
Effective knowledge-based potentials

Evandro Ferrada and Francisco Melo*
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Abstract: Empirical or knowledge-based potentials have many applications in structural biology

such as the prediction of protein structure, protein–protein, and protein–ligand interactions and in
the evaluation of stability for mutant proteins, the assessment of errors in experimentally solved

structures, and the design of new proteins. Here, we describe a simple procedure to derive and

use pairwise distance-dependent potentials that rely on the definition of effective atomic
interactions, which attempt to capture interactions that are more likely to be physically relevant.

Based on a difficult benchmark test composed of proteins with different secondary structure

composition and representing many different folds, we show that the use of effective atomic
interactions significantly improves the performance of potentials at discriminating between native

and near-native conformations. We also found that, in agreement with previous reports, the

potentials derived from the observed effective atomic interactions in native protein structures
contain a larger amount of mutual information. A detailed analysis of the effective energy functions

shows that atom connectivity effects, which mostly arise when deriving the potential by the
incorporation of those indirect atomic interactions occurring beyond the first atomic shell, are

clearly filtered out. The shape of the energy functions for direct atomic interactions representing

hydrogen bonding and disulfide and salt bridges formation is almost unaffected when effective
interactions are taken into account. On the contrary, the shape of the energy functions for indirect

atom interactions (i.e., those describing the interaction between two atoms bound to a direct

interacting pair) is clearly different when effective interactions are considered. Effective energy
functions for indirect interacting atom pairs are not influenced by the shape or the energy

minimum observed for the corresponding direct interacting atom pair. Our results suggest that the

dependency between the signals in different energy functions is a key aspect that need to be
addressed when empirical energy functions are derived and used, and also highlight the

importance of additivity assumptions in the use of potential energy functions.

Keywords: protein structure assessment; knowledge-based potentials; statistical potentials;
comparative modeling; protein structure prediction

Introduction

Different approaches to derive empirical energy func-

tions emerged as a consequence of the increasing

amount of three-dimensional protein structures solved

by experiment and deposited during the last decades

in the Protein Data Bank.1 Empirical energy functions

consist on the incorporation of Boltzmann statistics to

analyze propensities of interaction between atoms

from known protein structures.2 These energy func-

tions are commonly known as scoring functions,

empirical potentials, knowledge-based potentials, or

statistical potentials.3

In contrast to classical force fields, empirical

potentials do not classify forces, but instead, based on

geometrical descriptors, they extract information about

the interactions between two or more bodies from

experimental data of known protein structures.4 Using

principles borrowed from statistical physics, these
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knowledge-based potentials describe microstates of

interactions within protein structures as probabilities

of discrete events normalized in reference to the whole

system (i.e., all possible microstates).

Most of the research on empirical potentials has

been focused on the setting and optimization of pa-

rameters, which include completeness of the sample

space,5,6 geometric descriptors such as distance or

angles between atoms,7 reduced amino acid alphabets

and atom-type definitions,8,9 bodies of interaction and

the structure of the potential,4,10,11 and reference

systems12–15 among others.

Given that empirical potentials deal with informa-

tion about specific atomic interactions in proteins,

their performance will be directly related to their pa-

rameters; in other words, related to the set of variables

that are involved in the compression and decompres-

sion of the structural information during the deriva-

tion and evaluation processes, respectively.

Although the close relationship between informa-

tion theory and classic statistical mechanics has been

recognized a long time ago,16 only recently this con-

nection was extrapolated to understand the empirical

potentials from an information theoretic point of

view.17 Based on the similarity between the formula-

tion of these potentials and the classical information

theory,18 pseudo energies derived from database statis-

tics can be considered informatic functions.17

Empirical potentials make use of the information

encoded in protein structure databases in a two-step

process. First, derivation consists on the extraction of

information from a database of representative protein

structures. This information is compressed in terms of

probability distributions and translated into a series of

energy functions that constitute the potential. In a sec-

ond step, the potential is used to evaluate a given pro-

tein structure. Although the purpose of the derivation

step is to extract structural information to finally build

a representative potential energy function, the evalua-

tion step seeks to optimize the usage of that informa-

tion. Both procedures depend on a series of parame-

ters that determine the efficiency of the information

extraction and usage.

Commonly, empirical potentials are composed of

energy functions describing all atom–atom interac-

tions observed in native proteins. Each energy func-

tion has specific information about a particular atom

pair interaction. However, proteins are systems of

many interacting particles. Most importantly, covalent

bonds between atoms generate structural constraints

that introduce different levels of dependencies among

the obtained distributions that are used to derive the

energy functions.

A common assumption in the evaluation proce-

dure with potential energy functions is the additivity

principle.5,19 The Fourth Law of Thermodynamics, as

this principle has been called, states that the free

energy contribution of two or more phenomena are

additive if and only if independency applies.20

Unfortunately, this is clearly not the case in empirical

potentials derived from known protein structures.

Dependency among physical phenomena has its

statistical counterpart in the concept of correlation.

Multiple atomic interactions, as those observed in pro-

tein structures, may give rise to complex correlation

patterns that are the origin of deviations from additiv-

ity. The purpose of energy functions is to capture these

complex patterns.

Different approaches have been developed in this

direction, which include studies focused on multiple

body interactions,21 cooperativity estimated from the

comparison of energy functions,11 and geometric filter-

ing of pairwise atomic contacts.22,23

Major improvements in energy function perform-

ance are related to the problem of additivity. Short-

distance range and nonlocal energy functions reduce

the dependency among interactions by considering

only direct interacting particles that are not constraint

to be close in three-dimensional space (i.e., by defining

the nonlocal component in the potential, the two

interacting atoms belong to amino acids that are far

away in the protein chain; by defining a short maxi-

mum distance range in the potential, the effect of

atom connectivity is also reduced, because only the

closest interacting atomic shells will be considered).

This observation settled the basis to derive empirical

energy functions based on a reduced number of atom

types and consisting only of nonlocal interactions at

short distances. The statistical potential obtained,

called ANOLEA,24 is based on a reduced definition of

40 atom types8 and incorporates only nonlocal infor-

mation (sequence separation or topological factor k

larger than nine residues) at a short distance range

(maximum of 7.0 Å), therefore excluding some of

those shielded atomic interactions that mostly arise

from atom connectivity constraints when a large maxi-

mum distance range is used to derive the potential.

In an effort to further improve the performance of

empirical potentials, energy functions combining

explicit physical and statistical components have also

been developed. These include physical energy func-

tions replacing noncovalent interactions terms with a

nonlocally derived statistical energy function.25 The

calculation of 1–4 and above nonbonded terms of clas-

sical force fields from an empirical potential allows to

obtain a more precise description of local interactions,

further improving the discrimination between native

and near-native protein structures.26

Here, we propose that energy function perform-

ance can be managed by controlling the processes of

information extraction and usage at the derivation and

evaluation steps, respectively. The derivation process

should attempt to maximize the extraction of informa-

tion from nonlocal interactions and to minimize

spurious dependencies among energy functions by

excluding noninformative interactions; however, the
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evaluation step should maximize the total number of

atom–atom interactions considered.

