Utilization of Cyclic Amides and Formation of ω-Amino Acids by Microorganisms¹

TETSUYA TOSA AND ICHIRO CHIBATA

Osaka Research Laboratory, Tanabe Seiyaku Co., Ltd., Kashima-cho, Higashiyodogawa-ku, Osaka, Japan

Received for publication 10 November 1964

In investigations on the utilization of cyclic amides by microorganisms, Noe and Nickerson (J. Bacteriol. **75:674**, 1958) studied the metabolism of γ -butyrolactam by *Pseudomonas aeruginosa*, and Kato and Fukumura (Chem. Ind. [London], p. 1146, 1962) reported on the bacterial breakdown of ϵ -caprolactam. But the formation of ω -amino acids, hydrolytic products of these cyclic amides, was not detected in either case.

To determine the occurrence of "cyclic amide hydrolase," we screened a number of microorganisms utilizing the cyclic amides (γ -butyrolactam, δ -valerolactam, ϵ -caprolactam, and pyroglutamic acid) for the production of ω -amino acids. The media contained 0.1% glucose, 0.05% sodium citrate, 0.7% K₂HPO₄, 0.2% KH₂PO₄, 0.01% MgSO₄·7H₂O, and the cyclic amide as the sole source of nitrogen. The utilization of cyclic amides was measured by growth of the microorganism, and the formation of ω -amino acids was detected by paper chromatography of the broth.

In the medium containing 0.2% L-pyroglutamic acid, 46 strains of bacteria (*Pseudomonas, Achromobacter, Serratia*, and *Proteus* species), 13 strains of streptomyces, 27 strains of molds, and 4 strains of yeasts, such as *Hansenula*, *Pichia*, *Saccharomyces* and *Torula*, utilized the acid for their growth. However, accumulation of glutamic acid in the culture broth was not observed.

In the medium containing γ -butyrolactam, δ -valerolactam, and ϵ -caprolactam at a final concentration of 0.1%, 32 strains of bacteria, 3 strains of streptomyces, 28 strains of molds, and 2 strains of yeast grew satisfactorily. Among these microorganisms, 7 strains of *Pseudomonas*, *Mycobacterium smegmatis*, and *Nocardia asteroides* accumulated ω -amino acids in the broth.

To determine which lactam was most readily utilized for growth, experiments were carried out with media S-5, S-6, and S-7, containing γ butyrolactam, δ -valerolactam, and ϵ -caprolactam,

¹ This investigation was presented at the Annual Meeting of the Agricultural Chemical Society of Japan, Tokyo, Japan, 4 April 1963.

TABLE	1.	Utilization	of	lactams	and	formation

	No. of strains						
		S-6 medium		S-7 medium			
Microorganisms	Tested	Growth	Forma- tion of δ- amino- valeric acid	Growth	Forma- tion of ε- amino- caproic acid		
Achromobacter del- marvae Pseudomonas aeru-	1	0	0	0	0		
ginosa	9	3	0	0	0		
P. fluorescens	8	3	1 1	3	3		
P. miyamizu	1	Ō	ō	Ŏ	ŏ		
P. myxogenes	2	0	0	0	Ō		
P. ovalis.	8	7	0	7	7		
$P. putida \ldots$	1	0	0	0	0		
P. schuylkilliensis	2	0	0	0	0		
P. striafaciens	1	0	0	0	0		
P. taetrolens	1	0	0	0	0		
My cobacterium							
smegmatis	1	1	1	1	1		
Nocardia asteroides .	1	0	0	0	0		
Absidia orchidis Aspergillus nidu-	1	1	0	1	0		
lans	1	1	0	1	0		
A. parasiticus Penicillium corym-	1	1	0	1	Ő		
biferum	1	1	0	1	0		
P. chrysogenum	2	2	0	2	Ō		
Hansenula anomela.	1	1	0	0	0		
Torula sp. TH-1	1	1	0	0	0		
Total	44	22	2	17	11		

* Shaking culture (110 cycle/min, 8-cm stroke, 45° angle) in test tubes was carried out for 6 days at 30 C. Growth of bacteria and yeasts was measured by the optical density at 660 m μ , and growth of molds and streptomyces was visually observed. Routine identification and rough quantitative estimation of liberated ω -amino acids were carried out by paper chromatography of the broth and subsequent ninhydrin reaction. respectively, at a final concentration of 0.2% (Table 1).

All of the tested microorganisms (except the two yeasts) utilized γ -butyrolactam for growth, but γ -aminobutyric acid was not detected in the culture broth. Therefore, γ -aminobutyric acid is assumed to be further metabolized without accumulation, as in the case of *Pseudomonas aeruginosa* (Noe et al., J. Bacteriol. **75**:674, 1958). δ -Valerolactam and ϵ -caprolactam were also utilized by many microorganisms for growth, and δ -aminovaleric acid and ϵ -aminocaproic acid were observed in the culture broth of strains of *P. fluorescens*, *P. ovalis*, and *M. smegmatis*.

The rate of formation of ω -amino acids from cyclic amides was compared by use of four strains of bacteria: *P. fluorescens* 174, *P. ovalis* 189, *P. ovalis* 193, and *M. smegmatis.* These bacteria were cultured for 72 hr in medium S-7, and the cells from 5 ml of culture broth were suspended in 0.5 ml of distilled water. A mixture of 0.5 ml of 0.1 M phosphate buffer (*p*H 5.6), 0.5 ml of 0.06 M δ -valerolactam or ϵ -caprolactam, and 0.5 ml of cell suspension was incubated for 24 hr at 37 C. ω -Amino acids formed were identified by paper chromatography and measured by the colorimetric ninhydrin method. All four strains hydrolyzed δ -valerolactam and ϵ -caprolactam to produce δ -aminovaleric acid and ϵ -aminocaproic acid, respectively. Of the tested strains, *P. ovalis* 189 showed the highest activities; that is, the rates of formation of ω -amino acids were 4.38 and 4.08 μ moles per 24 hr per ml of the reaction mixture from δ -valerolactam and ϵ -caprolactam, respectively.

This is the first report of the formation of ω amino acid from cyclic amides; it suggests the occurrence of "cyclic amide hydrolase" activity in microorganisms.

Acknowledgments

We are grateful to H. Mitsuda of Kyoto University and to M. Fujisawa and N. Sugimoto of this laboratory for helpful advice and encouragement.