
Letter

Coexpression network based on natural variation
in human gene expression reveals gene interactions
and functions
Renuka R. Nayak,1 Michael Kearns,2 Richard S. Spielman,3,6 and Vivian G. Cheung3,4,5,7

1Medical Scientist Training Program, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; 2Department of Computer

and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; 3Department of Genetics, University of

Pennsylvania, Philadelphia, Pennsylvania 19104, USA; 4Department of Pediatrics, University of Pennsylvania, Philadelphia,

Pennsylvania 19104, USA; 5Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Genes interact in networks to orchestrate cellular processes. Analysis of these networks provides insights into gene
interactions and functions. Here, we took advantage of normal variation in human gene expression to infer gene net-
works, which we constructed using correlations in expression levels of more than 8.5 million gene pairs in immortalized B
cells from three independent samples. The resulting networks allowed us to identify biological processes and gene
functions. Among the biological pathways, we found processes such as translation and glycolysis that co-occur in the same
subnetworks. We predicted the functions of poorly characterized genes, including CHCHD2 and TMEM111, and provided
experimental evidence that TMEM111 is part of the endoplasmic reticulum-associated secretory pathway. We also found that
IFIH1, a susceptibility gene of type 1 diabetes, interacts with YES1, which plays a role in glucose transport. Furthermore,
genes that predispose to the same diseases are clustered nonrandomly in the coexpression network, suggesting that net-
works can provide candidate genes that influence disease susceptibility. Therefore, our analysis of gene coexpression
networks offers information on the role of human genes in normal and disease processes.

[Supplemental material is available online at http://www.genome.org. Our data and the resulting networks are available at
http://www.geneticsofgeneexpression.org/network/. Microarray data from this study have been submitted to Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession no. GSE12526.]

The functions of many human genes are unknown. It is not un-

usual that when one searches the literature on a gene, one fails to

find any papers that provide information on its biological roles.

Identifying gene function is difficult, especially if no hints, such as

homologies to known genes, are available to direct the search.

However, since genes work by interacting with other genes, we

may learn about their functions through their neighboring genes

(Stuart et al. 2003; Ayroles et al. 2009). Identifying gene function is

increasingly important; in the last several years, genome-wide as-

sociation studies (GWAS) have identified DNA variants that are

associated with common complex diseases. But for many of these

studies, the functional links between the susceptibility genes and

the diseases are unknown.

In this study, we used correlations in expression levels of more

than 8.5 million human gene pairs in immortalized B cells from

three data sets to infer gene coexpression networks. The resulting

gene networks were based on correlations between genes that were

found reproducibly in the three data sets. This provided us with

gene networks in which we had high confidence in the gene cor-

relations. We then used the networks to identify key biological

processes and interactions among those processes in our cells. Then,

we identified the functions of 36 human genes with no known

functions and four genes that have been implicated in GWAS as

susceptibility genes for common human diseases, including IFIH1,

which was recently found to be associated with type 1 diabetes.

Results

Gene coexpression network

In order to construct coexpression networks, we took advantage of

normal variation in gene expression (Cheung et al. 2003) among

unrelated individuals. We measured expression levels of genes

using microarrays. We focused on 4238 genes in immortalized B

cells of 295 normal individuals in the Center d’Étude du Poly-

morphisme Humain (CEPH) (Dausset et al. 1990) and the In-

ternational HapMap collections (The International HapMap

Consortium 2005). These cells have been used for various gene

mapping and functional studies (Aggarwal et al. 1985; Morley et al.

2004; Stranger et al. 2007). Our samples include 148 unrelated

grandparents in the CEPH-Utah pedigrees, 43 Han Chinese in

Beijing (CHB), 44 Japanese in Tokyo (JPT), and 60 Yoruba in Iba-

dan, Nigeria (YRI) from the International HapMap Project. Since

the expression levels of most genes are similar between the CHB

and JPT samples (Spielman et al. 2007), we combined the samples

as ‘‘ASN’’ for this analysis, as was also done by the International

HapMap Project (The International HapMap Consortium 2005).

First, we analyzed gene expression data from each population

separately, and computed three population-specific correlations

for each of the 8,978,203 pairs of genes (4238 choose 2). Then for

each gene pair, we compared the three population-specific corre-

lations using Fisher’s test of homogeneity (Fig. 1; Sokal and Rohlf

1995) and identified gene pairs that were similarly correlated in the

three data sets. The results showed that <1% of gene pairs differed

significantly (Pc < 0.05) in correlation among the three populations

(Supplemental Table 1); most gene pairs (>99%) were similarly

correlated in gene expression among populations. For gene pairs
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whose correlations did not differ significantly among populations,

we summarized the extent of their correlations by calculating the

weighted average correlation, weighted by the number of in-

dividuals in each population (Fig. 1). Among the correlated genes

are ones that are known to interact functionally. For example, BTK

encodes Bruton agammaglobulinemia tyrosine kinase (Vetrie et al.