To this end, we describe a simple geometric pro-

cedure to identify those atoms that are interacting

directly in three-dimensional space (e.g., those atom

pairs whose interactions are not shielded by other

atoms). This method is able to capture the extent at

which covalent or noncovalently linked atoms deter-

mine the effectiveness of the atomic interactions.

While using this procedure, only a subset of all possi-

ble interactions per atom (i.e., those that are not

shielded by any other atom) are considered informa-

tive, and thus called effective atomic interactions.

Even though these selected atomic interactions are

usually scattered through the three-dimensional inter-

acting sphere, they represent a reliable first shell of

atomic contacts. Here, we show that this methodology,

when used for the calculation of empirical potentials

from a database of protein structures, has a clear effect

upon the shape of the resulting energy functions,

improving their performance at discriminating

between native and near-native protein structures.

Our findings suggest that dependency among

atomic interactions is a key aspect that needs to be

considered when empirical energy functions are

derived and used, and emphasize the importance of

information and additivity assumptions in the use of

potential energy functions.

Results

Effective atomic interactions
We first present a simple geometric method to define

the effectiveness of pairwise atomic interactions. The

method consists on estimating the exposure between

two atoms taking into account the relative position of

all other atoms inside an interacting sphere, which is

centered in the atom under analysis. The physical ex-

posure between two atoms is evaluated by calculating

the angles among all possible constrained three-body

combinations inside the contacting sphere of a given

atom [Fig. 1(A)]. The combinations are constrained

because atoms X and Y must be the flanking points

while calculating the angle. Briefly, the effectiveness of

the interaction between two hypothetic atoms X and Y

is evaluated by measuring all the X-Wi-Y angles, where

Wi is every non-X and -Y atom found inside the X

interacting sphere. A given interaction is effective if,

and only if, all calculated angles are equal to, or

smaller than, a fixed shielding angle X; otherwise the

interaction is defined as shielded by other atoms and

thus it is not considered in the calculations (see Meth-

ods section).

The goal of this simple procedure is to attempt

the recognition of the first atomic interacting shell for

each atom in a three-dimensional protein structure,

the extension of which can be fine-tuned by control-

ling the value of the shielding angle [Fig. 1(B)]. This

parameter value determines how strictly the effective

interactions are defined. The most permissive scenario,

when X ¼ 180�, defines all the interactions occurring

within the maximum accepted distance range as effec-

tive [Fig. 1(B)].

Variants of empirical potential derivation

and utilization
In previous work, we have introduced the concept that

an empirical potential can be derived with a fixed set

of parameters, and then used to calculate the energy

of a protein structure with a different set of parame-

ters.27 In that work, a potential that was derived only

for the nonlocal interactions was then used to calculate

the energy of local and nonlocal interactions (i.e., the

1–4 and above nonbonded interactions). The energy of

the local interactions was obtained by direct extrapola-

tion from a potential that did not contain those terms

explicitly. For example, this potential was derived by

considering only those atom pairs that belonged to

amino acids separated by more than nine residues in

the protein chain. This nonlocal restriction at the deri-

vation step assures that the atom pair is not restraint

to be close in three-dimensional space because of

chain connectivity effects. However, when this poten-

tial was used to calculate the total energy of the pro-

tein, local interactions were also assessed, although

they were not considered at the derivation step for the

reasons explained earlier. In that work, we evaluated

this particular strategy of assessing local interacting

terms (i.e., 1–4 nonbonded interactions and above), by

using the information contained in the potential that

was obtained from nonlocal interactions only in native

protein structures. We suggested that this approach

allows the maximization of the information quality

and quantity at the potential’s derivation and utiliza-

tion steps, respectively.27

Here, we apply the same concept, but in a differ-

ent context. We differentially derive and use nonlocal

potentials with distinct definition schemes of the

atom–atom interactions. Effectiveness at the deriva-

tion (D) is defined if the empirical potential is calcu-

lated considering any X value that is smaller than

180�. Accordingly, effectiveness at the utilization (U) is

defined if the interactions are estimated at any X value

that is smaller than 180�, and the other parameters

are the same as those used to derive the potential. The

traditional approach is also defined at derivation or

utilization, setting the X value to 180�. Thus, a Dp-U90

combination means that the empirical potential was

derived with X ¼ 180� and then used to calculate only

the energy of the effective atomic interactions defined

by setting X ¼ 90�. This strategy allows us to decouple

or to dissociate the processes of information extraction

and utilization when calculating and using statistical

potentials. The advantages of this approach have been

already demonstrated for the calculation of close non-

bonded interactions.27 The nonbonded interactions
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cannot be directly calculated from native proteins

because of connectivity constraints (i.e., the observed

distances between atom pairs in native proteins are

almost the same as those obtained in the reference

system, thus leading to the obtention of flat energy

curves with energy values near to zero). However, if

the energy functions are derived only for the nonlocal

interactions between atom pairs, then these functions

can be used to infer the energy of close nonbonded

terms (assuming that the energy curve derived from

interactions free of constraints will better represent

the true energy curve of a given atom pair, irrespec-

tively that the observed interaction is constrained or

not by connectivity effects).

According to this methodology, four combinations

for derivation and utilization of potentials are possible,

which consist of: (i) Combination Dp-Up: the potential

is derived for all interactions within the defined dis-

tance range by using a shielding angle of 180� and

then used to calculate the energy of the same type of

interactions. This corresponds to the traditional

approach described in the literature. (ii) Combination

DX-UX: the potential is derived for the effective inter-

actions only (as defined by X) and then used to calcu-

late the energy of the effective interactions (as defined

by the same X). In this potential, the total number of

interactions observed will depend on the value of X.
(iii) Combination Dp-UX: the potential is derived for

all interactions within the defined distance range by

using a shielding angle of 180� and then used to calcu-

late the energy of the effective interactions only (as

defined by X). (iv) Combination DX-Up: the potential

is derived for the effective interactions only (as defined

by X) and then used to calculate the energy of all

interactions (by using a shielding angle of 180�).

The four combinations for derivation and utiliza-

tion of the potentials described earlier, together with

the definition of distinct parameters such as the maxi-

mum distance range and shielding angles, led to 49

different schemes of derivation and utilization of the

potentials tested in this work (Table I).

