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Abstract Research over the last 5 years has firmly

established that learning and memory abilities, as well as

mood, can be influenced by diet, although the mechanisms

by which diet modulates mental health are not well

understood. One of the brain structures associated with

learning and memory, as well as mood, is the hippocampus.

Interestingly, the hippocampus is one of the two structures

in the adult brain where the formation of newborn neurons,

or neurogenesis, persists. The level of neurogenesis in the

adult hippocampus has been linked directly to cognition

and mood. Therefore, modulation of adult hippocampal

neurogenesis (AHN) by diet emerges as a possible mech-

anism by which nutrition impacts on mental health. In this

study, we give an overview of the mechanisms and func-

tional implications of AHN and summarize recent findings

regarding the modulation of AHN by diet.
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Introduction

As much as diet has an impact on cardiovascular health,

cancer risks and longevity, it has also an impact on mental

health. Research over the last 5 years has now clearly

established that our learning and memory abilities, as well

as our mood, can be influenced by diet, not only during

development, but also during adulthood (reviewed in [35]).

For example, low intake of omega-3 fatty acids is associ-

ated with several forms of cognitive decline in the elderly

[31], whereas a diet rich in it is associated with the

prevention of cognitive decline [116]. Interestingly, rodents

with omega-3 fatty acids deficiency showed impaired

performance in spatial memory tasks, which could be

rectified after dietary replenishment [26]. Moreover,

omega-3 fatty acid concentrations are lower in patients

with depression [68], and its supplementation has even

emerged as a potential treatment for depression [30, 42].

Likewise, the intake of flavonoids is positively correlated

with cognitive function [119] and mood [78]. Although

these studies emphasize an important role of diet on mental

health, further work is necessary to determine the mecha-

nisms underlying these behavioural effects.

One of the brain structures associated with learning and

memory, as well as mood, is the hippocampus. Interest-

ingly, the hippocampus is one of the two structures in the

adult brain where the formation of newborn neurons, or

neurogenesis, persists. Adult hippocampal neurogenesis

(AHN) has been linked directly to cognition and mood

(reviewed in [126]); therefore, modulation of AHN by diet

could emerge as a possible mechanism by which nutrition

impacts on mental health. In this study, we give an overview

of the mechanisms and functional implications of AHN and

summarize recent findings regarding its modulation by diet.

Neural progenitor/stem cells, adult hippocampal

neurogenesis and the neurogenic niche

Neural progenitor cells are self-renewing, multipotent cells

that generate neurons, astrocytes and oligodendrocytes in
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the nervous system [32]. Although neural progenitor cells

with the potential to give rise to neurons in vitro appear to

be ubiquitously present within the adult mammalian CNS,

newborn neurons have been consistently found only in two

privileged areas of the adult brain: the subgranular zone

(SGZ) in the dentate gyrus of the hippocampus [48] and the

subventricular zone (SVZ) of the lateral ventricles [2]

(Fig. 1). Adult neurogenesis has been found in all mam-

mals studied to date, including humans [24]. The process

of adult neurogenesis encompasses the proliferation of

resident neural progenitor cells and their subsequent

differentiation, migration and functional integration into

the pre-existing circuitry. During AHN (Fig. 1), neural

progenitor cells proliferate in the SGZ and give rise to

immature neurons. Many die within 2 weeks, but the sur-

viving neurons then migrate into the molecular layer [51].

The surviving neurons then send axons to the CA3 region

and the hilus to form functional synapses with hilar inter-

neurons and CA3 neurons within 3 weeks [113]. Next,

these new neurons start also to receive synaptic inputs from

the cortex and are capable of firing action potentials [118].

Therefore, these newly generated neurons become physi-

ologically mature and functionally integrated in the circuit.

It is still not perfectly understood why neurogenesis is

restricted to the hippocampus and the SVZ, given that neural

progenitor cells have been isolated from many CNS regions.

