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Population genetics is the study of allele frequency changes driven by various evolutionary forces such as mutation, natural
selection, and random genetic drift. Although natural selection is widely recognized as a bona-fide phenomenon, the extent to
which it drives evolution continues to remain unclear and controversial. Various qualitative techniques, or so-called “tests of
neutrality”, have been introduced to detect signatures of natural selection. A decade and a half ago, Stanley Sawyer and Daniel
Hartl provided a mathematical framework, referred to as the Poisson random field (PRF), with which to determine quantitatively
the intensity of selection on a particular gene or genomic region. The recent availability of large-scale genetic polymorphism
data has sparked widespread interest in genome-wide investigations of natural selection. To that end, the original PRF model is
of particular interest for geneticists and evolutionary genomicists. In this article, we will provide a tutorial of the mathematical
derivation of the original Sawyer and Hartl PRF model.
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1. Introduction

Selectionists and neutralists have fiercely debated, for the past
five decades, the extent to which Darwinian selection has
shaped molecular evolution. However, both camps do agree
that Darwinian selection is a bona fide natural phenomenon.
Therefore, various so-called “tests of neutrality” have been
developed to detect natural selection on a particular gene
or genomic location (for a review on this topic, see [1]).
However, these tests are often qualitative and only provide
the directionality of selection. A decade and a half ago, S.
Sawyer and D. Hartl provided a mathematical framework
with which to determine quantitatively the intensity of
selection on a particular gene, which they applied to the
Adh locus in the Drosophila genome [2]. This framework
is referred to as the Poisson random field (PRF) model.
They then further used this framework to analyze codon
bias in enteric bacteria [3]. Owing to the recent availability
of whole genome sequences and genome-wide human
polymorphism data, it has become increasingly tractable
to perform genome-wide scans for signatures of selection.

The PRF model has been applied to estimate the intensity
of selection on synonymous and nonsynonymous sites
throughout mitochondrial and nuclear genomes of a variety
of species, including human [4–12]. Very recently, due to the
advent of high-throughput experimental and computational
identification of genomic regulatory elements, there has been
an interest to estimate the intensity of natural selection on
regulatory mutations. Chen and Rajewsky [13] use the PRF,
among other techniques, to provide evidence for purifying
selection (even stronger than on nonsynonymous coding
sites) on a class of regulatory sites known as microRNA target
sites. Due to the potentially wide range of applications of, and
opportunities for theoretical extensions to, the PRF model,
it is an increasingly important mathematical framework for
quantitative geneticists. In this article, we will provide a
tutorial of the mathematical derivation of the basic PRF
model that was originally developed in [2]. The tutorial will
follow the outline provided below:

(i) Wright-Fisher model,

(ii) diffusion approximation to the Wright-Fisher model,
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(iii) derivation, via diffusion theory, of formulas describ-
ing evolutionary processes of interest,

(iv) derivation of the PRF using the above-mentioned
formulas.

The first three items are discussed in [14], and the last point
was originally presented in [2]. In this tutorial, we aim to
provide an integrated and comprehensive presentation that
is accessible to nonprofessionals or beginners in the field of
population genetics. Since the primary purpose is to review
mathematical derivations, familiarity with calculus and at
least a cursory knowledge of genetics will be helpful for the
reader.

2. The Wright-Fisher Model

The Wright-Fisher (WF) model describes the change in fre-
quency of a single mutation (derived allele) in a population
over time. The simplest version of the model makes the
following assumptions: (1) nonoverlapping generations, (2)
constant population size in each generation, and (3) random
mating, and is described as follows.

Consider a population of N diploid individuals that has
a single polymorphic site with two alleles, one ancestral and
one derived. Under this model, the frequency of the derived
allele in the current generation is a function of the selection
pressure on this allele and the binomial sampling effect with
probabilities proportional to the frequency of this allele in
the previous generation. The probability, pi j , that there are j
genes of the derived allele present at generation G + 1 given i
genes of the derived allele present at generation G is given by
the following binomial calculation:

pi j =
(

2N
j

)
(Ψi)

j (1−Ψi)
2N− j , (1)

where Ψi depends on the relative fitness of the derived allele.
Assuming no dominance and no recurrent mutation,

Ψi = x(1 + s)
x(1 + s) + (1− x)

, (2)

where 1 + s is the fitness of the derived allele relative to 1
for the ancestral allele, and x (which is simply i/2N) is the
derived allele frequency (daf) in generation G. In the simplest
model (no selection and no recurrent mutation),Ψi is simply
x or i/2N .