Benchmark test set

To assess the effect of changing the parameters in the

performance of empirical potentials, we used a bench-

mark set of near-native comparative protein structures

models and their corresponding experimental native

structures. Using the empirical potentials, we calcu-

lated the total normalized energy for each protein

structure and evaluated the performance of the poten-

tials at discriminating between the two data popula-

tions: near-native protein structure models and their

native protein structure counterparts. The evaluation

of the performance of each potential as a binary classi-

fier (i.e., classification of native and near-native pro-

tein structures) was carried out by receiver operating

characteristic (ROC) curve analysis (see Methods sec-

tion). More specifically, the area under the ROC curves

Figure 1. Definition of effective atomic interactions. (A) To determine the effectiveness of the interaction between atoms X

and Y, all other atoms inside the X interacting sphere (Wi atoms) are evaluated by comparing each ai angle (i.e., the angle of

X-Wi-Y atoms) with a defined shielding angle value X. If all the ai angles observed are smaller than X, then the interaction

between X and Y is defined as effective (for details see Methods section). (B) Two-dimensional view of three interacting

spheres of X, which differ in the value of X. Filled circles represent those atoms interacting effectively with X. Open circles

represent atoms not interacting effectively with X, as they are shielded by other atoms inside the interacting sphere of X,

according to the X value defined and used. A definition of X ¼ 90� commonly captures the first interacting atom shell. By

using X ¼ 180�, as it is the case of traditional pairwise potentials, all the interactions observed inside the contacting sphere

are considered as effective.
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(AUC), which is a robust indicator of classifier per-

formance, was used to assess the performance of the

potentials in this task.

Effect of the shielding angle
A critical parameter of the methodology presented

here is the shielding angle X, which determines those

atomic interactions that will be defined as effective. To

study the influence of this parameter on the perform-

ance of an energy function, we derived and used

several empirical potentials with different X values in

the range between 60� and 180� (Table I) and tested

them as binary classifiers on our benchmark set of mod-

els (Fig. 2). Three main regions of varying performance

are clearly observed for the different shielding angles

defined. First, a set of X angles lying between 60� and

90�, where the performance of DX-UX is clearly better

than that obtained for Dp-UX or DX-Up. Then, a second

region of transition with X angles lying between 100�

and 140�, where the performance of DX-Up rapidly

Table I. Combinations of Derivation/Utilization of Potentials Tested in This Work

Name

Derivation (D) Utilization (U)

Distance range
(Å)

Type of
interactions

Shielding angle
(�)

Distance range
(Å)

Type of
interactions

Shielding angle
(�)

Dp-Up 7.0 Noneffective 180 7.0 Noneffective 180
Dp-U60 7.0 Noneffective 180 7.0 Effective 60
Dp-U70 7.0 Noneffective 180 7.0 Effective 70
Dp-U80 7.0 Noneffective 180 7.0 Effective 80
Dp-U90 7.0 Noneffective 180 7.0 Effective 90
Dp-U100 7.0 Noneffective 180 7.0 Effective 100
Dp-U110 7.0 Noneffective 180 7.0 Effective 110
Dp-U120 7.0 Noneffective 180 7.0 Effective 120
Dp-U130 7.0 Noneffective 180 7.0 Effective 130
Dp-U140 7.0 Noneffective 180 7.0 Effective 140
Dp-U150 7.0 Noneffective 180 7.0 Effective 150
Dp-U160 7.0 Noneffective 180 7.0 Effective 160
Dp-U170 7.0 Noneffective 180 7.0 Effective 170
D60-Up 7.0 Effective 60 7.0 Noneffective 180
D70-Up 7.0 Effective 70 7.0 Noneffective 180
D80-Up 7.0 Effective 80 7.0 Noneffective 180
D90-Up 7.0 Effective 90 7.0 Noneffective 180
D100-Up 7.0 Effective 100 7.0 Noneffective 180
D110-Up 7.0 Effective 110 7.0 Noneffective 180
D120-Up 7.0 Effective 120 7.0 Noneffective 180
D130-Up 7.0 Effective 130 7.0 Noneffective 180
D140-Up 7.0 Effective 140 7.0 Noneffective 180
D150-Up 7.0 Effective 150 7.0 Noneffective 180
D160-Up 7.0 Effective 160 7.0 Noneffective 180
D170-Up 7.0 Effective 170 7.0 Noneffective 180
D60-U60 7.0 Effective 60 7.0 Effective 60
D70-U70 7.0 Effective 70 7.0 Effective 70
D80-U80 7.0 Effective 80 7.0 Effective 80
D90-U90 7.0 Effective 90 7.0 Effective 90
D100-U100 7.0 Effective 100 7.0 Effective 100
D110-U110 7.0 Effective 110 7.0 Effective 110
D120-U120 7.0 Effective 120 7.0 Effective 120
D130-U130 7.0 Effective 130 7.0 Effective 130
D140-U140 7.0 Effective 140 7.0 Effective 140
D150-U150 7.0 Effective 150 7.0 Effective 150
D160-U160 7.0 Effective 160 7.0 Effective 160
D170-U170 7.0 Effective 170 7.0 Effective 170
Dp-Up-R5 5.0 Noneffective 180 5.0 Noneffective 180
Dp-Up-R12 12.0 Noneffective 180 12.0 Noneffective 180
Dp-Up-R15 15.0 Noneffective 180 15.0 Noneffective 180
Dp-U90-R5 5.0 Noneffective 180 5.0 Effective 90
Dp-U90-R12 12.0 Noneffective 180 12.0 Effective 90
Dp-U90-R15 15.0 Noneffective 180 15.0 Effective 90
D90-Up-R5 5.0 Effective 90 5.0 Noneffective 180
D90-Up-R12 12.0 Effective 90 12.0 Noneffective 180
D90-Up-R15 15.0 Effective 90 15.0 Noneffective 180
D90-U90-R5 5.0 Effective 90 5.0 Effective 90
D90-U90-R12 12.0 Effective 90 12.0 Effective 90
D90-U90-R15 15.0 Effective 90 15.0 Effective 90
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improves as the X angle increases and the performances

of DX-UX and Dp-UX decrease. Finally, a third region,

with X lying between 150� and 170�, where the three

types of potentials present a similar performance and

converge to Dp-Up when X ¼ 180�.

The statistical significance of the differences in

performance observed between the potentials was

assessed by a nonparametric test (see Methods section

and supporting information). According to the AUC

values obtained by ROC analysis, the best classifier

using effective interactions is the empirical potential

D70-U70 (see Fig. 2). However, the differences in per-

formance between this potential and the D60-U60,

D80-U80, D90-U90, and D100-U100 potentials are not

statistically significant at a confidence level of 95%.

The observed differences in the performance of these

four D-U potentials and all other potentials are statis-

tically significant at the same confidence level (Supp.

Info. Table 1). In the following and because of geomet-

ric, statistical, and performance criteria, we decided to

use the effective empirical potentials defined by a

shielding angle of 90�.

Effect of the maximum distance range

The maximum distance range defines the extent at

which an energy function operates. Given that the pro-

posed geometric method captures the first atomic

interacting shell, it seems appropriate to test whether

different distance ranges have some impact on the

performance of empirical potentials using effective

interactions.

We tested the four types of potentials mentioned

earlier (i.e., DX-UX, DX-Up, Dp-UX, and the canonical

Dp-Up potential), but with a varying maximum distance

range of 5, 7, 12, and 15 Å. The same maximum dis-

tance range established in each case was adopted both

to derive and to use the potential. In the case of effec-

tive interactions, as mentioned earlier, the X parameter

was set to 90�. We evaluated the performance of these

potentials at discriminating between the two sets of

native and near-native protein structures (Fig. 3).

