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We develop methods to compare the positions of quantitative trait loci (QTL) with a set of genes selected by other methods,
such as microarray experiments, from a sequenced genome. We apply our methods to QTL for addictive behavior in mouse,
and a set of genes upregulated in a region of the brain associated with addictive behavior, the nucleus accumbens (NA). The
association between the QTL and NA genes is not significantly stronger than expected by chance. However, chromosomes 2 and
16 do show strong associations suggesting that genes on these chromosomes might be associated with addictive behavior. The
statistical methodology developed for this study can be applied to similar studies to assess the mutual information in microarray
and QTL analyses.
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1. Introduction

The association between a complex phenotypic trait and
genetic markers on the chromosomes can be detected
through statistical analysis, leading to the identification of
quantitative trait loci (QTL)—regions of the chromosomes
that appear to be associated with the phenotype. Quantitative
trait loci (QTL) are expected to be associated with the genes
controlling some aspects of the phenotype. One mechanism
by which a gene might be associated with the trait is through
altered transcription which is easily measured by microarray
analysis. Microarrays have the ability to measure a large
percentage of the genes in the genome, and this assessment
parallels the genome-wide scan performed by QTL methods.

Several investigators have considered combining QTL
and microarray data for studying a genetic trait. For example,
Wayne and McIntyre [1] proposed a way of identifying
candidate genes based on both QTL mapping and microarray
data, where loci for an interesting quantitative trait were
primarily used for prescreening genes. A parallel microarray

study focused on the filtered gene list and identified dif-
ferentially expressed genes related to the same trait. When
type I error is particularly emphasized, a QTL analysis
prescreen can be used to greatly reduce the number of
genes under consideration, and hence reduce the effect
of multiple testing. When the objective of the research is
gene discovery, a combined analysis can focus attention
on genes and QTL most likely to be associated with the
trait. Fischer et al. [2] developed a web-based software
tool for combined visualization and exploration of gene
expression data and QTL. The methodology developed
in this work is complementary to the analyses that can
be performed on the GeneNetwork website (WebQTL,
http://www.genenetwork.org/), which allows assessment of
the relationship between gene expressions and QTL in
recombinant in bred mice [3].

Comparing QTL and microarray data is not completely
straightforward. The estimated range of QTL positions is
generally wide, containing many possibly interesting genes.
In addition, QTL analysis may also miss some interesting
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genes [1]. The high level of experimental errors and
limitations in microarray data analysis inevitably introduce
mistakes in the identification of relevant genes. Finally,
QTL studies include the entire genome including noncoding
regions, while microarray studies seldom include the entire
genome.

Further problems arise when we try to associate phe-
notypes with gene expressions in specific tissues. While the
association is direct if the tissue from which transcription
is assayed defines the phenotype, unanticipated associations
can arise if the tissue indirectly regulates the phenotype—for
example, bone strength may be regulated through physical
activities regulated by the brain. Alternatively, association
can arise through pleiotropic expression of the gene in a
tissue not included in the expression study but in which
the gene plays a role in the phenotype. In addition, the
association between a phenotype and a tissue may depend
on ephemeral conditions that may not be present when the
tissue was collected for the microarray study or on a small
percentage of cells in the organism, which may be masked by
bulk tissue preparation.

In this paper, we suggest methods to examine the strength
of association between a set of genes and a set of intervals
along the genome. The methods identify genomic intervals
with unusually high numbers of genes in the set, and hence
genes and genomic intervals which are more likely to be
associated. The methodology is not tied to the data source.
Typically, the genes will be chosen from a gene expression
study, while the genomic intervals will be QTL. The methods
by which the regions and genes are selected affect the
biological interpretation of the results, but not the statistical
assessment of association.

2. Methods

Our objective is to determine whether genomic intervals
on the chromosome (usually QTL) and gene loci (often
selected from gene expression studies) are collocated on the
chromosome. This requires matching of gene loci to genomic
intervals and then measuring the strength of association.
Quantitative trait loci (QTL) are often measured in recom-
bination distance, while gene loci are usually reported as
physical distances. In this section, we first discuss conversion
between recombination and physical distances. We then
discuss 2 approaches to measure strength of association.

