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Cathepsin G is a serine protease secreted by activated neutrophils that play a role in the inflammatory response. Because neutrophils
are known to be invading leukocytes in various tumors, their products may influence the characteristics of tumor cells such as
the growth state, motility, and the adhesiveness between cells or the extracellular matrix. Here, we demonstrate that cathepsin
G induces cell-cell adhesion of MCF-7 human breast cancer cells resulting from the contact inhibition of cell movement on
fibronectin but not on type IV collagen. Cathepsin G subsequently induced cell condensation, a very compact cell colony, resulting
due to the increased strength of E-cadherin-mediated cell-cell adhesion. Cathepsin G action is protease activity-dependent and
was inhibited by the presence of serine protease inhibitors. Cathepsin G promotes E-cadherin/catenin complex formation and
Rapl activation in MCF-7 cells, which reportedly regulates E-cadherin-based cell-cell junctions. Cathepsin G also promotes E-
cadherin/protein kinase D1 (PKD1) complex formation, and Go6976, the selective PKD1 inhibitor, suppressed the cathepsin
G-induced cell condensation. Our findings provide the first evidence that cathepsin G regulates E-cadherin function, suggesting
that cathepsin G has a novel modulatory role against tumor cell-cell adhesion.

Copyright © 2009 Tomoya Kudo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Cathepsin G is a 26-kDa neutral serine protease found in the
azurophil granules of neutrophils and a subset of monocytes
[1-3]. Human cathepsin G is synthesized as a 255-amino
acid residue protein, including an 18-residue signal peptide
and a 2-residue activation peptide at the N-terminus [4].
Cathepsin G, a major serine protease released by activated
neutrophils, has been proposed to play an important role
in inflammation through hydrolysis of a host of proteins,
including chemoattractants, extracellular matrix (ECM),
and hormonal factors [5]. In addition, the antibacterial
action of cathepsin G and other azurophil granule proteins
is thought to contribute significantly to the nonoxidative
antibacterial capacity of neutrophils [6]. We previously
observed that cathepsin G induces multicellular spheroids of
mammary tumor cells [7]. Neutrophils are known to invade
many tumor tissues and influence tumor development [8,

9]. However, the regulatory role of neutrophil proteases
including cathepsin G in tumor progression and metastasis
is not fully understood.

Cell-cell adhesion is critical for the normal development
of multicellular organisms, tissue regeneration, immuno-
logical responses, and tumor metastasis [10]. Members
of the cadherin superfamily of Ca?'-dependent cell-cell
adhesion proteins are expressed in most organs and tissues
of vertebrates and invertebrates [10-13]. Cadherin-mediated
cell adhesion requires intracellular attachment of cadherin to
the actin cytoskeleton [14-17]. Cadherins associate with the
cytoskeleton through cytoplasmic interactions with catenins:
a-catenin, f-catenin, and plakoglobin [16-18]. a-Catenin
links E-cadherin to the actin cytoskeleton [19, 20] via its
association with either plakoglobin or f-catenin [21, 22].
Cell-cell adhesion is initiated by weak binding between
extracellular domains of E-cadherin that are present in a
highly mobile pool at the plasma membrane. Subsequently,
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2 cells achieve maximum contact, a process referred to as
compaction. When more than 2 cells form contacts, E-
cadherin and actin cables continue to reorganize in the
process of cell condensation to form a more compact cell
colony [23].

In the present study, we demonstrate that cathepsin G
induces contact inhibition of cell movement and cell conden-
sation of MCF-7 human breast cancer cells on fibronectin
but not on type IV collagen. MCF-7 cells are known to
use E-cadherin as the primary cell-cell adhesion molecule.
Because the presented data indicate that cathepsin G induces
the tight E-cadherin-mediated cell-cell adhesion in MCF-7
cells, we explored the molecular mechanism underlying the
induction of cell condensation. The understanding of the
reactions involved in the induction of cell-cell adhesion by
cathepsin G might provide novel insights into tumor growth
and metastasis.