Both the canonical Dp-Up and the D90-Up poten-

tials decrease significantly their performances, in

terms of AUCs, as the maximum distance range

increases from 5 to 15 Å. While the former does it par-

simoniously, the latter falls abruptly. Interestingly, the

Figure 2. The shielding angle influences the discrimination

between native and near-native protein structures by

energy functions defining effective atomic interactions.

Thirteen empirical potentials were derived using different X
values ranging from 60� to 180�; a radial distance range of

7.0 Å and a distance bin of 0.2 Å define 35 distance

classes (see Methods section). These potentials were used

to evaluate the discrimination of native structures from their

near-native counterparts using different combinations of the

parameters at derivation or evaluation steps. Squares (Dp-

UX) indicate the performances using the potential derived at

180� and evaluating considering effective interactions at the

different X values. Circles (DX-Up) indicate the

performances using the corresponding potentials derived

considering effective interactions at variables X values and

evaluating considering all the interactions (X ¼ 180�).

Triangles (DX-UX) indicate the performances considering

effective interactions at both derivation and evaluation.

Each point in this figure corresponds to a particular

classifier. The combination Dp-Up is represented by only

one point (X ¼ 180�) at which all the three curves

converge.

Figure 3. Effect of different radial distance ranges upon the

discrimination between native and near-native protein

structures by energy functions defining effective atomic

interactions. Eight empirical potentials were derived for four

maximum distance range values (5.0, 7.0, 12.0, 15.0 Å) and

two X values (90� and 180�). Combinations at both

derivation and evaluation parameters were used to evaluate

the discrimination of native structures from their near-native

counterparts. Black bars indicate the performance of the

potential derived and used as a canonical scoring function

(Dp-Up). Dark gray bars indicate the effective potential at

derivation and evaluation (D90-U90). Light gray bars show

the performance of the potentials derived cannonically but

used effectively (Dp-U90). Finally, the results of using the

combination D90-Up are shown in white bars.
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performance of the Dp-U90 potential significantly

improves as the maximum distance range increases.

As expected, the performance of D90-U90 potential

remains constant, independently of the maximum dis-

tance range defined. The detailed ROC curve analysis

not only confirm these results but also gives some

additional insights about the trade-off between sensi-

tivity and specificity of these potentials when used as

binary classifiers of structural modeling accuracy in

proteins (Fig. 4).

The limited performance observed for other cur-

rently used potentials in protein structure assessment,

DFIRE,13 RAPDF,12 and PROSA,28 demonstrates that

the benchmark used in this work constitutes a difficult

test (Fig. 5). However, it must be mentioned that

PROSA potential only includes Ca and Cb atoms, and

thus the comparison of this potential against full atom

potentials in this particular benchmark is not totally

fair. The statistical significance analysis of the

observed differences in performance of these poten-

tials is provided as Supporting Information (Supp.

Info. Tables 2 and 3).

Figure 4. ROC curve analysis of empirical potentials using effective interactions. A detailed comparison of potentials when

used as binary classifiers is carried out by means of ROC curve analysis. The ROC plots for the four derivation/utilization

combinations of potentials with maximum distance ranges of (A) 5.0, (B) 7.0, (C) 12.0, and (D) 15.0 Å from Figure 3 are

shown.

Figure 5. Comparison between effective potentials and

other empirical potentials. The ROC curves for DFIRE,

ProSa, and RAPDF are compared with that obtained by the

D90-U90 potential from Figure 4(B) in the same benchmark.
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Atom–atom energy functions
A pairwise distance-dependent potential contains a

complete collection of possible combinations of atom–

atom interactions observed in proteins. Therefore, the

fundamental basis to understand its performance

should be found at the detailed description of the

atom–atom energy functions. Thus, as an attempt to

find an explanation of the differences in performance

of the potentials developed and tested in this work, we

explored and compared some representative atom–

atom energy functions between the potentials derived

effectively at shielding angles of 90� and 120� and the

canonical potential derived at X ¼ 180�.

The total number of energy functions depends on

the atom-type definition used. Empirical potentials

derived in this work adopt the atom-type definition

previously described8 and used in ANOLEA poten-

tial.24 This classification groups all nonhydrogen atoms

(i.e., heavy atoms) observed for the 20 standard amino

acids into 40 atom types. The atom-type definition is

mainly based on three criteria: chemical nature, bond

connectivity, and location level (side chain or back-

bone). Some atom types group more than one heavy

atom, whereas others are unique.

First, we focused on the typical energy function of

hydrogen bonds occurring between main-chain N and

O atoms, which is important in the formation of regu-

lar secondary structure in proteins. When this specific

energy function from the potentials derived effectively

(X < 180�) and canonically (X ¼ 180�) is compared,

minor differences are observed [Fig. 6(A)]. The impact

of using shielding angles of 120� and 90� to describe

the effective interactions translates into a decreasing

maximum value of the energy functions and also

causes a slight modification of the shape of the energy

function for larger distances after the global minimum,

which occurs at 3.0 Å. The reduced maximum value of

the energy functions that describe effective interac-

tions is explained by the smaller value of the weighting

factor Mij (which simply consists of the total number

of observations for a particular atom pair) because in

the case of effective potentials fewer observations are

recorded after masking all those interactions that are

shielded by other atoms. This effect is obviously larger

for smaller values of the shielding angle, where more

atoms are masked and then fewer atom–atom interac-

tions recorded [Fig. 6(A)].

However, the situation abruptly changes when the

effective and canonical energy functions corresponding

to the interaction between main-chain N atom and the

main-chain carbonyl atom (which is covalently bonded

to the main-chain O atom) are analyzed [Fig. 6(B)]. In

this case, it can be clearly observed that the canonical

energy function inherits in a large extent both the

energy minimum and the corresponding ‘‘locking

elbow’’ after the minimum that is characteristic of

hydrogen bond energy functions.29 As expected, the

energy minimum of this function occurs at a larger

distance (at about 4.0 Å). On the other hand, the

effective energy functions that describe the interaction

of these atoms do not inherit the shape of the energy

function for N and O main-chain atoms and consist

mostly of repulsive terms [Fig. 6(B)]. The effect of the

weighting factor in the amplitude of the effective

energy functions is much larger in this case than that

observed for the interaction of N and O main-chain

Figure 6. Potential energy function for a hydrogen bond derived at X values of 90�, 120�, and 180�. (A) Energy functions of

interacting atom types 3 and 5. Atom type 3 groups all backbone nitrogen atoms except Pro-N. Atom type 5 groups all

backbone oxygen atoms. (B) Energy functions of interacting atom types 3 and 4. Atom type 4 groups all backbone carbonyl

carbon atoms.
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atoms. As expected, this observation is consistent with

the fact that the shielding effect should be higher for

those interactions occurring at a larger distance range.

The differences between effective and canonical

energy functions discussed earlier for hydrogen bonds

and their covalently linked atoms are even clearer

when the energy functions for disulfide and salt

bridges are analyzed. In the case of disulfide bridges,

the effective energy functions for the interaction

between Cys-Sc and Cys-Sc are very similar to the ca-

nonical one [Fig. 7(A)]. However, very distinct func-

tions are obtained for the interaction between Cys-Cb

and Cys-Cb [Fig. 7(B)], where only the shielding angle

of 90� removes the effect of observing an energy mini-

mum at a larger distance (at about 4.0 Å). When salt

bridges were analyzed, the same effect was observed

(data not shown).