2.1. Converting Recombination Distance to
Physical Distance

Quantitative trait loci (QTL) are reported in centimorgans
(cM), which measure recombination frequencies between
markers on a chromosome. Gene locations are usually
measured by the physical distance in base pairs (bp) or
megabase pairs (1 Mb = 106 bp). To match QTL sets and
gene sets, we adopted the embedded conversion tool in
expressionview [2] to estimate physical distances from cM,
using a subset of genes for which both distances are available.
The “smoothing window” technique used in expressionview

essentially applies piecewise regression. In regions in which
expressionview appeared to give poor estimates, we also used
polynomial regression to estimate physical distance from cM
by using genes for which both measures are available. Any
QTL with a resulting span that extends beyond the end of a
chromosome is truncated.

2.2. Measures of Association Based on
Completeness and Accuracy

For convenience, we denote a set of QTLs, such as drug abuse
QTLs, by Q, and a set of genes, such as the NA genes, by G.
A natural approach is to consider the percentage of genes in
G covered by at least one QTL in Q. The association between
Q and G is strong if this number is big. This quantification
reflects the “completeness” of Q in terms of covering G. A
complementary approach is to consider whether each QTL in
Q covers at least one gene in G. If a QTL in Q covers no genes
in G, it is called “empty”; otherwise it is “nonempty.” The
association between Q and G is strong when the percentage
of empty QTL is small. This quantification reflects the
“accuracy” of Q in terms of covering G.

If Q is strongly associated with G, we expect both
completeness and accuracy to be high. However, the two
methods do not necessarily give the same result because they
are measuring complementary aspects of an association. As
quantitative trait loci (QTL) are added to Q, we expect higher
completeness because the QTL in Q cover more segments of
each chromosome. However, if these quantitative trait loci
(QTL) are unrelated to G, we expect many of them to be
empty. Similarly, as genes are added to G, we expect higher
accuracy because selected genes are found in more locations.
But if the additional genes are unrelated to Q, we expect few
of them to be covered by Q.

To account for the effect of increasing the size of Q
or G, we need to develop a combined measure on both
completeness and accuracy together to answer the question:
is the overall association strong? We propose an appropri-
ately weighted average of completeness and accuracy which
penalizes for adding spurious QTL or genes to the sets.

Let N be the number of genes in G, M be the number of
QTL in Q, n be the number genes in G covered by Q, and
m be the nonempty QTL in Q, then completeness C = n/N ,
and accuracy A = m/M. We define the combined measure of
association as

S = C

M
+
A

N
. (1)

The weight is chosen to diminish the effect of matching
by chance. When M increases, more of the genome will be
covered by Q; we compensate by dividing by M. We weight
accuracy by 1/N to penalize for increasing the size of G in the
same fashion.

The limiting behaviors of the combined measure S satisfy
the need to differentiate a strong association from a noisy
one in which matching results by chance. Let s be the
number of genes in G which really match some QTL in
Q. Correspondingly, let r be the number of QTL in Q that
really match some genes in G. Note r usually is not equal
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to s. Besides the true matching relationship, every gene has
probability p = p(M) of being covered by Q leading to
u genes which are covered by chance. On the other hand,
every QTL has a probability 1 − q = 1 − q(N) of being
empty with respect to G, so that it has a probability q of
being “nonempty” leading to v QTL which are nonempty by
chance. Completeness can be written as

C = s + u

N
. (2)

Thus, the expectation of C is straightforward:

EC = s + (N − s)p
N

. (3)

Similarly,

A = r + v

M
,

EA = r + (M − r)q
M

.

(4)

Then,

ES = r + s + (N − s)p + (M − r)q
MN

. (5)

Consider the following limiting circumstances: (1) (perfect
match) when s → N and r →M, ES monotonically increases
to the limit (M + N)/MN; (2) (totally random) when s → 0
and r → 0, ES monotonically decreases to the limit (Np +
Mq)/MN; (3) (G has spurious genes) when N → ∞ and M
is fixed, notice q = q(N) → 1 in this case, ES will converge
to p/M; (4) (Q has spurious QTL) when M → ∞ and N is
fixed, notice p = p(M) → 1 in this case, ES will converge to
q/N. From the above, it can be concluded that the combined
measure S will approach its maximum when a perfect match
arises and decrease when the association weakens in some
respect.