1993) that inhibits FAS (Vassilev et al. 1999), a pro-apoptotic gene.

BTK and FAS are negatively correlated in expression in all three

populations (rCEPH-Utah = �0.52; rASN = �0.47; rYRI = �0.52; test of

homogeneity, P = 0.87); the weighted average correlation is �0.51

(Fig. 1A). Similarly, UMPS and CTPS encode

the enzymes UMP synthase (Suttle et al.

1988) and CTP synthase (Yamauchi et al.

1990), which are essential for the production

of CTP nucleotides used in the synthesis of

DNA. These two genes are positively corre-

lated in the three populations (rCEPH-Utah =

0.69; rASN = 0.64; rYRI = 0.68; test of homo-

geneity, P = 0.80), and the weighted aver-

age correlation is 0.67 (Fig. 1B). Next, we

used the weighted average correlations of

our gene pairs to construct gene coexpres-

sion networks by placing connections be-

tween genes with an average correlation ex-

ceeding different thresholds (Table 1). A

network formed by gene pairs correlated at

|r| > 0.50 consisting of 44,872 gene pairs and

encompassing 3056 genes is shown in

Figure 2A.

Properties of human gene coexpression
networks in B cells

We examined the topologies of the resulting

human gene coexpression networks (Table

1). Although we present properties of coexpression networks

constructed using various thresholds in Table 1, in this study we

focused on the coexpression network where connections were

placed between genes that were correlated at |r| > 0.50 in order to

facilitate discussion of a representative subset of the data (Fig. 2A).

At this threshold, we expect very few false-positive correlations

between genes; the chance that genes are correlated at |r| > 0.50

in our three samples is very small (P < 10�10). We found that this

network shares properties of other biological networks (Table

1). The scale-free topology criterion (Zhang and Horvath 2005)

Figure 1. Examples of gene pairs that are significantly and reproducibly correlated. (A) BTK and FAS are negatively correlated in expression across
unrelated individuals from three different populations. The weighted average correlation between BTK and FAS is�0.51. (B) Similarly, UMPS and CTPS are
positively correlated in expression and are connected in the coexpression network. Expression levels for these genes are provided on the axes and given in
log2-transformed intensity units. The population-specific correlation coefficient is given in the upper-right-hand corner of each plot.

Table 1. Properties of networks using different correlation thresholds

Correlation
threshold

No. of
connections

No. of
genes

Max
connections

Average
no. of

connections

Network
clustering

coefficienta

Scale-free
topology
criterionb Gammac

0.1 4,924,688 4238 3064 2324 N.D. 0.21 N.D.
0.2 2,139,551 4238 1944 1010 N.D. 0.06 N.D.
0.3 737,626 4216 1102 350 N.D. 0.28 N.D.
0.4 201,183 3972 535 101 0.43 0.76 0.93
0.5 44,872 3056 210 29 0.48 0.84 1.19
0.6 9636 1585 97 12 0.54 0.83 1.32
0.7 2762 511 76 11 0.63 0.55 0.88
0.8 1084 122 56 18 0.81 0.41 0.48
0.9 139 40 21 7 0.69 0.53 0.64

aThe clustering coefficient was measured as defined by Watts and Strogatz (1998). It measures the
amount of ‘‘cliquishness’’ among genes in the network and represents the probability that two genes
that are connected to a common gene are also connected to each other.
bThe scale-free topology criterion was measured as defined by Zhang and Horvath (2005). It was
developed to identify networks that have network topologies similar to other biological networks.
This measurement ranges from 0 to 1, with 1 representing networks that are most like other bi-
ological networks.
cIn many networks, the probability that a gene is connected to k other genes is given by the power
law distribution (Barabasi and Albert 1999; Barabasi and Oltvai 2004): P(k) ; k�gamma. A gamma <3
indicates that the network consists of many genes with relatively few connections and a few genes,
hubs, with many connections. These hubs have the potential to affect many other genes in the
network.
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is 0.84, which suggests that the network is comprised of many

genes with few connections, but a few genes have many con-

nections. In addition, the clustering coefficient (Watts and

Strogatz 1998) and another network parameter, gamma (Barabasi

and Albert 1999), are within the ranges expected for biolog-

ical networks (Table 1; Jordan et al. 2004; Zhang and Horvath

2005).

As indicated by the scale-free topology criterion, our network

consists of many genes with relatively few connections (mean =

29, median = 14), but a few genes have many more than

the expected number of connections (>200). This is illustrated

by the distribution of connections in the network (Fig. 2B).