The intuition behind Ψi is the following. Consider the
scenario where both the ancestral and the derived alleles are
neutrally evolving (no or negligible selection pressure). In
this case, the probability of sampling a gene of the derived
allele from the population in generation G is simply the
frequency of the derived allele in generation G, i/2N or x.
This can be rewritten as x/[x + (1 − x)]. Now, suppose that
the derived allele is under some selection, s, meaning that
the fitness of the derived allele is 1 + s relative to 1 for the
ancestral allele. In this case, genes are sampled according
to their relative fitnesses (as in the equation for Ψi above).
Figure 1(a) provides a pictorial representation of the basic
Wright-Fisher model.

3. Diffusion Theory

We define p(t)
ki as the probability that a polymorphic site has

i genes of the derived allele at time t, given that it had k genes

of the derived allele at time 0. p(t)
ki satisfies the following:

p(t+1)
k j =

∑
i

p(t)
ki pi j , (3)

where pi j is given in (1).

It is convenient to change notation and write p(t)
ki as

f (x; p, t), so that the above becomes

f ( j; k, t + 1) =
∑
i

f (i; k, t) pi j . (4)

In this framework, it has been shown to be extremely
difficult to explicitly derive formulas for several quantities of
evolutionary interest. However, as the size of the population
approaches infinity (i.e., N→∞), and assuming that the
scaled selection pressure (Ns) and scaled mutation rate
(Nμ) remain constant, the discrete Markov process given
above can be closely approximated by a continuous-time,
continuous-space diffusion process (Figure 1(b)):

f (x + δx; p, t + δt) =
∫ 1

0
f (y; p, t) f (x + δx; y, δt) dy, (5)

where f (x; p, t) is the probability distribution of x at time t,
x is the daf at time t, p is the daf at time 0, and δx is the daf
change in time δt.

We can perform a Taylor series expansion on both sides
in δt and δx to derive the forward Kolmogorov equation:

∂ f (x; p, t)
∂t

= ∂2
[
b(x) f (x; p, t)

]
2∂x2

− ∂
[
a(x) f (x; p, t)

]
∂x

,

(6)

where

E(Δx) ≈ a(x) dt,

var(Δx) ≈ b(x) dt,
(7)

and a(x) and b(x) depend on the genetic model (e.g., see eq
(24).

Equation (5) can be represented diagrammatically as in
Figure 2. The probability of derived allele frequency x+ δx at
time t+δt is the product of the probability of moving from p
to x in time t and the probability of moving from x to x + δx
in time δt, summed over all possible values of x.

The frequency trajectory of a derived allele can also be
depicted as in Figure 3, which illustrates that the probability
of frequency x at time t + δt is the product of the probability
of moving from p to p + δp in time δt and the probability of
moving from p + δp to x in time t, summed over all possible
values of δp. This is formalized as follows:

f (x; p, t + δt) =
∫ 1

0
f (p + δp; p, δt) f (x; p + δp, t) d(δp).

(8)
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What is the probability of this ?

P(t)
ki = f (i; k, t)

f ( j; k, t + 1) =
∑
i

f (i; k, t)pi j

As 2N →∞

f (x + δx; p, t + δt) =
∫ 1

0
f (x, p, t) f (x + δx; x, δt)dx

(b)

Figure 1: Pictorial representation of the Wright-Fisher process and its diffusion approximation: (a) basic Wright-Fisher model assuming
selection, but no dominance or recurrent mutation and (b) diffusion approximation to the basic Wright-Fisher model.
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Figure 2: A diagrammatic intuition for (3) illustrates that the
probability of derived allele frequency x + δx at time t + δt is the
product of the probability of moving from p to x in time t and the
probability of moving from x to x + δx in time δt, summed over all
possible values of x.