3. Statistical Tests for Accuracy
and Completeness

Until the biology is fully understood, we cannot be certain
if the association between Q and G is due to chance.
We, therefore, want to study the pair of hypotheses H0:
there is no stronger association between QTL and genes
than expected by chance, that is, we cannot benefit from
combining the results; Ha: the association is stronger than
expected by chance. In this section, we determine the
statistical significance of the observed levels of association by
comparing with the null distribution of completely random
association determined by simulation. Random selection of
QTL is not readily done as selection of random intervals
along the chromosomes because we do not know the location
of all possible QTL. Hence random selected intervals are
unlikely to model the true distribution of QTL. However,
since the physical locations of all genes on the microarray are
known, random sets of genes are readily created by choosing
genes at random and considering the null distributions of

Table 1: Estimated limiting extrema of combined measure S.

Limiting case defined in
Section 2

Conditional Unconditional

Random selection 0.00406 0.00389

Spurious genes 0.0069 0.00160

Spurious QTL 0.00237 0.00229

Theoretical maximum S .0144

Observed S .00758

completeness or accuracy of the QTL sets with respect to
these randomly chosen genes.

To assess the strength of association between a QTL set
Q and a gene set G of size N, we compute the completeness
and accuracy of Q. We then select genes at random from
all the genes represented on the microarray. The simplest
way to do this is to select N genes at random from the
array. However, since there is considerable variability in the
percentage of tissue-specific genes on each chromosome and
since the QTL may not be randomly distributed among
chromosomes, we can also consider selecting Ni genes from
the ith chromosome, where Ni is the number of genes in the
gene set on the chromosome. We call the latter method the
conditional method because the random selection strategy
is conditional on the number of genes in G on each
chromosome. By contrast, the former method, which selects
genes completely at random, is called the unconditional
method. It is not entirely clear when the conditional and
unconditional methods are more appropriate or powerful.
When the gene set and quantitative trait loci (QTL) are
distributed across all of the chromosomes, we might expect
that the conditional method will be more powerful as well
as more precise. However, when there are chromosomes
with no genes in G, the unconditional method should be
more powerful, as it takes into account the probability that
QTL and genes in the gene set may not be on the same
chromosome, whereas the conditional method uses only
information about the chromosomes which include genes
in G. Conversely, when there are chromosomes with no
QTL in G, the conditional method may be more powerful
because genes selected from these chromosomes will not
contribute to completeness or accuracy under conditional
random sampling strategy.

By repeatedly selecting gene sets at random either condi-
tionally or unconditionally and computing the completeness
and accuracy for Q, an unconditional or conditional null
distribution is then simulated. The P-values for the observed
completeness C, accuracy A, and combined measure S are the
percentages of simulated datasets for which the simulated C,
A, and S are as strong as or stronger than the corresponding
observed values. The estimated P-values are displayed in
Table 1 based on 10000 sets of randomly selected genes.
Since the P-values are based on count data, we also consider
3 continuity corrections which differ in how the rejection
region includes the observed counts. The simulations took
about 296 seconds on a 2.8 GHz computer with 2 GB of RAM
running Windows XP.
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As part of the simulation, we can also compute the distri-
bution of number of genes covered by each QTL. Percentiles
of this distribution can be used to identify quantitative
trait loci (QTL) that have unusually large coverage on the
observed data and are thus more likely to be associated with
genes implicated in the QTL condition.