Similarly to that found for the pairwise energy

functions of directly interacting functional atoms [i.e.,

hydrogen bonding in Fig. 6(A), disulfide bridges in

Fig. 7(A) and salt bridges, data not shown], the effec-

tive and canonical energy functions for hydrophobic

interactions are also quite similar (Fig. 8). Different X
values for the shielding angle do not produce major

changes in the canonical (X ¼ 180�) atom–atom

energy functions, as illustrated in the interaction

between two aliphatic atoms [Fig. 8(A)] and between

two aromatic atoms [Fig. 8(B)]. However, in these

cases, the shapes of the energy functions are slightly

stylized, with a narrower and better-defined energy

minimum, and also with repulsive terms arising at a

shorter distance range.

Information content of potentials

Recently published work has formally established a

direct connection between the pseudo energies

obtained from statistical potentials and some basic

information-theoretic quantities.17 More specifically, it

was shown that the total divergence calculated from a

nonlocal residue contact potential allows to predict the

fold discrimination success that is achieved by the

same potential in a threading exercise.30 This finding

reconciles some contradictory results from previous

work where unoptimized contact potentials were found

to bear a modest amount of information31,32 and indi-

cates that the amount of information encoded in con-

tact potentials is clearly increased when the potentials

are previously optimized for a particular task.30

Inspired on this, we decided to explore the associ-

ation between the statistical potentials derived in this

work and their information content, expressed as the

information product. The information product relies

both in the average score per interaction in the set of

native protein structures used to derive a potential and

in the mean number of score events observed when

the potential is used in the same set of native proteins

(see Methods section). The average score per interac-

tion constitutes the best estimate of mutual informa-

tion for the distance-dependent potentials derived in

this work (see Methods section). Therefore, the infor-

mation product is an indirect measure of the amount

of mutual information of a potential that naturally

incorporates a correction for sparse data.30

We calculated the information product for each of

the potentials derived at different X angles [Fig. 9(A)].

Figure 7. Potential energy function for the disulfide bridge derived at X values of 90�, 120�, and 180�. (A) Energy functions of

interacting atom types 19 and 19. This atom type corresponds to Cys-Sc. (B) Energy functions of interacting atom types 29

and 29. This atom type groups Cys-Cb and Met-Cc.
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The results clearly show the trend that as the X angle

decreases, the amount of information product of a

potential increases (R2 ¼ 0.98). This statement is valid

for almost all shielding angles used, with the only

exception of X ¼ 60, where the amount of information

product is reduced when compared with that of X ¼
70. When the relationship between the information

product and performance of the potentials was

assessed [Fig. 9(B)], the overall trend of increasing

performance for increasing information product is

clearly observed and, more importantly, the potential

with the largest information product is the one with

the best performance in our benchmark (X ¼ 70).

Discussion

Benchmark test
Although energy functions present a wide range of

applications, in this work, we tested their ability to

discriminate between two sets of protein structures:

near-native and native protein conformations. We

would like to emphasize that achieving a good discrim-

ination in the particular benchmark test used here is

difficult for two reasons. First, the near-native struc-

tures are quite accurate. Second, the specific discrimi-

nation test is performed not individually for each

native and non-native protein pair, but simultaneously

includes a mix of proteins having different folds,

secondary structure composition, and sizes. The diffi-

culty of the benchmark test was demonstrated by the

poor performance observed for other empirical poten-

tials that are commonly used in protein structure

assessment (see Fig. 5). The benchmark test used here

allows a more detailed comparison of the discrimina-

tion capability of energy functions that have been

derived with similar parameters (e.g., small variation

of the shielding angle).

Methodology for the estimation of effective

atomic interactions

We presented a new procedure to derive and use em-

pirical energy functions, which consists in the estima-

tion of effective atomic interactions (see Fig. 1). We

showed that a significant improvement of potential’s

performance is achieved by filtering out those atomic

interactions that are shielded by other atoms. The pro-

cedure to detect the effective atomic interactions

consists in estimating the physical exposure between

atoms by taking into account the relative position of

all other atoms inside an interacting sphere, which is

centered in the atom under analysis. The set of atomic

interactions selected by this procedure approximate

the first interacting atomic shell.

The procedure described here is not the unique

method to detect the first atomic interacting shell,

Figure 8. Example potential energy functions for hydrophobic interactions derived at X values of 90�, 120�, and 180�.

(A) Energy functions of interacting atom types 8 and 8. Atom type 8 groups Arg-Cb, Arg-Cc, Asn-Cb, Asp-Cb, Gln-Cb, Gln-Cc,

Glu-Cb, Glu-Cc, His-Cb, Ile-Cc1, Leu-Cb, Lys-Cb, Lys-Cc, Lys-Cd, Met-Cb, Phe-Cb, Pro-Cb, Pro-Cc, Trp-Cb, and Tyr-Cb. (B)

Energy functions of interacting atom types 12 and 12. Atom type 12 groups Phe-Cd1, Phe-Cd2, Phe-Ce1, Phe-Ce2, Phe-Cf,

Trp-Ce3, Trp-Cf, Trp-Cf3, Trp-Cg2, Tyr-Cd1, Tyr-Cd2, Tyr-Ce1, and Tyr-Ce2.
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other previously described methods could also be used

to this end. Geometric exact and approximate methods

mainly based on Voronoi diagrams,33 accessible sur-

face area, and visible volume,34 and combinations of

them have been described to optimize specific tasks

such as threading22 and decoy discrimination.11 How-

ever, the impact of using these methodologies on the

specific shape of the resulting energy functions was

not reported. Additionally, the methodology presented

here is the only one that is capable of being fine-tuned

by changing a single parameter (i.e., the shielding

angle). Based on these results, our approach has

shown to be computationally efficient and, spite of its

simplicity, accurate and flexible enough to explore the

influence of the structural constraints among interact-

ing atoms.

The shielding effect is not expected to be the same

for different triplets of XWiY atoms. Distinct behaviors

are expected based on the chemical nature and electro-

negativity of the three atoms used to define an effec-

tive interaction. For example, strong induced dipoles

can take place in the case of some Wi atoms, thus

bridging instead of masking interactions. In this work,

we have assumed that all intermediate Wi atoms that

are occluding or perturbing a given X-Y interaction

cause that the interaction is neglected (i.e., not consid-

ered as effective). Although we initially incorporated

electronegativity and atom size as additional restraints

in our algorithm (data not shown), we did not observe

significant improvement over the more simple version

presented here. However, we do not discard the

impact of these variables on other applications since

the benchmark set used in this study is a very exigent

task. Understanding the influence of these factors in

different application benchmarks constitutes an inter-

esting subject of further investigation.