Eighty percent (35,912/44,872) of the connections in the net-

work had at least one end point incident on 19% (588/3056) of

genes. Since these genes are highly connected to other genes in

the network, they can influence the expression of many other

genes.

In addition to calculating various network parameters, we

assessed if our networks reflect known biological interactions by

examining the functions of neighboring genes. We found that

gene pairs that are correlated at |r| > 0.50 shared Gene Ontology

(GO) (Ashburner et al. 2000) annotations significantly (P < 10�16)

more than expected by chance. Among the 44,872 gene pairs

correlated at |r| > 0.50, 4936 (11%) have the same GO annotations

compared to a sampling of 10,000 randomly chosen gene pairs

where only 504 (5%) gene pairs shared the same GO annotations.

This analysis requires gene pairs to have identical GO annotations.

Genes in the same functional pathways do not always share the

same GO annotations. But despite this stringent criterion, a sig-

nificant result was obtained. This suggests that neighboring genes

in the networks are often related functionally.

We also examined chromosomal locations of gene pairs cor-

related |r| > 0.50. We found 126 gene pairs (Supplemental Table 2)

correlated at |r| > 0.50 were located within 500 kb of each other, and

this is significantly (P = 1.8 3 10�9) more than the 47 6 7 pairs in

the randomly paired gene sets. These findings suggest that genes

that are located close to each other on a chromosome tend to be

significantly correlated in gene expression.

Biological processes in B cells

To examine the subnetworks among the larger network, we parsed

the network into 3056 ‘‘local subnetworks.’’ Each subnetwork

consists of a ‘‘central gene’’ and genes that connect directly to

the central gene based on correlation threshold (i.e., ‘‘neighbors’’

of the central gene). We then examined the functions of genes

in each of the subnetworks using GO. Of the 3056 subnetworks,

2087 (68%) subnetworks showed significant enrichment for one

or more functional categories (Table 2). These categories include

basic cellular processes, such as RNA processing and protein

folding, as well as cell-type-specific processes, such as antigen

processing/presentation and response to DNA damage, which re-

flect the functions of B cells. Other studies have also found that

DNA damage repair is part of the normal developmental process of

lymphocytes (Bredemeyer et al. 2008), and processes such as pro-

tein folding are enriched in B cells (Dixon et al. 2007).

Some functional groupings are found together in many sub-

networks. For example, a subnetwork may include genes that play

a role in RNA processing and those that participate in protein

folding. We identified six pairs of functional groupings that are

found more often than expected by chance within the same sub-

networks (Table 3). Among the 2087 subnetworks, 102 sub-

networks include genes that play a role in glycolysis and trans-

lation, compared to only 37 such subnetworks in a random

network (P = 4.0 3 10�8). These findings suggest that processes

such as glycolysis and translation are functionally related or co-

ordinately regulated in B cells.

Predicting gene functions using coexpression networks

Next, we used the networks to determine gene functions. For each

subnetwork, we used the functions of the neighboring genes to

predict the functions of the central gene. First, we examined cen-

tral genes with known functions and asked whether our analysis

recapitulates those recognized roles. Among the 2087 subnetworks

that showed enrichment of one or more functional categories,

1824 central genes were annotated by GO. The functions of 368

(20%) of these genes were the same between GO and our

Figure 2. Coexpression network where connections are placed between genes that are correlated at |r| > 0.50. (A) The coexpression network includes
44,872 connections among 3056 genes. This network consists mainly of a giant connected component. (B) A histogram showing the distribution of
connections in the coexpression network.

Human gene coexpression network
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prediction. By comparison, in a random network (see Methods),

the overlap between GO and our prediction is only 8% (143/1789)

(P < 10�16). An example is RPL35, which is part of the large ribo-

somal subunit that is involved in protein translation (Uechi et al.

2001). In our network, 69 of its 114 neighbors are also involved

in translation (Pc = 10�73). Another example is TOP2A, a topo-

isomerase that alters topological states of DNA during replication

(Tsai-Pflugfelder et al. 1988); 32 of its 66 neighbors are involved in

mitosis (Pc = 10�41). In both cases, if we did not know the functions

of RPL35 and TOP2A, we would have been able to assign their

functions correctly based on the function of their neighbors.

We extended these analyses from GO to BIND protein–pro-

tein interactions (Bader et al. 2001) and KEGG pathways (Kanehisa

and Goto 2000) databases. While fewer central genes (135 in BIND,

167 in KEGG) could be analyzed in these databases compared to

GO (1824 genes), they allowed us to examine interactions and

pathways. The interactions of 46% (62/135) of genes were the

same between BIND and our prediction, whereas for a random

network, only 24% (25/105) of genes were the same (P = 4.1 3

10�4). The pathways for 61% (102/167) of genes were the same

between KEGG and our prediction, compared to only 20% (24/

120) in a random network (P = 4.6 3 10�12). For example, NDUFA3

encodes an NADH dehydrogenase subcomplex. When examining

the direct neighbors of NDUFA3, we observe an overrepresentation

of genes that participate in the ‘‘oxidative phosphorylation’’

pathway (Pc = 0.002). These results suggest that the coexpression

network can reveal gene interactions and functions.