2. Materials and Methods

2.1. Reagents. Cathepsin G purified from human neutrophils
was purchased from Elastin Products (Owensville, MO).
One unit is defined as the cathepsin G activity that releases
1 ymole p-nitroanilide per minute from N-succinyl-Ala-Ala-
Pro-Phe p-nitroanilide at pH 7.5 at 37°C. «; -Antitrypsin was
obtained from Sigma-Aldrich (St. Louis, MO). Chymostatin,
G06976, GGTI-298, bisindolylmaleimide V, 8-Br-cGMP, and
protein kinase G I« inhibitor were from Calbiochem (San
Diego, CA). LY83583 was from Wako Pure Chemical Indus-
tries (Osaka, Japan). The immunological reagents used were
anti-a-catenin (1G5), anti-f-catenin (E-5), anti-E-cadherin
(67A4 and G-10), anti-Rap1 (5G7), anti-PKCu/PKD1(C-20),
and HRP-conjugated antimouse IgG;antibodies (Santa Cruz
Biotechnology, Santa Cruz, CA). The SCADS inhibitor kit
I and II, consisting of 171 chemical inhibitors with about
140 different targets, was kindly provided by the Screening
Committee of Anticancer Drugs (The Ministry of Education,
Culture, Sports, Science and Technology, Japan).

2.2. Preparation of Extracellular Matrix Protein-Coated
Dishes. The dishes (35 mm diameter; AGC Techno Glass,
Chiba, Japan) were coated with 300 ug/mL type IV collagen
(Nitta Gelatin, Osaka, Japan), dried on a clean bench at
room temperature, and washed 3 times with serum-free
medium. Alternatively, the dishes were coated with 10 yg/mL
fibronectin or laminin (AGC Techno Glass) at 4°C overnight,
blocked in 5% bovine serum albumin/phosphate-buffered
saline (PBS) at room temperature for 1 hour, and washed
once with serum-free medium.

2.3. Cell Culture and Induction of Cell Condensation. MCEF-7
human breast cancer cells and BALB-MC.E12 mouse mam-
mary tumor cells were maintained in RPMI1640 medium
(Sigma-Aldrich) supplemented with 10% heat-inactivated
fetal bovine serum (FBS; MP Biomedicals, Aurora, OH) and
80 ug/mL of kanamycin (MP Biomedicals, LLC, Solon, OH)
as previously described [7]. Cells were incubated at 37°C in a
humidified atmosphere of 5% CO,. For analysis of induction
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of cell condensation, 1 x 10° cells were cultured in dishes
coated with type IV collagen or fibronectin. The seeding
density was 70% in 5% FBS-containing medium estimated
after 24 hours. On the other hand, for the observation of
cell motility, 5 x 10* cells were seeded at lower density
(30%) to feasibly chase the cell movement. After washing,
adherent cells were incubated in serum-free medium with
0.5mU/mL cathepsin G for an additional 24 hours to
induce cell condensation. Morphological observations of
cultured MCEF-7 cells were made by inverted, phase-contrast
microscopy (ECLIPSE TE2000-U; Nikon, Tokyo, Japan).
Original magnification x200.

2.4. MTT Assay. Cathepsin G cytotoxicity toward the MCF-7
cells was evaluated by the 3-(4, 5 dimethyl-2-thiazolyl)-2, 5-
diphenyl-2H-tetrazolium bromide (MTT) assay. Cells were
cultured in 96-well microplates (AGC Techno Glass) coated
with type IV collagen or fibronectin at 1 x 10* cells/well. In
the MTT assay, after the indicated periods, 10 uL of MTT
(Dojindo Laboratories, Kumamoto, Japan) (5 mg/mL) was
added to each well, and the plates were incubated for an
additional 3 hours. Next 50 uL of the supernatant was then
discarded, 100 L acid-isopropanol solution (0.04 N HCI in
2-propanol) was added to each well, and the optical density
(595 nm) was measured with a microplate reader (Mutiscan
MS-UV; Labsystems, Basingstoke, UK).

2.5. Disruption of E-Cadherin-Mediated Cell-Cell Adhesion.
The cells were cultured in dishes (35 mm diameter) coated
with fibronectin at 1 x 10° cells/dish. Seeding efficiency
was 50% or more in 5% FBS-containing medium estimated
after 24 hours. After washing, adherent cells were cultured
in serum-free medium with 0.5 mU/mL cathepsin G for 24
hours. These condensed cells were then incubated in serum-
free medium supplemented with 400 uM ethylene glycol-bis-
(B-amino-ethyl ether) N, N, N’, N'-tetra-acetic acid (EGTA)
(Nacalai Tesque, Kyoto, Japan) for 6 hours or 100 pg/mL
anti-E-cadherin antibody (HECD-1; Calbiochem) for 24
hours.