3.1. Chi-Square Tests of Association

The count of nonempty QTLmi and covered genes ni of each
chromosome can be used to construct a chi-square-type of
test for either accuracy or completeness. Using chromosomes
as the natural category, we define the chi-square (X2) test
statistic as

X2 =
T∑

i=1

(Xi − EXi)
2

EXi
∼X2

T−1 under H0:

the link is no different from random,

Xi = ni,mi,

(6)

where EXi under H0 can be estimated by random sampling
genes, and T is the total number of chromosomes. Under
H0: the link is no different from random; EXi is the same
as expected counts when genes are selected at random. For
a given set of QTL, we can repeatedly sample random genes.
The average of observed counts of nonempty QTL or covered
genes is a consistent estimator for EXi and is quite accurate
since we repeat sampling many times. A true association
between QTL and genes will increase the observed counts
which result in a larger chi-square test statistic. As well,
the chi-square test provides us with additional insight in
identifying potential candidate differentially expressed genes,
if quantitative trait loci (QTL) are mapping the same or very
similar quantitative traits as the partner microarray study.
On the one hand, a chromosome that has a large positive
value suggests a region of strong association with the gene
set, and hence lends support to the hypotheses that the QTL
and the covered genes are associated with the trait of interest.
Conversely, a chromosome for which Xi − EXi is a small
positive value or a larger negative value suggests that the QTL
and the covered genes may not be associated with the trait.
Thus, association between the Q and G can also be used to
select QTL and genes which are more likely to be of interest.

3.2. Materials

We apply our methods to a set of mouse QTL identified
from the literature and a set of mouse genes identified
from a microarray study. First, we identified a set of 120
QTL associated with drug abuse behaviors in mice [4]
from the Mouse Genome Informatics (MGIs) database
(http://www.informatics.jax.org). A set of 166 genes that
are preferentially expressed in the nucleus accumbens (NA)
region of the mouse brain (the NA genes) was determined
from a microarray study of brain tissues [5] using Affymetrix
MG-U74Av2 arrays. This array contains about 1/3 of the
coding genes in the mouse genome. Briefly, the NA genes
were identified as being expressed at least 1.5 fold higher in
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Figure 1: Combined visualization of QTL and NA genes. The short
discrete horizontal segments are the spans of the QTL defined as
+/−5 centimorgans (cM) from the peak QTL position. The small
circles in the center of every segment are the peak positions of the
QTL. Finally, the vertical lines are the NA genes.

the nucleus accumbens compared to two other brain regions,
the medial basal hypothalamus and preoptic area, in one-
day-old C57BL/6J mouse pups. The study did not include
replication, so the statistical significance of the expression
differences cannot readily be assessed; association of these
genes with QTL, therefore, becomes an important tool
to help assess the biological significance of the observed
differential expression.

The two brain regions used for comparison are physically
close to the NA on the ventral surface of the brain but are
largely derived from a different embryonic region of the brain
(diencephalon compared to telencephalon for the NA). The
NA plays an important role in drug abuse-related behavior.
Our primary objective was to determine if the QTL and gene
expression studies are detecting a set of genes in common
that might be related to drug abuse behaviors. However,
because the NA genes are selected based on their expression
in a selected region of the brain, rather than their direct
involvement in drug abuse behaviors, we need to be cautious
about the biological interpretation of an association between
the QTL and the gene set.

3.3. Results

Figure 1 shows the correspondence between the set of QTL
and the set of NA genes. The long horizontal dashed lines
are numbered to represent the mouse chromosomes. No
data were available regarding gene expression or QTL on the
very short Y chromosome. The positions of the NA genes
were determined using the Affymetrix metadata for the MG-
U74Av2 (version 1.10.0) array provided in the Bioconductor
suite in R [6].

http://www.informatics.jax.org
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Table 2: Simulated one-sided P-value for the hypothesis H0: the association is not stronger than expected by chance.

Measure Observed Definition of P-value Conditional Unconditional

C (Completeness) 0.446
p (# >observed) 0.144 0.329

1/2p (# =observed) + p (# >observed) 0.168 0.357

p (# ≥ observed) 0.192 0.385

A (Accuracy) 0.642
p (# >observed) 0.328 0.544

1/2p (# =observed) + p (# >observed) 0.361 0.576

p (# ≥ observed) 0.395 0.608

S (Combined) .0076
p (# >observed) 0.213 0.441

1/2p (# =observed) + p (# >observed) 0.229 0.459

p (# ≥ observed) 0.245 0.478

Table 3: P-value from the chi-square test for the hypothesis H0: the
association is not different from expected by chance.