These results encouraged us to use this approach to predict

the functions of poorly characterized genes in our coexpression

network. We defined poorly characterized genes as genes with no

PubMed articles and no Entrez Gene description. There are 66 such

poorly characterized genes in our network.

Among these 66 genes, we were able to pre-

dict the functions of 36 genes (55%); their

identity and predicted functions are listed in

Table 4. For the remaining genes, we did not

observe evidence of functional enrichment.

CHCHD2 is a gene that we were able to

characterize. CHCHD2 is connected to 83

genes in the coexpression network that are

enriched for genes that are involved in gly-

colysis (Pc = 0.003) and translation (Pc <

10�70) (Fig. 3) by GO annotation and also

by KEGG pathway analysis (‘‘glycolysis/

gluconeogenesis’’ [P = 0.04] and ‘‘ribosome’’

[P = 2.1 3 10�67]). Examination of the protein

domains of CHCHD2 reveals that it has

a coiled-coil–helix–coiled-coil–helix domain

that is structurally homologous to a yeast

protein, MRP10 (Marchler-Bauer et al. 2007).

MRP10 is essential for translation of mito-

chondrial genes in yeast ( Jin et al. 1997). To-

gether, these findings suggest that CHCHD2

plays a role in translation in human cells.

Another example is TMEM111, which is con-

nected to 17 genes in the coexpression net-

work. These genes are enriched for several GO

biological processes including endoplasmic

reticulum (ER) to Golgi vesicle-mediated

transport (Pc = 0.05), secretory pathway (Pc =

0.03), and macromolecule localization (Pc =

0.03) (Fig. 4A). Furthermore, by KEGG path-

way analysis, the TMEM111 coexpression network showed enrich-

ment for genes in ‘‘N-glycan biosythesis’’ (P = 0.04), further sug-

gesting that TMEM111 plays a role in the secretory pathway in the

endoplasmic reticulum. To validate this prediction, we treated im-

mortalized B cells from 10 unrelated individuals with tunicamycin,

an ER stress-inducing agent, and measured the expression level of

TMEM111. We found a significant (P < 10�5) increase in the ex-

pression level of TMEM111 in response to tunicamycin-induced ER

stress (Fig. 4B). The expression levels of five ER-associated neighbors

of TMEM111 (COPB2, TMED10, SSR2, DNAJB9, RPN2) were also

significantly increased (P < 10�5) in response to ER stress. These

results support our prediction that TMEM111 plays a role in ER-

mediated secretory pathways.

Predicting the functions of genes implicated in genome-wide
association studies (GWAS)

Of the 4238 genes in our network, 201 have been associated with

phenotypes in GWAS (Hindorff et al. 2009a). Of these, 140 genes

were connected to at least one other gene in our coexpression net-

work (Supplemental Fig. 1; http://www.geneticsofgeneexpression.

org/network/—select the tab labeled ‘‘GWAS’’).

We first examined genes whose roles in disease susceptibility

are fairly well understood. We found that the networks confirm

the known disease mechanisms and include other susceptibility

genes for those diseases. For example, TRAF1 was identified as

a susceptibility gene for rheumatoid arthritis (Plenge et al. 2007).

TRAF1 mediates TNF-stimulated signal transduction and plays

a role in apoptosis (Tsitsikov et al. 2001). In our coexpression

network, TRAF1 is connected to other apoptotic genes such as

CTNNAL1, HDAC1, CDC2, STAT5A, TNFRSF8, NFKBIA, BUB1B,

Table 2. Biological processes active in B cells

Process

No. (%) of subnetworks

P-valueObserved (N = 2087) Random (N = 2046)

RNA processing 313 (15%) 221 (10.8%) 5.8 3 10�5

Protein folding 240 (11.5%) 117 (5.7%) 3.7 3 10�11

Intracellular protein transport 198 (9.5%) 147 (7.2%) 0.0074
Response to DNA damage stimulus 184 (8.8%) 57 (2.8%) 1.1 3 10�16

Glycolysis 171 (8.2%) 61 (3%) 3.4 3 10�13

Secretory pathway 171 (8.2%) 6 (0.3%) <10�16

DNA replication 169 (8.1%) 37 (1.8%) <10�16

Antigen processing and presentation 98 (4.7%) 35 (1.7%) 5.4 3 10�8

Table 3. Biological processes that frequently co-occur within subnetworks

Process 1 Process 2

No. (%) of subnetworks

P-value
Observed
(N = 2087)