2.6. Immunoprecipitation and Western Blot Analysis. The cells
were lysed in lysis buffer containing 25 mM Tris-HCI (pH
7.4), 150 mM NaCl, 1% Triton X-100, and protease inhibitor
cocktail (Roche Diagnostics, Mannheim, Germany). After 10
minutes centrifugation at 15000 X g, the insoluble pellet
was removed, and the soluble extract was processed for
immunoprecipitation. The soluble fraction was immuno-
precipitated for 1 hour at 4°C. Immunocomplexes were
adsorbed on Protein G Sepharose 4 Fast Flow (GE Health-
care, Amersham Place, UK). The samples were separated by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) on 8% gels and transferred onto polyvinylidene
difluoride membranes (GE Healthcare). Membranes were
blocked by incubation in Tris-buffered saline containing
0.2% Tween 20 (TBS-T) and 5% membrane blocking agent
(GE Healthcare), followed by incubation for 1 hour with
the indicated antibody. After extensive washing with TBS-
T, membranes were incubated with secondary antibodies for
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30 minutes at room temperature. After extensive washing
with TBS-T, the blots were developed by incubation with a
chemiluminescence substrate (GE Healthcare) and exposed
to Hyperfilm ECL (GE Healthcare).

2.7. Rapl Activity Assay. Rap 1 activation was examined in
the cell lysates with Active Rapl Pull-Down and Detection
Kit (Pierce Biotechnology, Rockford, IL). In general, 1 X 10°
cells were cultured in dishes coated with fibronectin. Seeding
efficiency was 70% in 5% FBS-containing medium estimated
after 24 hours. After washing, adherent cells were incubated
in serum-free medium with 0.5mU/mL cathepsin G for
0-6 hours. Cells were washed once with ice-cold 1X PBS
and lysed in ice-cold cell lysis buffer for 3 minutes on ice.
Lysates were centrifuged at 16000 X g for 15 minutes at
4°C, and total protein concentration in the supernatants was
determined using the Bio-Rad Protein Assay. Active Rapl
pull-down assay was carried out with Active Rap1 Pull-Down
and Detection Kit using supernatant aliquots.

2.8. Measurement of Intracellular cGMP Concentration. The
c¢GMP concentrations in cell lysates were determined with
the Direct cGMP Assay Kit (Assay Designs, Ann Arbor, MI).
In general, 1 x 10° cells were cultured on dishes coated with
fibronectin in 5% FBS-containing medium for 24 hours.
After washing, adherent cells were incubated in serum-
free medium with 0.5 mU/mL cathepsin G for 0-3 hours.
Cells were washed once with ice-cold 1X PBS and lysed
in 0.1 M HCI for 20 minutes at room temperature. Lysates
were centrifuged at 600 X g for 5 minutes to pellet the
cellular debris, and the cGMP content of the supernatant was
determined with the Direct cGMP Assay Kit.

3. Results

3.1. Cathepsin G Induces Contact Inhibition of Cell Movement
and Cell Condensation in MCF-7 Cells. MCF-7 human breast
cancer cells usually show temporal adhesion to each other
and they repeat adhesion-dissociation cycles in vitro. When
MCEF-7 cells on fibronectin at the subconfluent condition
were treated with cathepsin G, moving MCEF-7 cells formed
contacts with each other, thus promoting the formation
of adherens junctions and maintaining cell-cell adhesion
to prevent detachment from one other (Figure 1). This
phenomenon has been known as “contact inhibition of cell
movement” [24].

Next, we observed changes in cell morphology under
more confluent conditions (Figure 2(a)). The incubation of
MCE-7 cells without cathepsin G for 24 hours did not result
in a change in their morphology on fibronectin. On the other
hand, when MCF-7 cells were treated with cathepsin G under
the same condition, cell condensation of MCF-7 was induced
in a stepwise manner: single cells initially form chains within
3 hours and then aggregate into loose, irregular clumps of
cells with smooth margins between 6 and 24 hours.