It is hypothesized that the microenvironments of the SGZ

and SVZ, known as the neurogenic niche, may have specific

factors that are permissive for the differentiation and inte-

gration of new neurons [81]. In the SGZ, adult hippocampal

progenitors are found within a dense layer of granule cells.

Within this microenvironment, there are also astrocytes,

oligodendrocytes, other types of neurons and blood vessels.

Anatomical analysis has identified the vasculature as one

potential important constituent of the neurogenic niche [90].

Hippocampal astrocytes also play an important role in AHN

as they have been shown to promote the neuronal differen-

tiation of adult hippocampal progenitor cells and the inte-

gration of newborn neurons [102]. Blockade of the Wnt

signalling pathway inhibits the neurogenic activity of

astrocytes in vitro and AHN in vivo, suggesting that hippo-

campal astrocytes may act through this pathway [66].

Another study also suggests that astrocytes in areas outside

the SGZ and SVZ of adult mice express high levels of ephrin-

A2 and -A3, which present an inhibitory niche, negatively

regulating neural progenitor cell growth [45].

Molecular and epigenetic control of adult hippocampal

neurogenesis

The control of AHN is very complex and remains to be

fully elucidated. Over the last 10 years, many signals have

been implicated in the regulation of AHN and they inter-

vene at the stages of proliferation, differentiation, migra-

tion and integration. In the following, we highlight some of

the important molecular players in the regulation of AHN

known to date.

Regulation of proliferation and differentiation of adult

hippocampal progenitor cells

Extrinsic factors

Morphogens, growth factors, cytokines, neurotransmitters

and hormones are extrinsic factors that have been found to

play a role in regulating AHN (reviewed in [126]). We

highlight here some of the important and potentially rele-

vant factors relating to nutrition. Over ten growth factors

and neurotrophins have been found to influence AHN.

Fibroblast growth factor (FGF-2) and epidermal growth

factor (EGF) are the primary mitogens used in vitro to

propagate neural progenitor cells, and FGF-2 is hypothe-

sized to play a permissive role in vivo in hippocampal

progenitor cell proliferation [82]. Indeed, it has been found

that deletion of fibroblast growth factor receptor-1 in the

CNS decreases hippocampal progenitor cell proliferation

[127]. Another key growth factor is brain-derived neuro-

trophic factor (BDNF), which has been shown to increase

AHN when infused into the hippocampus [99]. BDNF

binds several receptors, including p75 and TrkB, and

decrease in either TrkB activity or BDNF protein levels

causes reductions in neurogenesis [65, 97]. However,

controversy still exists on how BDNF affects neurogenesis

(e.g. proliferation vs. survival/differentiation). Hormones

have also been shown to modulate AHN; for example,

corticosterone decreases proliferation and neurogenesis

[11] and male pheromones increase neurogenesis in female

mice [71]. The target cells of many extrinsic factors are

unknown; therefore, in addition to direct potential effect on

the progenitor cells, these growth factors could promote

changes in other cell types within the neurogenic niche

and have an indirect influence on adult hippocampal

progenitors.

Intracellular factors

We highlight here some recently identified intracellular

mechanisms implicated in AHN, including some tran-

scription factors and epigenetic modulators. Several tran-

scription factors have been shown to play critical roles in

AHN. Amongst these, TLX, an orphan nuclear receptor, is

required for proliferation [17, 125] and the basic helix–

loop–helix transcription factors, Neurogenin2 (Ngn2) and

NeuroD, direct proliferation and specify neuronal fate,

respectively [96]. In addition, genes involved in cell cycle
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regulation, DNA repair and chromosomal stability are

required for the proper function of the adult hippocampal

progenitor (reviewed in [126]). Moreover, AHN is also

subject to epigenetic regulation, and both DNA methyla-

tion and histone acetylation are important. For example, the

histone deacetylase inhibitor, valproic acid, induces neu-

ronal differentiation of adult hippocampal progenitors most

likely through the induction of neurogenic transcription

factors including NeuroD [39]. Furthermore, mice with

Gadd45b deletion exhibit specific deficits in neural activ-

ity-induced proliferation. Mechanistically, Gadd45b is

required for activity-induced DNA demethylation of BDNF

and FGF promoters [70].