Random
(N = 2046)

Glycolysis Translation 102 (4.9%) 37 (1.8%) 4.0 3 10�8

Protein folding RNA processing 94 (4.5%) 23 (1.1%) 5.7 3 10�11

Antigen processing and
presentation

Translation 83 (4%) 10 (0.5%) 4.01 3 10�14

Protein folding Nucleotide biosynthetic
process

79 (3.8%) 8 (0.4%) 2.9 3 10�14

Antigen processing and
presentation

Glycolysis 73 (3.5%) 2 (0.1%) 2.2 3 10�16

Intracellular protein
transport

RNA splicing 73 (3.5%) 37 (1.8%) 0.00074
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TOP2A, IFI16, CD40, and TNFAIP3 (Pc = 4.7 3 10�4) (Fig. 5A). In the

TRAF1 subnetwork, two other genes, TNFAIP3 and CD40, have also

been implicated in rheumatoid arthritis (Raychaudhuri et al.

2008). These three genes, TNFAIP3, CD40, and TRAF1, modulate

the transcription factor activity of NFKB, a critical player in the

immune response (Perkins 2007). Another example is HMGCR,

which encodes HMG-CoA reductase, a target of statin drugs

(Endo et al. 1977). The HMGCR subnetwork is enriched for genes

that participate in sterol metabolic processes (Pc = 6.6 3 10�5) (Fig.

5B). LDLR is in the HMGCR subnetwork; genetic variants in LDLR

are associated with susceptibility to high cholesterol levels

(Kathiresan et al. 2008). These results imply that the coexpression

network provides candidate susceptibility genes for complex

diseases.

With the above findings, we explored other genes that have

been implicated in GWAS, but whose roles in disease pathogenesis

are unknown. Both common (Todd et al. 2007) and rare (Nejentsev

et al. 2009) variants of IFIH1 have been implicated in the

predisposition to type 1 diabetes (T1D). In our coexpression net-

work, IFIH1 is positively correlated with YES1 (rCEPH-Utah = 0.60;

rASN = 0.55; rYRI = 0.56), a tyrosine kinase that facilitates glucose

transport by mediating SLC2A4 (also known as GLUT4) trans-

location (Fig. 6A; Imamura et al. 2001). To determine if YES1

and IFIH1 are functionally related, we tested whether YES1 in-

fluences the expression of IFIH1. Since our samples are those in

the CEPH and HapMap collections, high-density SNP genotypes

are available on all samples (The International HapMap Consor-

tium 2003, 2005). We regressed the expression level of IFIH1 on

genotypes of SNPs in YES1 and found that variants in YES1 are

significantly (rs7232858, P = 0.01) associated with the expression

level of IFIH1. We also noted that an SNP (rs3786347) in YES1 is

nominally significant in a recent meta-analysis of type 1 diabetes

(P = 0.02) (Hulbert et al. 2007). This result suggests that IFIH1 in-

fluences the susceptibility of T1D by playing a role in glucose

transport. Studies have demonstrated that defects in glucose

Table 4. Predicted functions of poorly characterized genes based on the functions of their neighboring genes

Gene symbol Predicted functions (no. of genes in subnetwork with these functions)

AIMP2 Ribonucleoprotein complex biogenesis and assembly (13), protein folding (11), nucleotide biosynthetic process (7),
protein catabolic process (8), mitotic cell cycle (7)

C11orf58 RNA splicing (4), axoneme biogenesis (1), mRNA transport (2), protein amino acid O-linked mannosylation (1),
cytoplasmic sequestering of NFkB (1), cell morphogenesis (3)

C17orf85 RNA splicing (4)
C22orf28 Establishment of mitotic spindle (3), mitosis (9), protein folding (7), proton transport (4), heme metabolic process (2)
CHCHD2 Translation (59), glycolysis (4)
COPS7B Protein import (3)
COX4NB RNA processing (12), pyrimidine nucleotide biosynthetic process (4), protein folding (7), oligodendrocyte development (2),

tRNA processing (4), polyamine biosynthetic process (2), quinone cofactor metabolic process (2), cellular component disassembly (3),
biopolymer catabolic process (7)