We can again perform a Taylor series expansion on both sides
to derive the backward Kolmogorov equation:

∂ f (x; p, t)
∂t

= b(p)
∂2
[
f (x; p, t)

]
2∂p2

+ a(p)
∂
[
f (x; p, t)

]
∂p

.

(9)
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Figure 3: A diagrammatic intuition for (5) illustrates that the
probability of frequency x at time t + δt is the product of the
probability of moving from p to p + δp in time δt and the
probability of moving from p + δp to x in time t, summed over
all possible values of δp.

The forward and backward Kolmogorov equations have
played a central role in theoretical population genetics since
1922. For details regarding their derivation, we refer the
reader [15, Chapter 4]. Next, we will discuss how they
are utilized to derive formulas for various quantities of
evolutionary interest (yellow boxes in Figure 4).
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Absorbing states ?

Yes No

Forward KEHow many ?

TwoOne

At which boundary ? Backward KE Stationary distribution

x = 1x = 0

Backward KE Backward KE Pr(extinction)
Pr(fixation)

Mean time until absorption

Mean time until extinction Mean time until fixation

Figure 4: The utility of the Kolmogorov equations for studying evolutionary processes. Blue boxes correspond to questions that clarify the
assumptions of the genetic model being used, the red boxes correspond to when the Kolmogorov equations (KEs) are utilized, and yellow
boxes correspond to quantities of evolutionary interest.

In a model where there is two-way recurrent mutation
(i.e., there are no absorbing states, either extinction or
fixation), stationarity is achieved when the probability of
change in the derived allele frequency is no longer dependent
on time t. We solve for the stationary distribution, f(x), in the
following manner. First, we integrate through the forward
Kolmogorov equation with respect to x :

∂F(x; p, t)
∂t

= ∂
[
b(x) f (x; p, t)

]
2∂x

− [
a(x) f (x; p, t)

]
, (10)

F(x; p, t) =
∫ x

0
f (y; p, t) dy, (11)

where F(x; p, t) is the probability of the derived allele
assuming a frequency between 0 and x at time t. Therefore,
the derivative of F(x; p, t) with respect to t can be interpreted
as the probability flux (change in probability over time) of
the diffusion process. The stationary distribution, f(x), can
be solved by setting the probability flux equal to zero.

4. Derivation of Formulas Describing
Evolutionary Processes of Interest

Let us now focus on a genetic model that assumes no
recurrent mutation (i.e., two absorbing states, one at x =
0 and another at x = 1). As depicted by Figure 4, in
such a model, it is possible to determine the probability of
extinction (x = 0), the probability of fixation (x = 1), and
the mean time until absorption (either at x = 0 or x = 1)
by using the Kolmogorov backward equation (Figure 4). It
is also possible to derive the mean time until absorption
conditioned on always eventually reaching only one of the
two states. Since this quantity is not directly applicable to the
PRF, we do not review its derivation here, but instead refer
the reader to [14].

4.1. Probability of Extinction

Using (11), we arrive at an equation parallel to (9):

∂F(x; p, t)
∂t

= b(p)
∂2
[
F(x; p, t)

]
2∂p2

+ a(p)
∂
[
F(x; p, t)

]
∂p

.

(12)

The probability that the derived allele frequency, x, reaches 0
at or before time t follows from (11) and is given by

P0(p, t) =
∫ 0+

0
f (y; p, t) dy = F

(
0+; p, t

)
, (13)

where p is the initial frequency of the derived allele and 0+

indicates 0 + ε, where ε is very small.
Replacing F(0+; p, t) with P0(p, t), (12) can be written as

∂P0(p, t)
∂t

= b(p)
∂2
[
P0(p, t)

]
2∂p2

+ a(p)
∂
[
P0(p, t)

]
∂p

. (14)

As t→∞, P0(p, t) can be interpreted as the probability that
extinction ever occurs (independent of time) and can be
rewritten in the form P0(p). From (14), it is evident that
P0(p) satisfies the following equation:

0 = b(p)
∂2
[
P0(p)

]
2∂p2

+ a(p)
∂
[
P0(p)

]
∂p

. (15)

Solving (15), we arrive at the following:

