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Abstract

Schizophrenia, a devastating psychiatric disorder, has a prevalence of 0.5–1%, with high 

heritability (80–85%) and complex transmission.1 Recent studies implicate rare, large, high-

penetrance copy number variants (CNVs) in some cases2, but it is not known what genes or 

biological mechanisms underlie susceptibility. Here we show that schizophrenia is significantly 

associated with single nucleotide polymorphisms (SNPs) in the extended Major 

Histocompatibility Complex (MHC) region on chromosome 6. We carried out a genome-wide 

association study (GWAS) of common SNPs in the Molecular Genetics of Schizophrenia (MGS) 

case-control sample, and then a meta-analysis of data from the MGS, International Schizophrenia 

Consortium (ISC) and SGENE datasets. No MGS finding achieved genome-wide statistical 

significance. In the meta-analysis of European-ancestry subjects (8,008 cases, 19,077 controls), 

significant association with schizophrenia was observed in a region of linkage disequilibrium on 

chromosome 6p22.1 (P = 9.54 × 10−9). This region includes a histone gene cluster and several 

immunity-related genes, possibly implicating etiologic mechanisms involving chromatin 

modification, transcriptional regulation, auto-immunity and/or infection. These results 

demonstrate that common schizophrenia susceptibility alleles can be detected. The 

characterization of these signals will suggest important directions for research on susceptibility 

mechanisms.

The symptoms and course of schizophrenia are variable, without forming distinct familial 

subtypes.1 There are positive (delusions, hallucinations), negative (reduced emotions, 

speech, interest) and disorganized symptoms (disrupted syntax and behavior), as well as 

mood symptoms in many cases. Onset is typically in adolescence or early adulthood, and 

rarely in childhood. Course of illness can range from acute episodes with primarily positive 

symptoms to the more common chronic or relapsing patterns often accompanied by 

cognitive disability and histories of childhood conduct or developmental disorders.

To search for common schizophrenia susceptibility variants, we carried out a GWAS in 

cases from three methodologically similar National Institute of Mental Health repository-

based studies, and screened controls from the general population. Cases were included with 
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diagnoses of schizophrenia or (in 10% of cases) schizoaffective disorder with the 

schizophrenia syndrome present for at least six months, genotyped with the Affymetrix 6.0 

array. Because the frequencies of tag SNPs and disease susceptibility alleles can vary across 

populations, we carried out a primary analysis of the larger MGS European-ancestry sample 

(2,681 cases, 2,653 controls) and then additional analyses of the African American sample 

(1,286 cases, 973 controls) and of both of these samples combined, to test the hypothesis 

that there are alleles that influence susceptibility in both populations. All association tests 

were corrected using principal component scores indexing subjects’ ancestral origins. 

Genotypic data were imputed for additional HapMap SNPs in selected regions.

These analyses did not produce genome-wide significant findings at a threshold of P < 5 × 

10−8 (see Supplementary Methods, p. S16). Table 1 summarizes the best results in the 

European-ancestry and African American analyses. The strongest genic findings were in 

CENTG2 (chromosome 2q37.2, P=4.59E-07) in European-ancestry subjects, and in ERBB4 

(2q34, P=2.14E-06) in African Americans. Common variants in ERBB4 (the strongest 

signal in African American subjects) and its ligand neuregulin 1 (NRG1) have been reported 

to be associated with schizophrenia.3 Additional information about results in previously-

reported schizophrenia candidate genes is provided in Supplementary Results 3 and 

Supplementary Datafile 2.

As shown in online Table S17, power was adequate in the MGS European-ancestry sample 

to detect very common risk alleles (30–60% frequency, log additive effects) with genotypic 

relative risks (GRR) of approximately 1.3, with lower power in the smaller African 

American sample. The results suggest that there are few or no single common loci with such 

large effects on risk. The lack of consistency between the European-ancestry and African 

American analyses could be due to low power, but novel genome-wide analyses presented in 

the companion paper by the International Schizophrenia Consortium (discussed further 

below) suggest that while there is substantial overlap between the sets of risk alleles that are 

detected by GWAS in pairs of European-ancestry samples, much less overlap is seen 

between European-ancestry and African American samples. This could be because there are 

actually major differences between the sets of segregating common disease variants in these 

two populations, and/or because many risk variants are tagged by different GWAS markers 

or not adequately tagged by the GWAS array, which has poorer coverage of alleles that are 

more frequent in African populations. The hypothesis underlying our combined analysis, on 

the other hand, was that there could also be allelic effects common to these populations.