DUS1L Protein polymerization (4)
FAM117A Pyrimidine nucleotide biosynthetic process (3), ER overload response (2), regulation of apoptosis (8), protein folding (6), translation (8)
GPN3 Double-strand break repair via homologous recombination (2), amine metabolic process (2)
MMS19L Alcohol metabolic process (3), protein import into nucleus (2), GMP metabolic process (1)
NUCKS1 Nuclear transport (3), RNA processing (4)
PMS2L3 Protein catabolic process (2)
POLR3G IMP metabolic process (2), purine nucleotide biosynthetic process (3), steroid hormone receptor complex assembly (1), response to

unfolded protein (2)
SLC35B1 Protein folding (5)
TM9SF3 Secretory pathway (8)
TMED3 Peptidyl-asparagine modification (2), protein folding (4)
TMED9 Protein localization (7)
TMEM111 tRNA aminoacylation for protein translation (2), secretory pathway (7)
TMEM165 RNA splicing (6), protein targeting (5)
UBXN1 ER to Golgi vesicle-mediated transport (4), energy derivation by oxidation of organic compounds (4), cell division (5),

purine ribonucleoside triphosphate biosynthetic process (3)
ZNF226 Pyrimidine nucleotide metabolic process (4), RNA processing (9), amino acid and derivative metabolic process (7),

ribonucleoprotein complex biogenesis and assembly (5), regulation of epithelial cell proliferation (2)

This is a partial list. For a complete list, please see Supplemental Table 3.

Figure 3. CHCHD2 subnetwork. This subnetwork consists of CHCHD2
(center) and its 83 direct neighbors. Genes colored in red are known to
play a role in translation. Genes colored in purple are involved in glycolysis.

Human gene coexpression network
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transport precede the onset of overt type 1 diabetes and that such

defects may play a role in the pathogenesis of diabetes (Unger

1991).

Another example is B3GALT4, which has been implicated in

influencing LDL cholesterol levels (Willer et al. 2008). B3GALT4

encodes a glycosyltransferase. While it is widely expressed in

multiple tissues, it is only known to act on ganglioseries glycolipid

biosynthesis. The role of B3GALT4 in influencing LDL cholesterol

levels remains poorly understood, although it is hypothesized to

glycosylate lipid receptors (Willer et al. 2008). In our coexpression

network, B3GALT4 is connected to 30 genes, and five of them play

a role in protein folding (Pc = 0.002) (Fig. 6B). This suggests that

B3GALT4 may influence cholesterol levels by affecting the folding

of proteins such as the LDL receptor. To further examine the role of

B3GALT4 in protein folding, we analyzed the expression of

B3GALT4 in cells with tunicamycin-induced ER stress. We found

that B3GALT4 was significantly increased (P = 0.03), suggesting

that B3GALT4 plays a role in the unfolded protein response. These

findings further support previous studies that have demonstrated

links between protein folding and cholesterol metabolism (Lee

et al. 2008).

Human gene coexpression website

In this study, we examined more than 8.5 million pairs of genes.

The results we reported are summaries of key points. To allow

readers to explore the data, we have developed a website, http://

www.geneticsofgeneexpression.org/network/, where one can in-

put a gene of interest and find genes that are correlated with it. The

underlying gene expression data used to calculate the correlations

are provided in graphical and tabular forms on this website.

Discussion
In this study, we took advantage of the extensive variation in ex-

pression levels of human genes to construct gene coexpression

networks. We analyzed gene expression data from one cell type,

immortalized B cells, of normal individuals. In contrast, previous

studies have pooled data from normal and diseased tissues to

construct coexpression networks; the resulting interactions may

not represent those in particular cells and/or tissues. To construct

networks, we used gene pairs that are correlated in three data sets

in order to minimize spurious correlations.

Our analysis shows that correlated genes often have similar

functions. This allowed us to identify the functions of unknown

genes based on functions of their neighbors in coexpression net-

works. Using this approach, we characterized the functions of 38

genes with no known functions, including those that were im-

plicated in GWAS as disease susceptibility genes. One of these

genes is TMEM111; we predicted that it plays a role in the endo-

plasmic reticulum. We confirmed this prediction by showing that

its expression level is responsive to tunicamycin-induced ER stress.

Another example is IFIH1, a susceptibility gene for type 1 diabetes.

In our network, the expression level of IFIH1 is significantly cor-

related with YES1, a kinase that is involved in GLUT4-mediated

glucose transport. We found that individuals with different poly-

morphic forms of YES1 have significantly (P = 0.01) different levels

of IFIH1, suggesting that IFIH1 may influence susceptibility to di-

abetes through its role in glucose transport.

In addition to allowing prediction of gene functions, the

coexpression networks provide candidate disease susceptibility

genes. There is evidence for non-random clustering of disease

susceptibility genes in the networks. The TRAF1 and HMGCR

subnetworks include more susceptibility genes for rheumatoid

arthritis and cholesterol levels, respectively, than expected by

chance (P < 10�6). Among the 4238 genes examined in this

study, seven genes have been implicated in rheumatoid arthritis

(Hindorff et al. 2009b). Three of these genes are part of the TRAF1

subnetwork, which is 30 times what we would expect by chance

based on the hypergeometric distribution (P = 9.9 3 10�7). This

suggests that although the remaining genes in these subnetworks

have not been implicated as susceptibility genes, some are likely to

be associated with increased risks of rheumatoid arthritis.