Migration

Newborn neurons in the adult hippocampus only migrate a

short distance into the granule cell layer and little is know

about the regulation of this step. It has been suggested that

cyclin-dependent kinase 5 (cdk5) is involved in migration,

as single cell-specific knockdown of cdk5 in newborn

hippocampal cells leads to aberrant growth of dendritic

processes, which is associated with an altered migration

pattern of newborn cells [43]. Disrupted-in-Schizophrenia

(DISC1) has also been implicated as its down-regulation

leads to aberrant migration further into the granule cell

layer [20]. A more recent study shows that DISC1 is also

involved in proliferation of adult hippocampal progenitor

cells through the GSK3b/b-catenin signalling pathway

[73].

Survival and integration

As described earlier, newborn neurons integrate into the

hippocampal circuitry; however, the mechanisms involved

in their integration are currently not well understood.

Nevertheless, studies have shown that the survival of

newborn neurons depends on sensory inputs. For example,

DG

Neocortical
Association

Areas

Entorhinal
Cortex

DG

CA3

CA1

OB SVZ

RMS

1

2

3

Fig. 1 Schematic

representation of the sagittal

view of a rodent brain

highlighting the two neurogenic

zones of the adult mammalian

brain: the subventricular zone

(SVZ) of the lateral ventricles

and the subgranular zone of the

dentate gyrus (DG) in the

hippocampus. Neurons

generated in the SVZ migrate

through the rostral migratory

stream (RMS) and are

incorporated into the olfactory

bulb. The hippocampal region

contained in the black square is

enlarged showing (1) neural

progenitor cells in the SGZ of

the DG proliferating, (2)

migrating into the granule cell

layer and (3) maturing into new

granule neurons. These integrate

into the hippocampal circuitry

by receiving inputs from the

entorhinal cortex and extend

projections into the CA3
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their survival is influenced by the animal’s experience,

such as exposure to an enriched environment. Signalling

through the glutamate N-methyl-D-aspartate (NMDA)

receptor plays a cell autonomous role in the neuron sur-

viving during the third week after birth and coincides with

the formation of dendritic spines and glutamatergic inputs

[109].

Functionality of adult hippocampal neurogenesis

The data discussed above clearly demonstrate that adult-

born hippocampal neurons are functional and integrate into

the hippocampal circuitry. However, the incorporation of

AHN into current concepts of hippocampal network func-

tion and behaviour is complex.

Learning and memory

The implication of AHN in learning and memory is sup-

ported by some correlative and ablation studies, as well as

by computational modelling. AHN varies amongst differ-

ent genetic backgrounds in mice and a correlation between

the level of hippocampal neurogenesis and the performance

in hippocampal-dependent learning tasks is observed

between mice of different strains [49, 112]. Environment

also has a major impact on AHN (this will be discussed in

detail later), and changes in neurogenesis induced by the

environment correlates with performance in hippocampal-

dependent learning tasks. These studies establish only a

correlation; therefore, it is possible that other factors such

as structural plasticity, neurotrophin or hormone levels also

contribute to genetically and environmentally induced

changes in hippocampus-dependent learning and memory.

Newborn neurons represent only a small cell population

within the adult hippocampus. It is therefore difficult to

imagine how such a small number of cells can influence the

function of the hippocampus. Interestingly, 3- to 5-week-

old new neurons exhibit a reduced threshold for induction

of long-term potentiation [33]. Accordingly, it has been

hypothesized that the new neurons that are young when

events occur have a specialized role in encoding, storage

and in temporally relating one event to another [1],

explaining a possible requirement of newborn neurons in

the process of learning and memory.

To investigate whether hippocampal neurogenesis is

required for hippocampus-dependent learning tasks, a

variety of approaches have been taken to reduce or even

ablate completely dividing cells in the hippocampus.

