PCR was performed using the
Qiagen SYBR green PCR kit, with the aid of the 7300 Real-time
PCR system (ABI, Foster City, CA, USA). PCR primers for human b-
actin, IL-8 and TNF-a, as well as mouse b-actin, E-selectin, IL-6
and TNF-a, were purchased from Qiagen.
Transient transfection and luciferase reporter assay. Transient trans-
fection and luciferase reporter assays were performed as described
previously (Chen et al, 2002). In each luciferase experiment, cells
were also co-transfected with the EF1–Renilla luciferase reporter
plasmid, which was used as the internal control. Results represent the
average of three independent experiments±s.d.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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