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Light is a key environmental signal for most life on earth. 
Over 5% of Neurospora crassa genes are expressed in response 
to light stimulation in a temporally regulated cascade that 
includes several transcription factors. Fungal genomes, including 
Neurospora’s, may encode several different proteins capable of 
binding chromophores with the ability to harvest light energy as 
well as proteins that can interact with primary photoreceptors or 
further propogate the light signal.  The best understood photo-
receptors are the evolutionarily conserved White Collar proteins, 
and the related Vivid protein, but fungi may also encode phyto-
chromes, cryptochromes and opsins. 

According to a recent report from the American Society of 
Microbiology, the fungal kingdom comprises an estimated 1.5 
million species, many hundreds of which are known animal or 
plant pathogens.1 The filamentous fungus Neurospora crassa is a 
leading research model, including studies aimed at understanding 
light responses in fungal cells.2-7 Decades of effort from several 
labs, have established the White Collar complex (WCC) as an 
essential as well as dominant light signaling component. The 
heterodimeric transcription factor WCC senses light directly 
through bound FAD, and binds to the promoters of many light-
responsive genes, activating gene expression. We have shown that 
light regulated expression falls into two distinct temporal classes, 
both under WCC control. SUB-1, identified as an “early” light-
responsive transcription factor, was found to regulate most of the 
“late” light gene expression. Chromatin-immunoprecipitation 
(ChIP) and bioinformatics analysis further established the hierar-
chical relationship between early and late light responses.8 Here, 
we present a brief summary of recent studies on the molecular 
components involved in Neurospora photobiology.

Light-Regulated Biology in Neurospora crassa

Light acts as an essential cue to regulate a variety of physi-
ological processes in Neurospora, including the resetting of the 
circadian clock, biosynthesis of the photo-protective carotenoid 
pigments, asexual conidiospore formation, perithecial develop-
ment in the sexual cycle, and the direction of ascospores release.2-7 
Underlying this biology is the regulation of many Neurospora 
genes by light. Microarrays representing the approximately 10,000 
genes in Neurospora crassa were used as probes against light induced 
cDNA. Of the 5,600 detectable genes, 314 (approximately 5.6%) 
responded to the light stimulus by increasing transcript levels.8 
Most of the identified genes (92%) were either early (45%), 
with peak expression between 15 and 45 minutes, or late (55%), 
with the induced expression peaking between 45 and 90 minutes 
after lights on. Genes related to the synthesis of photoprotec-
tive pigments (7.1%), vitamins, cofactors, and prosthetic groups 
(4.7%), secondary metabolism (4.7%), DNA processing (6.3%), 
cellular signaling (5.5%) and environmental sensing and response 
(1.6%) were found enriched in the early light response. In contrast, 
genes involved in carbohydrate metabolism (20%), oxidation of 
fatty acids (1.9%) and oxygen detoxification reaction (2.5%) were 
found enriched in the late light response. Within the early group 
were several transcription factors, most of which show mutant 
phenotypes during development (see Table 1).

All currently known light responses in Neurospora are restricted 
to near UV/blue light,5,7 suggesting the presence of a master 
photoreceptor dedicated to blue light sensing and signal transduc-
tion. Extensive genetic screening and analysis has resulted in the 
isolation of only two fully blind mutants, wc-1 and wc-2,3,9,10 
both GATA family zinc finger transcription factors.11 The direct 
connection between light sensing and gene activation has subse-
quently been demonstrated both in vitro and in vivo.12-15 The 
photoreceptor WC-1 forms an obligate complex with WC-2 to 
bind to specific DNA sequences,16,17 including the promoter of a 
light-responsive transcription factor, sub-1, the function of which 
is essential for the late light response.8 Several additional compo-
nents are or may be involved in the light signaling mechanism  
(Fig. 1). As the WCC has been reviewed in some detail elsewhere,2-7 
our discussion below will focus on the additional players.