Blockade of neurogenesis has been achieved with phar-

macological, radiological and genetic strategies (reviewed

in [22]). None of these methods specifically ablate adult

progenitors and lead sometimes to controversial results.

These divergences might be due to differences in animal

species, strains and the behavioural procedures. Moreover,

all current studies have employed behavioural tasks based

on lesion models where the whole hippocampus is affected.

Impaired learning and memory caused by a decreased

AHN would be easier to detect if the test were targeted at

challenging the newborn neurons as they constitute only a

small volume in the hippocampal structure. Therefore, to

ultimately prove the function of AHN, approaches with

selective ablation of newborn neurons in the dentate gyrus

associated with specific behavioural tests need to be

developed in the future.

Mood regulation

Recently, it has been proposed that AHN might play a role

in mood regulation and in the aetiology of major depres-

sion [7, 120]. This idea arises from two lines of evidence.

The first is that AHN is reduced by stressful experiences, a

causal factor in the pathogenesis of major depression.

Moreover, AHN is reduced in animal models of depression

[19]. The second line of evidence indicates that many

treatments for depression have been shown to enhance

neurogenesis in laboratory animals; these factors include

electroconvulsive therapy (ECT) [100] and common anti-

depressant drugs, such as selective serotonin reuptake

inhibitors (SSRIs) [72]. The long time scale for recovery

when humans are treated pharmacologically for depression

(several weeks) parallels the long time scale of stimulated

neurogenesis that is induced by ECT and SSRIs in non-

depressed animals [72, 100]. Moreover, the effects of

SSRIs on neurogenesis are selective for the hippocampus,

leaving the ongoing stem cell proliferation in the SVZ

unchanged [23]. Finally, in several animal models of

depression, disruption of neurogenesis blocks the behav-

ioural efficacy of SSRIs [98].

One of the mechanisms thought to mediate reduction of

AHN by stress is the elevation of corticosterone by an

activated hypothalamic–pituitary–adrenal axis. Indeed,

corticosterone decreases cell proliferation, whereas adre-

nalectomy increases AHN. Moreover, glucocorticoid levels

are increased in a variety of stress paradigms and adre-

nalectomy prevents the stress-induced suppression of AHN

(reviewed in [79]).

One of the molecular candidates for mediating both

neurogenic and behavioural effects of antidepressant is

BDNF. Indeed, the levels of BDNF expression and AHN

are co-regulated by both stress and antidepressants [21].

Moreover, infusion of BDNF into the dentate gyrus mimics

the effect of antidepressants, but antidepressants fail to

increase AHN with compromised BDNF-TrkB signalling,

suggesting that this pathway is required for neurogenesis

induced by antidepressants [65].
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Adult hippocampal neurogenesis in CNS pathologies

AHN responds to neurodegenerative diseases such as

Alzheimer’s and Parkinson’s diseases. Conflicting obser-

vations have been reported on the level of AHN in Alz-

heimer’s disease mouse models, but the majority reports a

decrease (reviewed in [58]). Mouse models of Parkinson’s

disease over-expressing the wild-type human a-synuclein

show a decrease in the survival rate of newborn hippo-

campal neurons (reviewed in [111]). AHN is also influ-

enced by many other pathological conditions. For example,

it is increased in epilepsy [44] and stroke [115], whereas it

is decreased in HIV infection [87], and the integration of

newborn neurons is disrupted by CNS inflammation [41]. It

is apparent that AHN is influenced by neurological dis-

eases; however, further studies are needed to understand

the roles and consequences of AHN changes in patholog-

ical events.