P0(p) =
∫ 1
p ψ(y) dy∫ 1
0 ψ(y) dy

, (16)

where

ψ(y) = e−2
∫ y[a(z)/b(z)] dz (17)

and where a(z) and b(z) are defined as in (6).
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4.2. Probability of Fixation

The probability that the derived allele frequency, x, reaches 1
at time t follows from (11) and is given by

P1(p, t) =
∫ 1

1−
f (y; p, t) dy

= 1−
∫ 1−

0
f (y; p, t) dy = 1− F(1−; p, t),

(18)

where p is the initial frequency of the derived allele and 1−

indicates 1− ε, where ε is very small.
In (12), F(x; p, t) can be replaced by 1−F(x; p, t) without

any loss of generality. Also, by replacing 1 − F(1−; p, t) with
P1(p, t), (12) can be rewritten as

∂P1(p, t)
∂t

= b(p)
∂2
[
P1(p, t)

]
2∂p2

+ a(p)
∂
[
P1(p, t)

]
∂p

. (19)

By letting t→∞ and solving for P1(p), we arrive at the
following:

P1(p) =
∫ p

0 ψ(y) dy∫ 1
0ψ(y) dy

, (20)

where ψ(y) has been defined in (17) and a(z) and b(z) have
been defined in (6).

The probability of fixation and the probability of extinc-
tion must sum to 1. Using (16) and (20), we can verify that
this is indeed the case.

Consider a genetic model that assumes the presence of
selection, but no recurrent mutation, where a(x) = sx(1− x)
and b(x) = x(1 − x)/2N . Starting from (20), we can express
the probability of fixation under this genetic model in the
following manner:

P1(p) =
∫ p

0 e
−2
∫ y [a(z)/b(z)] dzdy∫ 1

0 e
−2
∫ y[a(z)/b(z)] dzdy

=
∫ p

0 e
−4Nsydy∫ 1

0 e
−4Nsydy

= 1− e−4Nsp

1− e−4Ns
.

(21)

4.3. Mean Time Until Either Extinction
or Fixation

We define φ(p, t) to be the density function of the time t
at which absorption occurs. The probability that absorption
occurs, at either boundary x = 0 or x = 1, by time t, is

P0(p, t) + P1(p, t) =
∫ t

0
φ(p, t) dt. (22)

Furthermore, since absorption must happen by t = ∞, we
know that

∫∞
0
φ(p, t) dt = 1. (23)

Performing integration by parts, we get the following:

−1 = −[tφ(p, t)]∞0 +
∫∞

0
t
∂φ(p, t)
∂t

dt. (24)

Equations (14), (19), and (22) show that φ(p, t) satisfies the
following equation:

∂φ(p, t)
∂t

= b(p)
∂2
[
φ(p, t)

]
2∂p2

+ a(p)
∂
[
φ(p, t)

]
∂p

. (25)

Using (25) and the fact that φ(p, t) approaches 0 faster than t
approaches∞, we can rewrite (24) as

−1 = 0 +
∫∞

0
t
[
b(p)

∂2
[
φ(p, t)

]
2∗∂p2

+ a(p)
∂
[
φ(p, t)

]
∂p

]
dt.

(26)

After interchanging the order of integration and differentia-
tion we get

−1 = b(p)
d2t(p)
2∗dp2

+ a(p)
d t(p)
dp

, (27)

where

t(p) = mean time until absorption

=
∫∞

0
tφ(p, t) dt =

∫ 1

0
t(p, x) dx

(28)

and t(p, x)dx is the mean time that the daf spends in the
interval (x, x + δx) before absorption occurs.