*Correspondence to: Jennifer J. Loros; 702 Remsen, Dartmouth Medical School, 
Hanover, NH 03755; Email: jennifer.loros@dartmouth.edu

Submitted: 04/23/09; Accepted: 04/24/09

Previously published online as a Communicative & Integrative Biology 
E-publication: 
http://www.landesbioscience.com/journals/cib/article/8835

Mini-Review

Neurospora sees the light
Light signaling components in a model system

Chen-Hui Chen1 and Jennifer J. Loros2,*

1Department of Genetics; 2Department of Biochemistry; Dartmouth Medical School; Hanover, NH USA

Key words: light, microarray, Neurospora, photoreceptors, wc-1, wc-2, vvd, frq, sub-1, nop-1, ve-1



www.landesbioscience.com Communicative & Integrative Biology 449

Light signaling components in Neurospora

Table 1 Real and putative light signaling components in Neurospora crassa

NCU #1 Gene Light-sensing TF? Light-related or other phenotypes in mutants Light- Refs 
  chromophore   responsive2

NCU02356.2 wc-1 FAD Yes Blind to most if not all light responses, carotenogenesis repressed in mycelia + 2–8
NCU00902.2 wc-2 None Yes Blind to most if not all light responses, carotenogenesis repressed in mycelia No 2–8
NCU03967.2 vvd FAD No Affects photoadaptation, excess accumulation of carotenoids + + + 8, 18-–21
NCU04834.2 phy-1 Undetermined No Wild-type light responses, k/o wild-type No 8, 28
NCU05790.2 phy-2 Biliverdin or No Wild-type light responses, k/o wild-type No 8, 28 
  Phycocyanobilin
NCU00582.2 cry FAD No  Wild-type light responses, k/o wild-type + + + 8, 29
NCU10055.2 nop-1 Retinal  No  Wild-type light responses, involved in late-stage asexual development No 8, 31–33
NCU02265.2 frq None No Affects amplitude of light induced gene expression + 8, 34, 35
NCU01154.2 sub-1 None Yes Affects some early and most late light responses,  + 8, 36 
    submerged protoperithecia in the sexual cycle
NCU02713.2 csp-1 None Yes Wild-type light responses, defective in conidiospore maturation + 8, 37
NCU04179.2 sah-1 None Yes Wild-type light responses, shortened aerial hyphae + 8, 36
NCU06407.2 vad-3 None Yes Wild-type light responses, slowed basal and aerial hyphal extension + 8, 36
NCU03643.2 None None Yes Wild-type light responses, k/o wild-type + 8
NCU01731.3 ve-1 None No Wild-type light responses, shortened aerial hyphae, increased conidiation No 40

1NCU numbers are from Neurospora annotation (http://www.broad.mit.edu/annotation/genome/neurospora/Home.html). 2Fold change of mRNA transcripts in response to a white light stimulus; +, less than  
10-fold; + +, 10-~100-fold; + + +, more than 100-fold. The data adapted from ref. 8.

Figure 1. Established and putative molecular components involved in Neurospora light signaling. WC-1 and WC-2 form a heterodimeric transcription 
factor (WCC) that binds to early light responsive elements (ELREs). In response to a light signal, transcription is rapidly activated, resulting in the expres-
sion of several downstream transcription factors, as well as the VVD and FRQ proteins. The SUB-1 transcription factor is required for expression of most 
late-light responsive genes, many of which have a specific late light responsive element (LLRE), A/GTGAC/TG/ATCA. VVD acts as a potent repressor of 
WCC activity on light regulated genes. FRQ may block further activity on some genes while at the same time promotes expression of the WCC. Several 
proteins can bind chromophores (WC-1, PHY-1, NOP-1, VVD, CRY and maybe PHY-2). Chromophores are shown as stars in the color of light they absorb. 
Several proteins have no described responses to light in Neurospora (CRY, PHY-1, PHY-2, VE-1) although they do in other fungi and other organisms.
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induction for both types of light responses.8 Given that FRQ is an 
oscillating circadian clock component and has been shown to physi-
cally interact with the WCC, previous studies34,35 together with our 
recent microarray data highlight the clock-modulating effect of the 
light input pathway. The novel GATA family transcription factor, 
SUB-1, was identified as essential for regulating a subset of the 
early and most of the late light responses.8 A previously described 
phenotype associated with the sub-1 (submerged protoperithecia-1) 
knockout strain36 might easily be the functional consequence of 
impaired late light responses (i.e., the formation of protoperithecia 
in Neurospora is a light-regulated developmental process), which 
might also hold true for developmental defects seen in knockout 
strains of other light-responsive transcription factors.36,37

Finally, the veA locus has been shown to be required for 
both light-regulated development and secondary metabolism in 
Aspergillus nidulans38,39 and the promoter and coding sequences of 
the N. crassa ortholog, ve-1, is sufficient to complement the role of 
veA null mutants in A. nidulans.40 However, unlike its counterpart, 
VE-1 knockout strains in Neurospora lack light-dependent pheno-
types40 and have largely normal gene expression in response to 
white light (Chen C-H and Loros J, unpublished data) suggesting 
that ve-1 may not have a significant role in regulating light signals 
in N. crassa, at least under the conditions tested.