Effective atomic interactions and performance

of the potentials
We observed that the performance obtained while

using different combinations of derivation and utiliza-

tion of empirical energy functions is highly influenced

by the X angle adopted. The performance of the ca-

nonical energy functions, derived and used by consid-

ering the complete interacting sphere as effective (i.e.,

X ¼ 180�, Dp-Up), is significantly improved if effective

atomic interactions are defined in the derivation and

evaluation steps (i.e., DX-UX). The rate of variation for

the observed performance of the potentials is particu-

larly sensitive to X angles ranging between 90� and

120� (see Fig. 2). We suggest that a possible explana-

tion for these critical X values arises from the inherent

molecular geometry imposed by the common hybrid-

ization states of the atoms present in the 20 standard

amino acids. In fact, the most abundant atom in pro-

tein structures is the carbon atom, which in proteins

can commonly be found in two of its three possible

hybridization states: sp2 and sp3. The sp2 hybridization

state arranges three coplanar substitutions with an

ideal angle of 120� between them (e.g., carbonyl car-

bon atoms in backbone; carboxyl and amide carbon

atoms in Glu, Asp, Gln, and Asn; aromatic carbons in

Phe, Tyr, Trp, and His; etc). The sp3 hybridization

state arranges four substitutions in a tetrahedron with

an angle between the substitutions that, depending on

the electronegativities of the substituent atoms, ranges

between 105� and 110�.35 Since the atomic interactions

evaluated by an empirical energy function correspond

to nonbonded interactions, we would expect to observe

a direct influence of the hybridization geometry in

cases such as hydrogen bonds, where the contacting

atoms and their directly bonded atoms are collinear.

In spite of that, our results suggest that at least

partially, the functional form of canonical empirical

energy functions is due to restraints imposed by the

inherent geometry of bonded protein atoms.

Since the procedure used here to define effective

interactions should mainly capture the first interacting

atomic shell, we observed a significant influence of

the maximum distance range adopted over the

Figure 9. Information product of effective potentials.

(A) The information product of a potential is plotted as a

function of the shielding angle used to derive it. (B) The

observed performance of the potential is plotted as a

function of the information product of the potential. All

these potentials were derived with a maximum distance

range of 7 Å.
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performance of canonical potentials when compared

with that obtained for effective potentials (see Fig. 3).

Potentials that do not use an effective atomic defini-

tion at the evaluation step (i.e., Dp-Up and D90-Up) are

particularly sensitive to the maximum distance range

defined and perform better when a short maximum

distance range is defined; in other words, when the

maximum distance range defined approximates the

first atomic interacting shell.

In contrast, empirical energy functions that use

an effective atomic definition at the evaluation step

(i.e., Dp-U90 and D90-U90) generally perform better,

whether or not a definition of effective interactions is

used at the derivation step. This last feature is evi-

dent for the D90-U90 potential, which has a constant

high performance for different maximum distance

ranges (see Fig. 3). In this case, the independence on

the maximum distance range adopted clearly arises

from the use of effective interactions at the evaluation

step. However, when a short maximum distance

range is defined (i.e., 5.0 and 7.0 Å), the D90-U90

potential performs better than the Dp-U90 potential.

This observation suggests that a critical trade-off

between information content and number of observa-

tions exists (see later) at the derivation and utiliza-

tion steps of the potentials, which has a significant

impact on their performance at discriminating

between native and near-native protein conforma-

tions. In other words, less amount of information at

the derivation step can be somehow counterbalanced

only if a larger amount of interactions is used at the

evaluation step. This is illustrated by the fact that the

good performance observed for the Dp-U90 potential

is only achieved for large distance ranges (12 and 15

Å), but decreases when the maximum distance range

is smaller (5 and 7 Å). A possible explanation for this

unexpected result would be a distinct abundance in

native and near-native proteins of some specific effec-

tive atomic interactions occurring at distances larger

than 5 Å such as (1) surface–surface polar atomic

interactions, (2) buried salt bridges, and (3) stacking

of aromatic groups, both occurring effectively at

distances larger than 7.0 Å.

In summary, and irrespectively of the particular

potential used, our results clearly highlight the impor-

tance of an accurate definition for the first interacting

atomic shell when attempting to discriminate the

‘‘true’’ interacting microenvironment for each atom in

the structure. Regarding the overall performance, the

determination of effective interactions seems to be

more relevant at the utilization step rather than at the

derivation step, when the maximum distance range of

the potential is large enough to account for two or

more atomic shells. This observation implies that the

performance of currently existing potentials that were

derived by considering all interactions should simply

improve if they are only used to calculate the pseudo

energies of the effective interactions.

Effective atomic interactions and functional
shape of energy functions

We would expect that the main features responsible

for a good performance of a potential be ultimately

found at its specific atom–atom energy functions. We

selected four different energy functions (i.e., hydrogen

bonding, disulphide bonding, salt bridges, and hydro-

phobic interactions) that represent most of the atomic

interactions observed in protein structures. To analyze

the impact of the definition of effective atomic interac-

tions on the shape of the energy functions, we com-

pared the representative energy function ij with the

energy function of the atoms directly bonded to i or j

(Figs. 6–8). The results clearly showed that effective

energy functions derived with a shielding angle of 90�

do not contain secondary energy minima (Figs. 5 and

6), which constitute in most cases an artifact that

arises from connectivity effects. Moreover, effective

energy functions are smoother and apparently have a

better energy scaling in terms of magnitude. Therefore,

the calculation of effective interactions when deriving

a potential does not change the shape of those energy

functions that describe a direct interacting atom pair

(e.g., disulfide bridges, hydrogen bonds, salt bridges,

van der Waals interactions of nonpolar atoms), but it

has a large impact on the functional form of those

energy functions that describe the interaction of atom

pairs that are bonded to the interacting atoms. In

these cases, the canonical energy functions inherit

most of their shape from the energy function that

describe the direct interacting pair. This behavior was

clearly observed for hydrogen bonds (see Fig. 6), disul-

fide bridge formation (see Fig. 7) and salt bridges

(data not shown). Effective energy functions corre-

sponding to aliphatic and aromatic interactions did

not show large differences when compared with their

homolog canonical energy functions (see Fig. 8). This

can be explained by the frequent stacking of aromatic

residues, by the highly packed hydrophobic core of

proteins, or by the reference system used to derive the

potentials. The uniform density model4 constitutes a

robust reference system for describing long distance

range pairwise interactions in proteins because is less

sensitive than the quasi-chemical approximation36 to

the incorporation of indirect atomic contacts (because

it is averaged over all atom pairs and not only over a

particular one).

Effective atomic interactions and
information content

As an alternative approach to assess the amount of in-

formation contained in effective and canonical poten-

tials, we calculated the information product for all the

distance-dependent energy functions derived at differ-

ent X angles. The results obtained showed the clear

trend that lower X angles increase the amount of

information in the potential.
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Our results also confirm previous observations

indicating that the performance of a potential is sub-

jected to a trade-off between the amount of informa-

tion that it contains and the number of observations

taken into account during the evaluation process.30

This trade-off is due to the fact that the amount of in-

formation increases at shorter distance ranges though

the number of contacts is reduced considerably.