Environmental modulation of adult hippocampal

neurogenesis

AHN can be modulated by various physiological condi-

tions and the environment (Fig. 2). Ageing has a negative

effect on AHN, and aged rodents display impaired learning

and memory abilities (reviewed in [55]). Stress is also a

major negative regulator of AHN, inducing depressive

behaviour (reviewed in [79]). Sleep has recently appeared

as another important regulator of AHN. Whilst disruption

of sleep for a period shorter than 1 day has little effect on

the basal rate of cell proliferation, prolonged restriction or

disruption of sleep leads to a major decrease in hippo-

campal neurogenesis. It has been proposed that adverse

effects of sleep disruption may be mediated by stress and

glucocorticoids. However, a number of studies clearly

show that prolonged sleep loss can inhibit hippocampal

neurogenesis independently of adrenal stress hormones

(reviewed in [77]). Interestingly, sleep deprivation also

disturbs memory formation (reviewed in [105]) and this

suggests that promoting AHN may be a mechanism by

which sleep supports learning and memory processes.

Social isolation is a stressful experience in rodents and has

been shown to be another negative regulator of AHN that

correlates with learning abilities [69]. Pregnancy [95] and

maternal experiences [64] in rodent also have a negative

impact on AHN. These are associated with a decline in

performance in hippocampus-dependent tasks during

pregnancy and the reduced AHN may be an outcome of

pregnancy-induced changes in the immune response rather

than of hormonal changes [95]. During the postpartum

period, the decrease in AHN is dependent on elevated basal

glucocorticoid levels [64]. Decreases in AHN during the

postpartum period could be linked to postpartum depres-

sion experienced by some women.

In contrast, running and enriched environment promote

AHN and enhanced spatial learning abilities. Running

increases the proliferation [117], whereas enriched envi-

ronment increases the survival rate of newborn neurons

[52, 109]. Both enriched environment and exercise lead to

increased synaptic formation and up-regulation of neuro-

trophins (e.g. BDNF); however, they most likely act via

dissociable pathways. Olson et al. [88] suggest that exer-

cise leads to the convergence of key somatic and cerebral

factors in the dentate gyrus to induce cell proliferation,

whereas enriched environment induces cell survival by

cortical restructuring as a means of promoting survival.

The regulation of AHN by neural activity suggests that

learning might also induce the activation of newborn

neurons and enhance their survival and incorporation into

circuits. Indeed, AHN is increased upon learning, but only

by learning tasks that depend on the hippocampus

(reviewed in [63]).

The deleterious effect of many negative regulators of

AHN, including ageing [50], stress/depression (reviewed in

[10]) and pregnancy [95], can be offset by running or

providing an enriched environment in rodents. However,

the molecular mechanisms by which physiological and

environmental changes influence AHN remain to be fully

understood.

Dietary modulation of adult hippocampal neurogenesis

Diet is another important environmental factor that can

influence AHN. Diet can impact on AHN from four dif-

ferent levels: calorie intake, meal frequency, meal texture

and meal content (Fig. 3). Not only do these four param-

eters modulate AHN in rodents (Table 1), but independent

rodent studies and intervention or epidemiological studies

in human have shown that they also modulate cognitive

performance and mood (Table 2).

Calorie restriction can extend lifespan, improve behav-

ioural outcomes in some experimental animal models of

neurodegenerative disorders and enhance spatial learning

(reviewed in [76]). It was shown more recently that a

reduction in calorie intake of 30–40% increases AHN in

rodents, and that this effect is partly mediated by BDNF [61,

62]. We have also found that independent of calorie intake,

meal frequency is a key player in modulating AHN. Indeed,

without reducing calorie intake, extending the time between

meals increases AHN. It also changes hippocampal gene

expression and correlates with performance in hippocam-

pus-dependent tasks and mood (S. Thuret, unpublished

data). However, further studies are ongoing to understand

the mechanisms by which calorie restriction and meal
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Fig. 3 Overview of the impact

of diet on adult hippocampal

neurogenesis. The red dots
symbolize newborn neurons in

the dentate gyrus of the
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276 Genes Nutr (2009) 4:271–282

123



frequency modulate AHN and mental health. Interestingly,

food texture also has an impact on AHN; rats fed with a soft

diet, as opposed to a solid/hard diet, exhibit decreased

hippocampal progenitor cell proliferation. The authors

hypothesize that chewing resulting in cell proliferation is

related to corticosterone levels [4]. Interestingly, indepen-

dent studies have shown impairment in learning and mem-

ory abilities with similar soft diets [59, 114]. If chewing

plays a role in AHN, these data could be particularly rele-

vant to the ageing population with cognitive decline where

dental weakening might limit the chewing ability.