For many common diseases, common risk alleles with GRRs in the range of 1.1–1.2 have 

been detected when samples were combined to create much larger datasets.4 Therefore, we 

carried out a meta-analysis of European-ancestry data with two other large studies: the 

International Schizophrenia Consortium (ISC) (3,322 cases, 3,587 controls) and the SGENE 

Consortium (2,005 cases, 12,837 controls). Note that because the Aberdeen sample was part 

of both the ISC and SGENE consortia, Aberdeen data were excluded from SGENE 

association tests for the meta-analysis. To rapidly identify the regions containing the 

strongest findings across the three studies (which used several Affymetrix and Illumina 

genotyping platforms), each group created a list of the SNPs with the best P-values in its 

final analysis (e.g., those with P<0.001 in MGS), and provided the other groups with its P-
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values for the SNPs on their lists, based on genotyped or imputed data or data for the best 

proxy based on LD. Based on these initial results, all available data for genotyped SNPs and 

imputed HapMap II SNPs were then shared for regions of interest, of which four emerged 

from the European-ancestry data: 1p21.3 (PTBP2), 4q33 (NEK1), 6p22.1-6p21.31 (extended 

MHC region) and 18q21.2 (TCF4). We then combined P-values for all SNPs in each region 

by appropriately weighting Z-scores for sample size, accounting for the direction of 

association in each sample.

In the meta-analysis of European-ancestry MGS, ISC and SGENE datasets, seven SNPs on 

chromosome 6p22.1 yielded genome-wide significant evidence for association. These SNPs 

span 209 kb and are in strong LD (r2>0.9), with substantial LD across 1.5 Mb (Table 2 and 

Figure 1). Because of the strong LD among these SNPs, it is unclear whether the signal is 

driven by one or several genes, by intergenic elements, or by longer haplotypes that include 

susceptibility alleles in many genes. The region includes several types of genes of potential 

interest. The strongest evidence for association was observed in and near a cluster of histone 

protein genes, which could be relevant to schizophrenia through their roles in regulation of 

DNA transcription and repair5,6 or their direct role in antimicrobial defense.7 Other genes 

in the broad region are involved in chromatin structure (HMGN4), transcriptional regulation 

(ABT1, ZNF322A, ZNF184), immunity (PRSS16; the butyrophilins8), G-protein-coupled 

receptor signaling (FKSG83) and in the nuclear pore complex (POM121L2), although the 

functions of many genes in the region (and of intergenic sequence variants) are not well 

understood.

P-values less than 10−7 were also observed in the meta-analysis in HLA-DQA1 (P = 6.88 × 

10−8, Table 2), suggesting autoimmune mechanisms. This gene is in the class II HLA 

region, which is not in LD with 6p22.1 in the MGS sample. We note also that the MGS 

GWAS (see Supplementary Datafile 1, European-ancestry results) produced some evidence 

for association in the FAM69A-EVI-RPL5 gene cluster which has been implicated in 

multiple sclerosis, a DQA-associated auto-immune disorder.9

Finally, in an analysis reported in the companion paper by the International Schizophrenia 

Consortium, case-control status in the MGS sample could be predicted with very strong 

statistical significance based on an aggregate test of large numbers of common alleles, 

weighted by their odds ratios in the single-SNP association analysis of the ISC sample 

(please see the ISC paper for details). As expected, results were similar for an analysis with 

MGS as the discovery sample and ISC as the target (see Supplementary Results 3). As 

discussed in the ISC paper, the results suggest that a substantial proportion of variance may 

be explained by many common variants, most of them with small effects that cannot be 

detected one at a time.