Moreover, our findings show that the performance

of truly effective potentials (i.e., derived and used

effectively) is insensitive to the maximum distance

range (see Fig. 3). This suggests that the real factor

influencing the performance of a distance-dependent

potential is not the maximum distance range adopted,

but rather, it indicates that shorter distances represent

a good approximation to capture the first contacting

shell of a given atom. Since effective potentials capture

the first contacting shell of interacting atoms inde-

pendently of the maximum distance range adopted,

the total number of observations upon reduction of

the maximal distance range is not as affected as in the

case of canonical potentials. This implies that the in-

formation product could be used as a measure to opti-

mize the performance of potentials without the need

of a specific benchmark, as previously proposed.30

Although statistical potentials have been criticized

for their lack of theoretical foundations,19,37 our results

are in agreement with most of previous works in this

field and suggest that propensities expressed as proba-

bility distributions of events are closely connected to

the physical properties found in protein structures. We

observed that direct physical interactions rather than

distance seem to be the main source increasing the in-

formation content of empirical potentials. Although in

the study of protein structure, both physics and statis-

tics can be exploited as totally different phenomena,

they are somehow reconciled in statistical energy func-

tions and thus can be seen as two sides of the same

coin.

It has been recently shown that statistical poten-

tials can be seen as informatic functions and that

higher amounts of information are in agreement with

the performance of an specific potential.17 It is also

known that mutual information is a nonlinear measure

of correlation.38 From these observations, we conclude

that the goal of an energy function is to infer the cor-

relation patterns of atomic interactions observed in

protein structures. The higher the correlation between

functions, the higher is their nonadditivity. Other

sources of studies interpret these observations as coop-

erativity or anticooperativity depending on the sign of

the correlation.11

Nonadditivity between energy functions (i.e.,

cooperativity) has been shown to be fundamental in

explaining the topology dependence of the folding

rates observed in protein domains.39 In fact, thermo-

dynamic cooperativity accelerates folding by smooth-

ing the energy landscape.40 Nonadditivity seems to be

a crucial component of energy functions that carefully

captured could improve the performance of potentials

and ultimately foster our understanding of structural

biology. The findings reported here represent an effort

in that direction.

Methods

Experimental protein structures for calculating

the potentials

A set of 518 nonredundant and well-refined protein

structures solved by X-ray crystallography was used.

This set does not contain proteins with duplicated or

missing atoms, structural gaps, or proteins with less

than 100 residues. All the protein chains share less

than 25% sequence identity, have a resolution below

3.0 Å and contain full atomic coordinates for all amino

acids. The list of protein structures is available as

Supporting Information at http://protein.bio.puc.cl/

sup-mat.html.

Definition of effective atomic interactions

A given atom X in a protein structure can have many

neighbor atoms in the three-dimensional space, which

are typically defined by setting up a fixed maximum

distance threshold. In the absence of additional defini-

tions, all these atoms found in the neighborhood of

atom X are considered to be interacting with it. How-

ever, by using this simple approach, many indirect

interactions that in fact are shielded by other atoms

and thus could not be relevant from a physical point

of view will still be included in the analysis. To avoid

this problem, we have developed a simple method that

relies on the definition of additional restraints to select

only the direct interactions between two atoms.

Direct or effective interactions are defined as

those atom–atom interactions that are not shielded or

masked by any other atom in the three-dimensional

space. We propose here a simple geometric algorithm

to assess the shielding effect that any atom has on the

interaction of two other atoms (see Fig. 1). Based on

this new methodology, we are able to classify the inter-

actions as being either effective or not.

Before formalizing the algorithm, we define the

following: (a) Let X be the atom under evaluation.

Then, its spatial coordinates constitute the center of

its interacting sphere. (b) The radius of the interacting

sphere is defined by the maximum distance range

adopted. (c) Let N be the total number of atoms, dif-

ferent from X, that are found inside the interacting

sphere of X. (d) Let Z be the spatially closest atom to

X inside the interacting sphere of X. By definition, Z is

interacting effectively with X, since no other atoms

can mask this interaction. (e) Let M be the total num-

ber of Y atoms, which are different from X and Z, and

are found inside the interacting sphere of X (i.e., M ¼
N � 1). (f) Let X be an angle ranging between 60 and

180�.
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The following algorithm evaluates if the interac-

tion between atoms X and Y is effective or not:

1: A ¼ array of N atoms sorted according to their

distance to X, in ascending order.

2: for j ¼ 2 to N do

3: Yj / A[j]

4: for i ¼ 1 to (j � 1) do

5: Wi / A[i]

6: ai / angle(XWiYj)

7: if ai � X then

8: the interaction between X and Yj is not

shielded by the atom Wi

9: else

10: the interaction between X and Yj is shielded

by the atom Wi

11: end if

12: end for

13: the interaction between X and Yj is effective ,
V i, 1 � i < j, ai � X.

14: end for

The goal of this procedure is to detect only the

direct pairwise atomic interactions that are not being

shielded or masked by any other atom [Fig. 1(A)]. The

masking effect can be easily fine-tuned by varying a

single parameter: the X shielding angle. After applying

this methodology, only a subset of all possible interac-

tions per atom (i.e., those that are not shielded by any

other atom) are further considered. Altogether, these

atomic interactions should represent a reliable approx-

imation to the first contacting shell of any atom in the

structure [Fig. 1(B)].

Additionally, other restraints can also be incorpo-

rated to define those effective atomic interactions of

interest. In this study, we have focused on the effective

nonlocal interactions between atoms. This means that

we have only calculated the effective interactions

between atoms X and Y when these two atoms belong

to amino acids that are separated along the protein

chain by nine or more residues or when they belong to

amino acids found in different protein chains.24

Calculation of potentials

A total of 19 different types of distance-dependent

potentials were calculated (Table I). They differ only in

the maximum distance range and the shielding angle X
adopted to define the effective interactions when deriv-

ing the potential. Typical statistical potentials use a

shielding angle of 180�, that is, the shielding effect of

other atoms is not considered or, in other words, all the

atomic interactions found below the maximum distance

range are considered as effective [Fig. 1(B)]. In addition

to the canonical potential with X ¼ 180�, statistical

energy functions with X values of 60�, 70�, 80�, 90�,

100�, 110�, 120�, 130�, 140�, 150�, 160�, and 170� were

calculated. All these statistical energy functions were

derived by taking into account nonlocal interactions

only. We define nonlocal interacting atoms as those

interactions occurring between any two atoms that

belong to amino acids found in the same chain with a

separation along the sequence equal or larger than nine

residues, or atoms that belong to amino acids from dif-

ferent chains. A total of 40 atom types were defined for

all nonhydrogen atoms observed in the 20 standard

amino acids.8 The distance-dependent energy functions

were calculated as previously described.8,24,28 The fol-

lowing equation was used:

DEij
NLðdÞ ¼ RT ln½1þMij

NL � r�

� RT ln 1þMij
NL � r � f

ij
NLðdÞ
f xxNLðdÞ

" #

where Mij
NL is the total number of nonlocal interactions

observed between atom types i and j below the maxi-

mum distance range defined and was calculated as

follows:

Mij
NL ¼

XN
d¼1

Fij
NLðdÞ

Fij
NL(d) is the absolute frequency of nonlocal observa-

tions between atom types i and j at the distance class

d, and N is the total number of classes of distance.