Fungal Light Signaling Components are Conserved

Sequence and functional orthologs of WC-1, WC-2 and most 
of the other light signaling components are widespread among the 
fungal kingdom. Recent studies have demonstrated that WC-1- 
and WC-2-like molecules in various fungal species play an essential 
role in mediating light signals from the Ascomycota, Basidiomycota 
and Zygomycota phyla.2-4,6,7 Of broader evolutionary interest, 
WC-1 and the animal circadian-clock-associated bHLH transcrip-
tion factors, CYC from insects and BMAL1 and NPAS2 from 
mammals, share a common ancestor. The bHLH transcription 
factors do not bind chromophores but, like WC-1 in Neurospora, 
they are critical for light resetting, as well as the maintenance of 
circadian rhythms in animals, highlighting the close evolutionary 
relationship between photobiology and circadian rhythmicity.41,42 
Successful work on the WCC in Neurospora has led to funda-
mental breakthroughs in understanding photobiology in other 
fungi. We predict that future work on the underlying mechanisms 
of Neurospora light signaling components will continue to illumi-
nate other light-sensitive eukaryotic cells.
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Real and Putative Light Signaling Components in 
Neurospora crassa

Real and putative light signaling components in Neurospora are 
summarized in Table 1. After the WCC, VVD has been the next 
most intensely studied photoreceptor in the fungi. Our study and 
others have clearly shown that VVD acts as a universal repressor 
for most if not all light-induced gene expression controlled by the 
WCC.8,18-21 In vvd mutants, once gene transcription is turned on 
by the light-activated WCC, transcript levels will remain upregu-
lated for many hours in constant light, so-called “photoadaptation 
defects”. In contrast, in a wild-type strain, light-induced gene 
expression is transient, usually returning to pre-induction levels 
within two to four hours.8 Molecularly, VVD is a small, 21 kD 
flavin-binding photoreceptor consisting of a LOV (light, oxygen 
or voltage) domain and N-terminal cap.22 Upon light activation, 
the formation of a protein-flavin bond in the LOV domain induces 
a conformational change at the N-terminus which appears to be 
essential for the light function of VVD.22 Formation of a rapidly 
exchanging VVD dimer in light has been proposed recently.23 
Interestingly, VVD appears to localize exclusively in the cytosol 
while the majority of WCC is in the nucleus.19,24 This raises the 
question of how VVD communicates with the WCC to repress 
light responses and regulate various circadian clock proper-
ties.21,25,26 The answer to this question will certainly shed light on 
the molecular mechanisms of photoadaptation in general.

After completion of the Neurospora genome project,27 two 
putative red-light photoreceptors (N. crassa phytochrome orthologs 
phy-1 and phy-2) and one additional blue-light photoreceptor  
(N. crassa cryptochrome orthologue cry) were identified. Although 
there is yet no report of red light-regulated biology in Neurospora, 
a collaborative effort has shown that PHY-2 can covalently bind 
either biliverdin or phycocyanobilin and is capable of undergoing 
a photocycle in vitro.28 The cry gene encodes a member of the 
cryptochrome-DASH family. We have found it capable of binding 
FAD and MTHF, with both transcript and protein levels strongly 
induced by blue light in a wc-1 dependent manner.29 However, 
due to the lack of a detectable phenotype or atypical light 
responses in the respective knockout strains,8,28,29 the biological 
function(s) of PHY-1, PHY-2 and CRY remains to be discovered 
in Neurospora, although function has been reported for homologs 
in other fungi.3,4,6,30 The opsin, NOP-1, is a putative green-light 
photoreceptor identified via sequence homology with archaeal 
rhodopsins.31 NOP-1 has been shown to both bind retinal and 
undergo a slow photocycle32 and the expression levels of several 
genes are known to be affected in a knockout strain during late 
asexual development.33 Our microarray data, not carried past two 
hours after light stimulus in the knock-out strain, suggest that 
NOP-1 does not play a role in either early or late light regulated 
gene induction.8

Instead of sensing light directly, which requires the ability to 
interact with chromophores that absorb light energy, the FRQ and 
SUB-1 proteins are indirectly involved in light signaling. Our array 
analysis has confirmed and extended the role of FRQ in regulating 
the light function of the WCC by affecting the amplitude of 
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