We have identified a region of association of common SNPs with schizophrenia on 

chromosome 6p22.1. Further research will be required to identify the sequence variation in 

this region that alters susceptibility, and the mechanisms by which this occurs. The results of 

this meta-analysis and of the aggregate analysis of multiple alleles reported in the ISC paper 

strongly suggest that individual common variants have small effects on schizophrenia risk, 

and that still larger samples may be valuable. The larger goal of research in the field will be 
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to detect and understand the full range of rare and common sequence and structural 

schizophrenia susceptibility variants. Association findings will advance knowledge of 

pathophysiological mechanisms, even if they initially explain small proportions of genetic 

variance. Future advances in knowledge of gene and protein functions and interactions 

should make it possible to dissect the functional sets of pathogenic variants based on prior 

hypotheses.

Methods summary

Details of MGS subject recruitment and sample characteristics are provided in the online 

Full Methods (section A1). DNA samples were genotyped using the Affymetrix 6.0 array at 

the Broad Institute. Samples (5.3%) were excluded for high missing data rates, outlier 

proportions of heterozygous genotypes, incorrect sex or genotypic relatedness to other 

subjects. SNPs (7% for African American, 25% for European-ancestry and 27% for 

combined analyses) were excluded for minor allele frequencies less than 1%, high missing 

data rates, Hardy-Weinberg deviation (controls), or excessive Mendelian errors (trios), 

discordant genotypes (duplicate samples) or large allele frequency differences among DNA 

plates. Principal component scores reflecting continental and within-Europe ancestries of 

each subject were computed and outliers excluded. Genomic control λ values for autosomes 

after QC were 1.042 for African American and 1.087 for the larger European-ancestry and 

combined analyses.

For MGS, association of single SNPs to schizophrenia was tested by logistic regression 

(trend test) using PLINK10, separately for European-ancestry, African American and 

combined datasets, correcting for principal component scores that reflected geographical 

gradients or that differed between cases and controls, and for sex for chromosome X and 

pseudoautosomal SNPs. Genotypic data were imputed for 192 regions surrounding the best 

findings, and for additional regions selected for meta-analysis.11 Detailed results are 

available in Supplementary Datafiles 1 and 2, and complete results from dbGAP 

(www.ncbi.nlm.nih.gov/sites/entrez?db=gap).

Meta-analysis of the MGS, ISC and SGENE datasets was carried out by combining P-values 

for all SNPs (in the selected regions) for which genotyped or imputed data were available 

for all datasets, with weights computed from case-control sample sizes. See the companion 

papers for details of the ISC and SGENE analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Chromosome 6p22.1 Genetic association and linkage disequilibrium results in 
European-ancestry samples
Genome-wide significant evidence for association (P < 5 × 10−8, threshold shown by solid 

red line, SNPs by large red diamonds) was observed at 7 SNPs across 209 kb. P-values are 

shown for all genotyped and imputed SNPs (25,900,000–27,875,000 bp) for the meta-

analysis of European-ancestry MGS, ISC and SGENE samples (8,008 cases, 19,077 

controls). Red circles indicate other SNPs with P < 5 × 10−7. Not shown are two SNPs in 

HLA-DQA1 (6p21.32; lowest P = 6.88 × 10−8, 32,710,247 bp; see Supplementary Datafile 
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1). Locations are shown for RefSeq genes and POM121L2. Pairwise LD relationships are 

shown for 26 SNPs with P < 10−7 (except that SNPs 5 and 6 are shown, despite slightly 

larger P-values, to illustrate LD for that segment; and a SNP in strong LD with SNPs 25 and 

26 is omitted). LD was computed from MGS European-ancestry genotyped and imputed 

SNP data. The signal is poorly localized because of strong LD: of the 7 significant SNPs, 7–

8 and 9–11 are in nearly perfect LD; they are in or within ~ 30–50 kb of a cluster of 5 

histone genes (HIST1H2BJ, HIST1H2AG, HIST1H2BK, HIST1H4I, HIST1H2AH; 

27,208,073–27,223,325 bp). These SNPs are in moderately strong LD (r2 = 0.52–0.77) with 

2 other significant SNPs 70–140 kb away, upstream of PRSS16 (SNP 13) or between 

PRSS16 and POM121L2 (SNP18). (See Table 2 and Supplementary Figures S10–11 for 

additional details.)
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