Meal content offers the most flexibility to regulate

AHN, as a variety of bioactives/nutrients have been iden-

tified as potential modulators. For example flavonoids,

which are enriched in foods such as cocoa and blueberries,

have been shown to increase AHN in chronically stressed

rats [3], and the authors hypothesized that this effect might

be mediated by BDNF. Moreover, independent studies

have shown that treatment with flavonoids improves

symptoms of depression [18] and improves spatial working

memory in ageing rats [122]. Interestingly Williams et al.

[122] have also identified BDNF as a potential mediator of

the effect of flavonoids on cognition. Deficiency in zinc

inhibits AHN [14] and induces depression in rodents [110],

whereas independent intervention studies have shown the

efficacy of zinc supplements in improving symptoms of

depression (for review [108]). Corniola et al. [14]

hypothesized that zinc plays a role in AHN by regulating

p53-dependent molecular mechanisms that control neuro-

nal precursor cell proliferation and survival.

Some bioactives act in a dose-dependent manner on

AHN. Some can induce AHN at low doses or at a very

precise physiological dosage and inhibit AHN at high doses.

For example, excess retinoic acid decreases AHN and leads

to depressive behaviour and impaired spatial learning in

rodents [16, 86]. A deficiency in retinoic acid will lead to

similar effects on AHN and mental health, but its effects are

reversed by re-establishing a normal level [9]. Caffeine is

another dose-dependent bioactive. Indeed, consumed at low

doses chronically, Han et al. [36] have shown that it

decreases AHN and performance in hippocampus-depen-

dent learning tasks in rodents. Interestingly, at supra-

physiological doses, there is an increase in proliferation of

neuronal precursors. However, neurons induced in response

to supra-physiological levels of caffeine have a lower sur-

vival rate than control cells and increased proliferation does

not yield an increase in AHN [121]. Curcumin is a natural

phenolic component of yellow curry spice that increases

AHN in rodents [53] and epidemiological studies have

reported better cognitive performance from curry

Table 1 Modulation of adult hippocampal neurogenesis (AHN) by diet

Diet Study models Effect on AHN References

Caloric restriction/dietary restriction Rat Increased survival [60]

Mouse Increased survival [62], [61], [54], [8]

Omega 3 fatty acids Rat Increased (DHA) [46]

Flavonoids Rat, chronically stressed Increased proliferation [3]

Blueberry Rat Increased proliferation [12]

Curcumin low concentrations Mouse Increased proliferation [53]

Retinoic acid excess Mouse Decreased proliferation [16]

Vitamin A deficiency Rat Decreased proliferation (rescued with retinoic acid) [9]

Thiamine deficiency Mouse Decreased proliferation/survival [128]

Zinc deficiency Rat male Decreased proliferation/survival [14]

Folate deficiency Mouse Inhibited proliferation [56]

Increased homocysteine Mouse Inhibited proliferation [93]

[57]

High fat Male rat Decreased proliferation [67]

Female rat No change

Soft diet Rat Decreased proliferation [4]

Caffeine

At physiologically relevant doses Mouse Decreased proliferation [121]

At supraphysiological doses Mouse Increased proliferation/decreased survival [121]

Low doses, chronically Rat Decreased proliferation [36]

Ethanol Rat Decreased proliferation [84], [37]

Mouse Decreased proliferation [103]

DHA docosahexaenoic acid
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consumption in ageing populations [83]. Moreover, in vitro

studies have shown that curcumin exerted biphasic effects

on progenitor cells; low concentrations stimulated cell

proliferation, whereas high concentrations were cytotoxic.

Curcumin activates extracellular signal-regulated kinases

(ERKs) and p38 kinases, cellular signal transduction path-

ways known to be involved in the regulation of neuronal

plasticity and stress responses [53].