Chi-square test Conditional Unconditional

P-value (Completeness) 0.902 0.041∗

P-value (Accuracy) 0.608 0.246
∗Significant at 5% level.

No obvious matches between the QTL set and the NA
genes can be seen in Figure 1. The visual impression does
not support a strong association between QTL and genes.
The observed completeness is 44.6%, and the observed
accuracy is 64.2%. The observed S is .0076, compared with
the theoretical maximum for S of 0.014. p(M), and q(N) can
be estimated from the simulation and hence we can estimate
the three local minima under limiting circumstances 2, 3, and
4 discussed in Section 2.

Table 1 displays the comparison of S values under both
randomization and limiting circumstances. Although it is far
from the maximum, the observed S is above all the estimated
local minima for genes selected at random.

The P-values for completeness, accuracy, and S are in
Table 2. The P-values for the conditional tests are smaller
than those for the unconditional tests, which is expected
since there are chromosomes with NA genes but no QTL.
However, there is no indication that there is significant
association between the NA genes and the QTL set.

The results of the chi-square test are in Table 3.
The unconditional chi-square test supports the hypothesis
that the completeness is higher than expected by chance,
but accuracy is only marginally higher than expected by
chance—that is, more genes are covered than expected, but
the number of QTL containing genes in G is about what
is expected by chance. For example, chromosomes 2 and
16 have much higher positive values than expected under
unconditional sampling which suggests that the genes on
these two chromosomes are more likely to be associated with
the drug abuse trait, and the QTL on these two chromosomes
are more likely to be associated with the NA region than
genome-wide average.

Two genes on chromosome 2, Pax6 (paired box gene
6) and Pcna (proliferating cell nuclear antigen) and one
on chromosome 16, Tiam1 (T-cell lymphoma invasion and

metastasis 1) lie under QTL and have some relationship
to addictive behavior traits. Given that differences in gene
expression were used as the criterion for selecting genes, it is
not unexpected that two of these genes, Pax6 and Tiam1, are
transcription factors. Pax6 plays a role in differentiation of
precursor cells into neurons and glia and is altered in models
of fetal alcohol syndrome [7]. Tiam1 is known to regulate
growth cone morphology, a process that can be altered by
drugs of abuse [8].

We note that chromosome 18 includes a gene that is
just outside a QTL region. To better understand the effect
of a small change in the QTL definition, we increased the
length of the QTL by 0.5 Mb, which is less than a 5% increase
in length for most QTL. Although most of the measures
of association and their statistical significance are scarcely
affected, the P-value for the conditional chi-square test of
completeness changed from 0.910 to 0.182. This finding
further supports the conjecture that the completeness in our
study may be higher than expected by chance. On the other
hand, this also demonstrates that the proposed chi-square
test is not robust against the disturbance in data than the
previous simulation-based tests.

A similar chi-square test can be used to determine if a
particular QTL covers more genes than expected by chance.
For example, the 3 QTL on chromosome 16 and the QTL
on chromosome 18 all cover more genes than expected by
chance, but none of the QTL on chromosome 19 are more
accurate than expected by chance.

4. Conclusion and Discussion

A strong association was expected between the NA genes
and the drug abuse QTL, but this hypothesis was not fully
supported by the data. A possible reason is that there
are a number of QTL not associated with NA genes. In
addition, this large set of QTL is associated with diverse drug
abuse traits, including both physiological and psychological
factors, and hence may be associated with multiple brain
regions. As well, because the genes were selected from an
unreplicated study based on fold change, we can expect large
false detection and nondetection rates. A large false detection
rate implies that the NA genes likely include several genes
which are not associated with the NA and are, therefore,
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similar to genes selected at random. We can also expect a
large number of false nondetections which should induce
a correspondingly large impact on the power to detect the
accuracy of the QTL.