Since the disease susceptibility genes that are in a coexpression

network often participate in the same functional pathways, in-

teractions among these genes can be studied. Many of the sequence

variants identified in gene mapping studies, such as genome-wide

association, have only modest effects. While the contributions of

each gene to disease risk may be small, their contributions in ag-

gregate are likely to be more substantial. Thus, understanding their

Figure 4. TMEM111 subnetwork. (A) This subnetwork consists of
TMEM111 (center, gray) and its 17 direct neighbors. Genes colored in
green are known to function in the secretory pathway or the endoplasmic
reticulum. Genes colored in orange are involved in tRNA aminoacylation.
(B) Log2 expression of TMEM111 in 10 unrelated individuals before and
after treatment with tunicamycin.
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interactions is important for quantifying a person’s risk of de-

veloping a disease and for characterizing disease mechanisms.

In this study, we focused on B cells from normal individuals.

Similar analysis of coexpression networks for other human cell

types will elucidate the functions of other human genes and pro-

vide additional candidate disease susceptibility genes.

Methods

Samples and gene expression measurements
Immortalized B cell lines were obtained from Coriell Cell Re-
positories. Samples are those from individuals from four pop-
ulations: European-derived individuals from the Utah pedigrees
of the Center d’Étude du Polymorphisme Humain collection
(CEPH-Utah), N = 148; Han Chinese in Beijing, China, N = 43
(CHB); Japanese in Tokyo, Japan (JPT), N = 44; and Yoruba in
Ibadan, Nigeria (YRI), N = 60. The CHB and JPT samples were
combined as ‘‘ASN.’’ We first collected samples from the CEPH-
Utah collection, the majority of which were processed from
October 2002 through 2004. We then analyzed the HapMap

samples (ASN and YRI) when they be-
came available; these were processed in
2005 and 2006. However, we do not
consider batch effects to be a major con-
cern for our analyses, since samples from
each population were analyzed sepa-
rately. Furthermore, batch effects would
have resulted in significant differences
between populations, which we did not
observe in our analyses. Gene expression
was measured as described previously
(Cheung et al. 2005; Spielman et al. 2007;
Price et al. 2008). Briefly, expression levels
of genes were measured using Human
Genome Focus Arrays (Affymetrix). RNA
was extracted using the RNeasy Mini-Kit
(QIAGEN), amplified, labeled, and hy-
bridized as per the manufacturer’s in-
structions. Gene expression signals were
normalized using the MAS 5.0 algorithm
(Affymetrix). Expression intensity was
scaled to 500 and log2-transformed. The
NCBI GEO accession number for this col-
lection of microarray data is GSE12526.
For a subset of the data, we also normal-
ized the expression signals using RMA
(Irizarry et al. 2003). We compared the
gene correlations between MAS5.0 nor-
malized and RMA normalized data;
among the 8.9 million gene pairs, only
7515 (0.8%) gene pairs differed signifi-
cantly (Pc < 0.05). Thus, for the remaining
analyses, we used the MAS 5.0 normal-
ized data.

Gene correlation and construction
of the coexpression network

Of the 8793 genes on the microarray,
4238 (48%) genes were called ‘‘present’’
or ‘‘marginal’’ by the MAS 5.0 algorithm
(Affymetrix) in at least 80% of individuals
in one or more populations, and those
genes were considered as ‘‘expressed’’ in

our cells; we focused on these expressed genes for all analyses in
this project. For all possible pairs of genes, we calculated the
Pearson correlation of expression levels across individuals within
a population. This calculation was done separately for each pop-
ulation. Fisher’s test of homogeneity (Sokal and Rohlf 1995) was
used to identify correlations that were significantly different
(Bonferroni corrected, P < 0.05) among the three populations
(CEPH-Utah, ASN, and YRI). For gene pairs that were not signifi-
cantly different, we estimated weighted/common correlation co-
efficients (Sokal and Rohlf 1995). As an alternative to taking the
weighted/common correlation, we examined correlation co-
efficients upon pooling data from the populations, but found that
this did not change the results dramatically. Then, correlated gene
pairs were connected to construct a coexpression network. We
constructed multiple networks using different thresholds and
measured topological properties of the resulting networks. Corre-
lations and topological properties of the network were analyzed
using MATLAB (The MathWorks, Inc.). Networks were represented
as adjacency matrices in MATLAB, and standard MATLAB func-
tions were used to calculate the number of genes, the number of
connections, and the distribution of connections in each network.