Table 2 Modulation of learning and memory and depressive behaviour by diet

Diet Effect on learning and memory Effect on depressive behaviour Study models References

Caloric/dietary

restriction

Enhanced spatial learning in aged rats Rat [104]

Enhanced cognitive performance in

females only

Rat [74]

Increased learning and motor

performance

Mouse [40]

Increased learning consolidation Mouse [28]

Omega 3 fatty acids Improved (EPA) Human [42]

Delayed onset of depressive periods Human (bipolar) [106]

Decreased Human (bipolar) [89]

No benefit 6 g/day EPA Human (bipolar) [47]

Improvement with 1 g/day EPA Human (bipolar) [30]

Various effects with various

concentrations of various fatty

acids

Human For review: [5]

Improved spatial memory Mouse

Alzheimer

model

[38]

Improved acquisition and retention in a

T-maze foot shock avoidance test

Mouse

Senescence-

Accelerated

[92]

Flavonoids Improved Rat [18]

Improved For review: [119]

Blueberry Increased spatial memory Rat [122]

Polyphenol/flavonoids/

berry

Positive impact Various animals For review: [123]

Improved Rat [78]

Curcumin Improved cognitive performance Human [83]

Retinoic acid excess Increased Mouse adult [86]

Vitamin A/retinoid

deficiency

Impaired spatial learning and memory Rat adult [13]

Impaired relational memory Mouse adult [25]

Zinc Improved Rodents For review: [108]

Improved Human For review: [108]

Improved Human [85]

High fat Decreased spatial learning Rat [80]

Decreased learning and memory and

Increased risk for dementia

Rat [124]

High sugar Impaired spatial learning Rat [107]

Low glucose

(extracellular)

Impaired memory Rat aged [34]

Soft diet Impairment of learning ability and

memory

Rat Alzheimer

model

[59]

Caffeine Improved object recognition Mouse [15]

Reduced risk Human [101]

Ethanol Improved associative learning with

moderate chronic consumption

Mouse male [94]

Deficits Human [91]

EPA eicosapentaenoic acid
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Finally, it is important to note that independent of cal-

orie intake, diets with high-fat content are detrimental and

impair AHN in male rats. The authors hypothesize that

high dietary fat intake disrupts AHN through an increase in

serum corticosterone levels, and that males are more sus-

ceptible than females [67].

BDNF and corticosterone levels appear to be common

protagonists of dietary modulated AHN; however, they

are unlikely to be the only mediators. For example, fur-

ther studies will need to be done to investigate if dietary

factors modulate AHN by modifying the neurogenic

niche. The vasculature [90] and astrocytes [102] are

important constituents of the neurogenic niche and inter-

estingly flavanol-rich foods can positively enhance corti-

cal blood flow [27, 29] and are regulators of astrocytic

signalling pathways and gene expression [6]. Such chan-

ges in the neurogenic niche in response to flavanols might

underpin neuro-cognitive improvements through the con-

current promotion of adult hippocampal neurogenesis.

Forthcoming studies will not only need to refine the

molecular mechanisms by which food intake influences

AHN, but also consider the role of epigenetic mecha-

nisms. Indeed, there is increasing evidence that epigenetic

mechanisms underlie both AHN [44] and changes in gene

expression in response to diet [75]. Future research will

need to investigate if diet can modulate AHN through

epigenetic changes.

Conclusion and perspectives

It is now getting clearer that AHN affects cognition and

mood. It is also firmly established that nutrition has an

impact on cognition and mood. Therefore, AHN is

emerging as a possible mediator of the effect of certain

food on cognition and mood. Consequently, modulating

AHN by diet could be a target of choice to prevent cog-

nitive decline during ageing, as well as to counteract the

effect of stress and prevent depression. However, further

studies are needed to confirm that AHN does mediate the

effect of certain diet on mental health, and additional

investigations are essential to understand the mechanisms

by which diet modulates AHN.
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