In the breast tissue, tumor cells were surrounded
with various components of extracellular matrix, such as
fibronectin, laminin, and collagens, the components of

which varied during tumor progression [25]. Accordingly,
we examined the effect of extracellular matrix components as
culture substrates on the cell condensation-inducing activity
of cathepsin G. We observed that cathepsin G also induces
cell condensation on laminin (data not shown) but not on
type IV collagen (Figure 2(a)). To exclude the possibility that
the varying culture substrate outcomes are due to the loss of
viability of MCF-7 cells, the viability was evaluated by MTT
assay. As shown in Figure 2(b), MCF-7 cells remained viable
with evidence of growth up to 24 hours both on fibronectin
and type IV collagen.

3.2. Cathepsin G Promotes E-Cadherin/Catenin Complex
Formation in MCF-7 Cells. Cell condensation is induced
by the increased strength of E-cadherin-mediated cell-
cell adhesion [23]. We next analyzed E-cadherin/catenin
complex formation in the time course of cathepsin G
treatment. E-cadherin/f-catenin complexes were transiently
induced at 3 hours on fibronectin (Figure 3(a)). This result
parallels the observation of phase-contrast microscopy in
Figure 2(a). The complex formation disappeared at 6 hours
and reappeared at 24 hours. Figure 3(b) shows that a-catenin
also associates with this complex at 3 hours. In contrast, the
E-cadherin/cytoskeleton association was not induced on type
IV collagen at any time period. This result again parallels the
observation of Figure 2(a).

To know whether the transient pattern of E-
cadherin/catenin complex formation induced by cathepsin G
is restricted to MCEF-7 cells, we examined complex formation
in BALB-MC.E12 mouse mammary tumor cells. As shown
in Figure 3(c), cathepsin G also stimulated the transient
E-cadherin/f-catenin complex formation at 3 hours in the
mouse tumor cells, raising the possibility that the transient
formation of the complex is a common event in cathepsin
G-induced cell condensation.

E-cadherin-mediated cell-cell adhesion is known to be
disrupted by a well-established Ca®" switch procedure,
which involves the removal of extracellular Ca*" with the
specific chelator EGTA [26]. Thus, to study the critical role
of E-cadherin in cathepsin G-induced cell condensation,
we examined whether EGTA or HECD-1, a neutralizing
antibody against E-cadherin, affects the state of cathepsin G-
induced cell condensation. As shown in Figure 3(d), the tight
cell condensation disappeared after EGTA or HECD-1 treat-
ment. The results support that cell condensation induced
by cathepsin G was mediated by E-cadherin. Although cell
morphology did not return to the adherent morphology
after use of these agents, the adherent capacity of the cells
against the culture substrate might be also influenced by
cathepsin G.

Rapl reportedly plays a key role in the formation
of cadherin-based cell-cell junctions [27]. Rapl guanine
nucleotide exchange factors such as C3G and PDZ-GEF
are directly linked to E-cadherin [28]. To explore the
molecular mechanism underlying cathepsin G-promoted E-
cadherin-mediated cell-cell adhesion, we determined Rapl
activity (Figure 4(a)). Rapl activation was evident in cells
treated with cathepsin G for 2—4 hours as compared to
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FiGURE 1: Cathepsin G induces contact inhibition of cell movement. 5 x 10* MCEF-7 cells were cultured in dishes coated with fibronectin
for 24 hours. After washing, adherent cells were incubated in serum-free medium without or with 0.5 mU/mL cathepsin G. Cathepsin G-
treated MCF-7 cells were analyzed by phase-contrast microscopy at the same locations in the indicated periods. Cathepsin G-induced contact
inhibition of cell movement was observed at the original magnification: X200. Arrows indicate adhesion sites between cells.

cathepsin G-untreated cells. This result parallels the cathep-
sin G-promoted E-cadherin/catenin complex formation of
Figure 2(a), suggesting that Rapl regulates cathepsin G-
promoted E-cadherin-mediated cell-cell adhesion. To fur-
ther examine whether Rapl participates in cathepsin G-
induced cell condensation, we determined the effect of
GGTI-298, an inhibitor of geranylgeranylation of GTPases
such as Rapl [29]. As shown in Figure 4(b), GGTI-298
completely inhibited induction of cell condensation.