We are interested in the case, where p = 1/2N , since this
is the initial frequency of the derived allele. In this case, we
are interested only in values of x greater than 1/2N , and for
these values we can write

t(p, x) = 2P1(p)
∫ 1
x ψ(y) dy

b(x)ψ(x)
, (29)

and ψ(x) is defined in (17).
Under the simplest genetic model that assumes no

selection and no recurrent mutation, we can set s = 0 in (17)
and (21) and show that P1(p) reduces to p and ψ(y) reduces
to 1. It follows from this that (29) can be reduced to

t(p, x) = 2p(1− x)
x(1− x)/2N

= 4Np
x

. (30)

Under a genetic model where s /= 0, using γ = 2Ns, (29) can
be rewritten as

t(p, x) = 2N

(
2
(
1− e−2γp

)
/
(
1− e−2γ

)) ∫ 1
xe
−2γy dy

x(1− x)(e−2γx
) . (31)

After integrating and simplifying the terms, we obtain

t(p, x) = 2N

(
1− e−2γp

)(
1− e−2γ(1−x)

)
[
γ
(
1− e−2γ

)] [
x(1− x)

] . (32)
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Finally, substituting γ = 2Ns and p = 1/2N , and invoking
the approximation e−a = (1− a) for small values of a, t(p, x)
reduces approximately to

f (x) = t(p, x) ≈ 2
(
1− e−2γ(1−x)

)
[(

1− e−2γ
)] [

x(1− x)
] , (33)

where f (x)dx is a notation common in the literature
to represent the expected time for which the population
frequency of a derived allele is in the range (x, x + dx) before
eventual absorption.

5. Poisson Random Field Theory

S. Sawyer and D. Hartl expanded the modeling of site
evolution to multiple sites. Their model makes the following
assumptions: (1) mutations arise at Poisson times, (2) each
mutation occurs at a new site (infinite sites, irreversible),
and (3) each mutant follows an independent WF process (no
linkage). Sawyer and Hartl noticed from f (x) in (33), that

∫ x2

x1

θ f (x) dx =
∫ x2

x1

g(x) dx (34)

is the expected number of sites in the population with
derived allele frequency between x1 and x2 (where θ equals
2Nμ, the per-locus mutation rate). The function g(x), for
which the full expression is given below, is also referred to in
the literature as the limiting, equilibrium, or expected density
function for derived allele frequencies.

g(x) = θ
2
(
1− e−2γ(1−x)

)
[(

1− e−2γ
)] [

x(1− x)
] =4Nμ

1− e−2γ(1−x)(
1− e−2γ

)
x(1− x)

.

(35)

In a sample of size n, the expected number of sites with i
(which ranges from 1 to n − 1) copies of the derived allele
is defined as a function of g(x):

F(i) =
∫ 1

0
g(x)P(i | x) dx =

∫ 1

0
g(x)

(
n
i

)
xi (1− x)n−i dx.

(36)

The intuition behind F(i) is the following. The expected
number of polymorphic sites with population daf x that have
i copies of the derived allele out of n samples is given by
the product of the expected number of sites with population
daf x, g(x), and the probability that each of those sites
has i copies in the sample, which is given by the binomial
calculation in the right-hand side of (36). To determine the
expected number of sites with any population daf that have
i copies of the derived allele, this product must be integrated
over all possible values of x (resulting in F(i) above).

Consider the sample data X = (X1,X2,X3, . . . ,Xn−1),
where Xi is the observed number of sites with i copies of
the derived allele out of n. Sawyer and Hartl showed that
the number of derived alleles in the entire population at
a particular frequency is a PRF with mean density given
by (35) [2]. It follows, from the marking theorem on
Poisson processes [16], that each random variable Xi is an

independent Poisson distribution with mean equal to F(i)
[2]. This framework allows us to define the probability of
observing xi sites that have i copies of the derived allele (and
n− i copies of the ancestral allele) as the following:

P
(
Xi = xi | θ, γ

) = e−F(i)F(i)xi

xi!
. (37)

Since the Xi’s are independent, the probability of observing
X = (X1,X2,X3, . . . ,Xn−1) is given as

P(X) = L(θ, γ) =
n−1∏
i=1

P
(
Xi = xi | θ, γ

)
. (38)

The likelihood equation above provides a convenient means
of estimating the values of the parameters θ and γ. The
use of the PRF theory leads directly to a likelihood-ratio
test of neutrality. Λ is defined as the ratio of the likelihood
value under the maximum likelihood estimate of γ to the
likelihood value under the neutral value of γ. It is a standard
result that 2 lnΛ is asymptotically chi-square distributed
with one degree of freedom [17].