The potentials were calculated using maximum dis-

tance ranges of 5.0, 7.0, 12.0, and 15.0 Å (Table I). In

all cases, homogeneous distance bins of 0.2 Å were

defined. The constant weight factor r given to each

pairwise energy function was set to 0.02, as previously

described.4

fijNL(d) is the relative frequency of nonlocal obser-

vations between atom types i and j at the distance

class d and is defined as follows:

f ijNLðdÞ ¼
Fij
NLðdÞ
Mij

NL

fxxNL(d) is the reference system and corresponds to the

relative frequency of nonlocal observations between

any two atom types in the distance class d. This quan-

tity was calculated using the following equation:

f xxNLðdÞ ¼
PC

i¼1

PC
j¼1 F

ij
NLðdÞPC

i¼1

PC
j¼1

PN
d¼1 F

ij
NLðdÞ

where C is the number of different atom types and N

is the number of distance classes. The temperature T

was set to 293 K, so that RT is equivalent to 0.582

kcal/mol.
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Utilization of potentials
The potentials were used to calculate the energy of

protein structure models with the same definition of

nonlocal interactions and maximum distance range

used to derive them. However, different combinations

of derivation and utilization procedures are possible

depending on the definition of effective atomic interac-

tions at any of both steps. Effectiveness at the deriva-

tion (DX) is defined if the empirical potential was cal-

culated from the database of native protein structures

considering any X value smaller than 180�. Accord-

ingly, effectiveness at the utilization (UX) of the poten-

tial is defined if the interactions are estimated at any

X value smaller than 180� and all other parameters

are the same as those used to derive the potential. On

the other hand, the typical or canonical approach that

considers all interactions found within the maximum

distance range as being effective is defined at deriva-

tion (Dp) or utilization (Up) by setting the X value at

180�. A total of 49 different combinations of derivation

and utilization of potentials were tested in this work

(Table I).

The energies were calculated as follows: (a) for

each atom in the molecule, all its nonlocal effective

atomic interactions are determined at a given X value

(see Definition of Effective Atomic Interactions sec-

tion); (b) for each nonlocal effective pairwise interac-

tion, the energy value is taken from the distance-

dependent energy function; (c) the total energy per

atom is calculated by summing up all its energy terms;

(d) the total energy of the structure is the sum of the

energies of all its atoms. When expressing the normal-

ized energy of a protein, the total energy is divided by

the total number of nonlocal effective atomic interac-

tions observed. The final energy value is expressed in

RT units.

External potentials
In addition to the potentials described earlier, we also

tested the performance in our benchmark of other

potentials typically used in the assessment of protein

structure models. The potentials tested were DFIRE,13

ProSa,28 and RAPDF.12 ProSa was initially developed

in 1993 but here we used the most recent version of

this software, which was released in 2003. The soft-

ware was downloaded from http://www.came.sbg.

ac.at.

Benchmark set of native protein structures and

near-native protein structure models

To assess the performance of knowledge-based poten-

tials at discriminating between native and near-native

conformations, a subset of a previous set of compara-

tive protein structure models was used.26 Briefly, the

original set contains 152 native protein structures and

a single near-native protein structure model for each

of them (i.e., 152 near native models). These models

have a length equal or larger than 100 amino acids,

have at least 90% equivalent a-carbons with their cor-

responding native structures, a target chain coverage

equal or larger than 90%, and a total or global root

mean square deviation (RMSD) of less than 3.0 Å for

all a-carbons. All models were built for target mono-

meric proteins. To avoid any bias when testing the

performance of the potentials, we have removed all

models from the original set that shared more than

70% sequence identity with any structure in the X-ray

set of 518 proteins used to derive the potentials and

also with any other model in the set. After filtering

the initial set, we ended up with 54 near-native pro-

tein models and their corresponding native struc-

tures, which were used to test the performance of the

potentials. According to SCOP classification of pro-

tein structures,41 the 54 protein chains in this set

contain a total of 62 SCOP folds, of which a total of

54 are unique (i.e., 54 different SCOP folds are repre-

sented in this set of proteins). According to CATH

classification of protein structures,42 28% of the mod-

els contain only alpha helix secondary structure ele-

ments, 20% have only beta sheets, 49% contain alpha

and beta, and only two proteins (3%) have few sec-

ondary structures. The details about the construction

of the original set of 152 models can be found in Ref.

26. The list of 54 models selected for this work along

with the 3D coordinates of the native protein struc-

tures and their models are available in PDB format as

Supporting Information at http://protein.bio.puc.cl/

sup-mat.html.

Assessment of the performance of potentials

The performance of potentials as binary classifiers was

assessed by ROC analysis as previously described.27

The measure used was the area under the ROC curve

(AUC). Briefly, each potential was used to obtain a

normalized total energy for each protein model in the

set and for each native protein structure. Upon a given

normalized energy score threshold, a binary classifier

was built for each potential, where each protein was

predicted or classified as native or near-native,

depending whether its normalized energy score value

fell below or above the fixed threshold, respectively. In

the ‘‘real classification,’’ a positive instance was defined

as a near-native protein. A negative instance was

defined as a native protein. The predictions generated

by each classifier at each possible normalized energy

score threshold for all proteins, named ‘‘hypothetical

classifications,’’ were then compared with those previ-

ously defined by the real classification of proteins and

ROC analysis performed. The statistical significance of

the observed differences between any two potentials

used as binary classifiers was evaluated with the StaR

web server.43 This server relies on a nonparametric

test for the difference of the AUCs that accounts for

the correlation of the ROC curves.
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Calculation of the information product
of potentials

The information product (P) of a potential was calcu-

lated as previously described,17,30 by using the follow-

ing equation:

P ¼
ffiffiffi
�n

p
� DEij

NL

n is the mean number of interactions that will be

observed in a typical protein when using the potential

and corresponds to:

�n ¼ 1

N

XN
i¼1

ni

where ni is the number of score events (i.e., those

interactions that will be considered by a potential

according to its utilization parameters) in native pro-

tein i and N is the total number of native proteins

used to derive the potential. DEij
NL is the average score

or energy value per interaction observed in those

native proteins used to derive the potential:

DE
ij
NL ¼ 1

X

XX
x¼1

DEij
NLðdÞ

where x corresponds to any valid score event or inter-

action observed in the native proteins when the poten-

tial is used to calculate their total score. Therefore, X

corresponds to:

X ¼ N � �n ¼
XN
i¼1

ni

In the case of the distance-dependent potentials

calculated here, DEij
NL constitutes the best estimate of

mutual information because it naturally takes into

account the sensible issue of sparse data in the calcu-

lation of informatic quantities and adjusts the estimate

of energy accordingly.30
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