Completeness, accuracy, and the combined measure have
been proposed as methods to determine whether a set of QTL
and a set of genes are associated. The statistical significance
of the association can be estimated by selecting sets of genes
at random from the population of genes from which the
gene set was determined. When P-values or other measures
of strength of association between the trait of interest and
the QTL are available or when some QTL are of particular
interest a priori, we might consider weighting the measures
of accuracy so that a penalty is incurred if a QTL highly
associated with the trait is empty, and a gain is incurred
if a gene is covered by a highly associated QTL. Weights
on the QTL can readily be incorporated in the simulations
required to estimate the P-values because the QTL are fixed
in the simulation. Weights on the genes are less readily
handled because weights are not available for genes selected
at random. In this study, we did not use weights—however,
several QTL are represented more than once in the QTL set,
because the same QTL was identified from multiple sources.
For example, on chromosome 1, there are 3 QTL identified
in 3 studies investigating different phenotypes and located
identically. These QTL may be caused by the same gene or by
nearby genes. The chromosome locations covered by these
QTL have higher weight in the computation of both accuracy
and completeness. Removing duplicate QTL did not alter the
conclusions for this set of genes and QTL.

The chi-square test provides a simple method to identify
QTL and genes from the gene set that are most highly
associated. A QTL that covers more genes than expected by
chance is likely to include a cluster of genes from the gene
set, which lends credence to the hypotheses that the QTL
and the covered genes are associated with the trait of interest.
Some examples of this have been detected in these data, for
example, the QTL on chromosomes 16 and 18 are more
accurate than expected under unconditional sampling. The
chi-square tests appear to be more sensitive than the other
suggested tests to small changes in the definition of the QTL,
particularly when a chromosome has only a small number
of QTL, and the change in definition changes mi or ni. The
other tests of accuracy and completeness or the combined
measure appeared to be more robust against changes of the
same magnitude.

The data and R code can be accessed from http://www
.stat.psu.edu/∼naomi/QTLsoftware/.

References

[1] M. L. Wayne and L. M. McIntyre, “Combining mapping
and arraying: an approach to candidate gene identification,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 99, no. 23, pp. 14903–14906, 2002.

[2] G. Fischer, S. M. Ibrahim, G. A. Brockmann, et al., “Expression-
view: visualization of quantitative trait loci and gene-expression
data in Ensembl,” Genome Biology, vol. 4, no. 11, R77, pp. 1–6,
2003.

[3] J. Wang, R. W. Williams, and K. F. Manly, “WebQTL: web-based
complex trait analysis,” Neuroinformatics, vol. 1, no. 4, pp. 299–
308, 2003.

[4] M. Jung, unpublished honors, B.S. thesis, The Pennsylvania State
University, University Park, Pa, USA, 2003.

[5] D. J. Vandenbergh, J. A. Mong, L. C. Klein, et al., “Prenatal
nicotine exposure regulates gene expression in a sexdependent
manner,” Tech. Rep., Department of Statistics, The Pennsylva-
nia State University, University Park, Pa, USA, 2004.

[6] R. C. Gentleman, V. J. Carey, D. M. Bates, et al., “Bioconductor:
open software development for computational biology and
bioinformatics,” Genome Biology, vol. 5, no. 10, R80, pp. 1–16,
2004.

[7] R. Yelin, H. Kot, D. Yelin, and A. Fainsod, “Early molecular
effects of ethanol during vertebrate embryogenesis,” Differen-
tiation, vol. 75, no. 5, pp. 393–403, 2007.

[8] N. Matsuo, M. Terao, Y.-I. Nabeshima, and M. Hoshino, “Roles
of STEF/Tiam1, guanine nucleotide exchange factors for Rac1,
in regulation of growth cone morphology,” Molecular and
Cellular Neuroscience, vol. 24, no. 1, pp. 69–81, 2003.

http://www.stat.psu.edu/~naomi/QTLsoftware/
http://www.stat.psu.edu/~naomi/QTLsoftware/

	Introduction
	Methods
	Converting Recombination Distance to Physical Distance
	Measures of Association Based on Completeness and Accuracy

	Statistical Tests for Accuracyand Completeness
	Chi-Square Tests of Association
	Materials
	Results

	Conclusion and Discussion
	References