Sawyer and Hartl further extended the PRF model
in order to calculate the ratio of expected number of
polymorphisms within species to expected number of fixed
differences between species.In 1991, McDonald and Kreit-
man devised a 2-by-2 contingency table test of neutrality
that was later named the MK test [18]. In the traditional
MK test, a 2-by-2 contingency table is formed in order to
compare the number of nonsynonymous and synonymous
sites that are polymorphic within a species (RP and SP) and
diverged between species (RF and SF) (Table 1). The central
assumption of the MK test is that only nonsynonymous sites
may be under selective pressure (i.e., synonymous sites are
assumed to be neutrally evolving). If nonsynonymous sites
are evolving according to a neutral model, then the expec-
tation is that Pn/Ps = Dn/Ds. However, if nonsynonymous
sites are under negative selection, then the expectation is
that Pn/Ps > Dn/Ds, and if under positive selection, then
Pn/Ps < Dn/Ds. Sawyer and Hartl derived the formulas for the
expected values of SP, SF, RP, and RF using their PRF theory
[2]. Below are the derivations of each of these formulas. For
all of the derivations, assume that the data consists of samples
of size m and n from two different species.

5.1. Expected Number of Synonymous
Polymorphic Sites

Under neutral evolution (s = 0), the expected number of
polymorphic sites with population daf x can be computed by
taking the product of the per-locus mutation rate (θ = 2Nμ)
and the probability under a neutral model of a single
mutation having a frequency of x (from (30)):

gneutral(x) = θ
4Np
x

= 2Nμ
4N(1/2N)

x
= 4Nμ

x
= 2θ

x
. (39)
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Table 1: McDonald-Kreitman contingency table. 2-by-2 contingency table introduced by [18] for the inference of natural selection on
nonsynonymous coding sites.

MK Table No. of polymorphic sites No. of fixed substitutions

Synonymous SP SF

Replacement (nonSynonymous) RP RF

Now, consider species 1 with sample size m. The probability
that a polymorphic site, with population daf equal to x, is
detected as polymorphic in a sample of size m is given as

Pm(x) = 1− (all m are derived)− (all m are ancestral)

= 1− xm − (1− x)m.
(40)

The expected number of synonymous polymorphic sites,
with population daf x, in the species 1 sample is the product
of the expected number of synonymous polymorphic sites
with daf x in the population (gneutral(x)) and the fraction of
those that are expected to be detected in a sample of size
m(Pm(x)). It follows then that the total expected number of
synonymous polymorphic sites, with any population daf, in
the species 1 sample is computed by integrating the product
of gneutral(x) and Pm(x) over the range of possible values for
x:

L(m) =
∫ 1

0
gneutral(x)Pm(x) dx

= 2θ
∫ 1

0

1− xm − (1− x)m

x
dx

= 2θ
m−1∑
k=1

1
k
.

(41)

Finally, the total number of expected synonymous polymor-
phic sites in both species’ sample data is given as

SP = L(m) + L(n). (42)

5.2. Expected Number of Replacement
Polymorphic Sites

The derivation of the expected value of RP follows the
same logic. As described in (35), the expected number of
polymorphic sites with population daf x given some average
selection pressure γ is given by g(x). Similar to (41), the total
expected number of replacement polymorphic sites in the
species 1 sample is computed by integrating the product of
g(x) and Pm(x) from 0 to 1:

H(m) =
∫ 1

0
g(x)Pm(x)dx

=
∫ 1

0
g(x)

[
1− xm − (1− x)m

]
dx.

(43)

Finally, the total expected number of replacement polymor-
phic sites in both species’ sample data is given as

RP = H(m) +H(n). (44)

5.3. Expected Number of Synonymous
Fixed Substitutions

When s = 0, the expected number of fixed substitutions
in one species relative to another that diverged tdiv2N
generations ago is given as the product of the number
of total mutations and the probability of fixation of each
mutation. The number of total mutations is the product
of the mutation rate per generation and the number of
generations since divergence is

θtdiv2N. (45)

The probability of fixation is given in (21). As s approaches
0 (i.e., neutral evolution), the probability of fixationcan be
reduced to p using the approximation e−a = (1−a) for small
values of a. Thus, for a newly derived neutral allele that has
an initial frequency of 1/2N , the probability of fixation is also
1/2N .