Figure 5. TRAF1 and HMGCR subnetworks. (A) This subnetwork consists of TRAF1 (center, gray) and 20
direct neighbors. To simplify the figure, only the top 20 genes that are most correlated in expression
with TRAF1 are shown even though TRAF1 has 56 neighbors. CD40, TNFAIP3, and TRAF1 have been
implicated in the pathogenesis of rheumatoid arthritis and are marked with star symbols. (B) This
subnetwork consists of HMGCR (center, gray) and its direct neighbors.

Human gene coexpression network
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MATLAB functions for determining the clustering coefficient
(Watts and Strogatz 1998), gamma (Barabasi and Albert 1999), and
scale-free topology criteria (Zhang and Horvath 2005) were im-
plemented as previously described. Code will be provided upon
request. Figures of the resulting networks were drawn using
Cytoscape 2.6.0 (Shannon et al. 2003) or GraphViz (Ellson et al.
2002).

Random gene pairs and networks

Random gene pairs were genes that were paired randomly as op-
posed to being paired based on correlation patterns.

Random networks were constructed as described previously
(Maslov and Sneppen 2002). MATLAB code provided by S. Maslov
(http://www.cmth.bnl.gov/;maslov/matlab.htm) was used to gen-
erate random networks. Briefly, random networks consisted of the
same 4238 genes as in the observed networks and were constructed
to have the same topology as observed networks. To do this, a gene
in the random network had the same number of connections as in
the observed network, but its connections to other genes were
random instead of being based on correlation patterns.

Enrichment analysis

Enrichment analysis of Gene Ontology Biological Processes was
performed using BiNGO (version 2.3) (Maere et al. 2005) with
the default parameters except that the organism was set to ‘‘Homo

sapiens.’’ Enrichment was assessed using the hypergeometric test
with Benjamini-Hochberg correction (Benjamini and Yekutieli
2001). Significant enrichments were those with Pc < 0.05. En-
richment analysis for BIND protein interactions or KEGG Path-
ways was done using DAVID (Dennis et al. 2003; Huang da et al.
2009). Significant enrichments were those with Pc < 0.05 (using
Benjamini-Hochberg correction).

Co-occurrence of biological processes

To identify processes that were commonly found together among
subnetworks, we used the Apriori algorithm for frequent item set
mining (Agrawal et al. 1993), an implementation of which was
provided by C. Borgelt (http://www.borgelt.net/apriori.html). The
default parameters were used except that we focused our analysis
on pairs of biological processes and lowered the threshold of
minimal support to identify pairs of processes that occurred with
a frequency of 0.1% or more (in at least two subnetworks). The
output of this program lists all pairs of processes and how often
they were observed together in the subnetworks. We examined this
output to identify processes that are different (e.g., translation
differs from glycolysis), noted the number of times that these dif-
ferent pairs were observed among subnetworks, and compared the
observed counts with counts from a random network using a
x2 test.

Tunicamycin treatment

The following cell lines were treated with 4 mg/mL tunicamycin
(T7765; Sigma) in DMSO or only with 0.5% DMSO (untreated)
for 8 h: GM12146, GM12239, GM12144, GM12145, GM07022,
GM07056, GM06994, GM07000, GM07034, and GM07055. RNA
was extracted using the RNeasy Mini-Kit (QIAGEN), amplified, la-
beled, and hybridized as per the manufacturer’s instructions. Ex-
pression levels of genes were measured using Human Genome U133
Plus 2.0Arrays (Affymetrix). Gene expression signals were normal-
ized using the RMA algorithm (Irizarry et al. 2003). Changes in gene
expression were assessed by t-test.

Databases

A Catalog of Published Genome-Wide Association Studies database
was used to identify genes that have been implicated in genome-
wide association studies (http://www.genome.gov/26525384)
(Hindorff et al. 2009a).

Entrez programming utilities (Perl scripts) were used to access
information in PubMed (http://www.ncbi.nlm.nih.gov/pubmed/,
date accessed: March 2, 2009) and Entrez Gene databases (http://
www.ncbi.nlm.nih.gov/sites/entrez, date accessed: March 2,
2009). These databases were used to identify genes with no entry in
the ‘‘Description’’ field of the Entrez Gene database and no articles
in PubMed when querying with the gene symbol. The resulting
gene list was manually examined to confirm that these genes were
poorly characterized and there was nothing published about their
functions. Manual examination involved using the ‘‘Related Arti-
cles in PubMed’’ link for each gene on the Entrez Gene website
(which allowed us to identify and exclude genes in our list that are
well studied but are reported in the literature using an alterna-
tive gene symbol), and the GeneCards database (Rebhan et al. 1998).
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