Therefore, the total expected number of fixed substitu-
tions in species 1 is

(θtdiv2N)(
1

2N
) = θtdiv. (46)

However, given that the data are samples of the populations
from both species, not all sites identified as fixed substitu-
tions in the sample are truly fixed substitutions in the entire
population. The expected number of sites in the species 1
sample that fall into this category is given by∫ 1

0
Tm(x) gneutral(x) dx=θ

∫ 1

0

(
xm

2
x

)
dx =θ

∣∣∣∣xmm
∣∣∣∣

1

0
=θ 2

m
,

(47)

where Tm(x) = Pr(a derived allele daf x < 1 is observed
with x = 1 in a size m sample) and gneutral(x) is given in
(39).

Therefore, the total expected number of synonymous
fixed substitutions in both species’ sample data is given as

SF = θ
(
tdiv +

2
m

)
+ θ
(
tdiv +

2
n

)
= 2θ

(
tdiv +

1
m

+
1
n

)
.

(48)

5.4. Expected Number of Replacement
Fixed Substitutions

Similar to the calculation of (46), given some selection
pressure, γ, the expected number of fixed substitutions in one
species relative to another that diverged tdiv2N generations
ago is given as the product of (45) and (21):

(θ tdiv2N)
(

1− e−4Nsp

1− e−4Ns

)
. (49)
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Substituting 1/2N for p and invoking the approximation that
e−a = (1− a) for small values of a, we arrive at the following:

(θ tdiv2N)
(

2s
1− e−2γ

)
= θ tdiv

2γ
1− e−2γ . (50)

However, again, given that the data are samples of the
populations from both species, not all sites identified as fixed
substitutions in the sample are truly fixed substitutions in
the entire population. The expected number of sites in the
species 1 sample that fall into this category is given by

Q(m) =
∫ 1

0
Tm(x) g(x) dx = 2θ

∫ 1

0
xm−1 1− e−2γ(1−x)

(1− e−2γ)(1− x)
dx.

(51)

Therefore, the total expected number of replacement fixed
substitutions in both species’ sample data is given as

RF = θ
(

2γ tdiv

1− e−2γ + 2G(m)
)

+ θ
(

2γ tdiv

1− e−2γ + 2G(n)
)

= 2θ
(

2γ tdiv
1− e−2γ +G(m) +G(n)

)
,

where G(m) = Q(m)/2θ.

(52)

5.5. Estimating Parameters

It is possible to obtain estimates of θ and γ by setting
each of the observed values SP, RP, SF, and RF (Table 1)
to their PRF expectations given by (42), (44), (48), and
(52), respectively, and solving for the parameters. It has
been shown that these estimates are equivalent to maximum-
likelihood estimates [2, 19]. Bustamante et al. also eloquently
describe and implement a hierarchical Bayesian model for
parameter estimation [9].

6. Concluding Remarks

Sawyer and Hartl’s seminal presentation of the PRF in
1992 provided an innovative mathematical framework for
estimating selection pressures and mutation rates, which
are critical parameters that influence molecular evolution.
However, it is worth noting that the model does harbor
certain limitations. Foremost among these is the assumption
of site independence, which is equivalent to the assumption
of free recombination among mutations (i.e., no linkage).
Thus, the model may not be appropriate for many data
wherein strong linkage is present. Another limitation is
the assumption of infinite sites (i.e., each mutation is at a
new site). Although this assumption allows for a simpler
model, it is not always biologically appropriate, especially for
organisms that experience a higher mutation rate. Indeed,
recent work has shown that the assumption of infinite sites
can underestimate selection pressures and mutation rates
and even infer positive selection, when in fact there is weak
negative selection [20]. Recent theoretical work has focused
on relaxing these and other assumptions of the original
PRF model, so as to make it more appropriate for diverse
biological contexts. For a brief list of such studies, we refer

the reader to [20]. Ongoing theoretical and empirical work
in this area will undoubtedly continue to extend the power
of a PRF-based approach for population genetic inference.
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