To analyze whether enzymatic activity of cathepsin G
is required in cathepsin G-induced cell condensation, we
used the serine protease inhibitors chymostatin and «;-
antitrypsin. In phase contrast microscopy, although the

morphology of MCF-7 cells treated with cathepsin G
changed to that of cells during cell condensation, MCF-
7 cells incubated with cathepsin G in the presence of
chymostatin or «;-antitrypsin did not show morpholog-
ical changes (Figure 5(a)). Moreover, chymostatin or «;-
antitrypsin inhibited cathepsin G-promoted E-cadherin/f-
catenin complex formation at 3 hours (Figure 5(b)). These
results indicate that the enzymatic activity of cathepsin G
is required for cathepsin G-promoted E-cadherin-mediated
cell-cell adhesion.

3.3. Cathepsin G Increases PKD1/E-Cadherin Complexes in
MCEF-7 Cells. The cadherin/catenin complex of proteins is
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FiGURE 2: Cathepsin G induces cell condensation in MCF-7 cells on fibronectin, but not on type IV collagen. 1 X 10> MCF-7 cells were
cultured in dishes coated with fibronectin or type IV collagen for 24 hours. After washing, adherent cells were incubated in serum-free
medium without or with 0.5 mU/mL cathepsin G. (a) Cathepsin G-induced cell condensation of MCF-7 cells was analyzed by phase-contrast
microscopy in the indicated periods as described in Materials and Methods. (b) MTT-reducing activity was measured at the indicated times.
Bars represent the standard deviation. Analyses were performed in triplicate in duplicate experiments.

a major target of posttranslational modifications such as
phosphorylation and dephosphorylation. Recent data show
that E-cadherin is phosphorylated by PKD1, and increased
kinase activity and overexpression of PKD1 increases cell
aggregation and decreases cell motility [30]. Therefore,
we next studied the role of PKD1 in cell condensation
induced by cathepsin G. Figure 6(a) shows cathepsin G-
promoted E-cadherin/PKD1 complex formation in MCEF-
7 cells. To determine whether PKD1 activity is involved
in the cell condensation signaling pathway, we examined
the effect of the selective inhibitor Go6976 of PKDI1
[31]. As shown in Figure 6(b), the cathepsin G-induced
cell condensation was obviously decreased in the pres-
ence of Go6976. On the other hand, bisindolylmaleimide
V, the negative control compound of Go6976 [32], did
not affect the induction of cell condensation. These data
indicate that PKD1 plays an important role in the signal-
ing of cathepsin G-promoted E-cadherin-mediated cell-cell
adhesion.

3.4. LY83583 Inhibits Cathepsin G-Promoted E-Cadherin-
Mediated Cell-Cell Adhesion. As described earlier, we
obtained evidences suggesting that Rapl and PKD1 may
be involved in the signaling pathway of cathepsin G-
induced cell condensation. However, other members, espe-
cially those involved in the upstream events of the sig-
naling pathway, remain unknown. To clarify cathepsin G-
induced signal transduction, which is associated with the
increase in the strength of E-cadherin-mediated cell-cell
adhesion, the effects of various chemical inhibitors were
examined. To achieve this, we used the SCADS inhibitor
kit T and II, consisting of 171 chemical inhibitors with
about 140 different targets provided by the Screening
Committee of Anticancer Drugs in Japan. Among these
inhibitors, guanylyl cyclase inhibitor LY83583 markedly
inhibited the early phase of cathepsin G-induced MCF-7 cell
condensation. As shown in Figure 7(a), cathepsin G alone
induced the morphology of cell chains in the early phase
of cell condensation. In the presence of LY83583, it did
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FiGURE 3: Cathepsin G-induced E-cadherin/catenin complex formation and E-cadherin-mediated cell-cell adhesion of MCEF-7 cells. MCF-
7 cells were cultured in dishes coated with fibronectin for 24 hours. After washing, adherent cells were incubated in serum-free medium
without or with 0.5 mU/mL cathepsin G. At each indicated culture time, the cells were lysed, and E-cadherin/catenin complex formation
of MCEF-7 cells was analyzed by immunoprecipitation and western blot analysis as described in Materials and Methods. (a) and (b)
Immunocomplexes with anti-E-cadherin were analyzed by immunoblotting using an anti-$-catenin (a) or anti-a-catenin antibody (b).
Whole-cell lysates (WCLs) were immunoblotted with an anti-f-catenin (a) or anti-a-catenin antibody (b). (¢) BALB-MC.E12 mouse
mammary tumor cells were analyzed as shown in (a). (d) Treatments inhibiting E-cadherin-mediated cell-cell adhesion disrupt cathepsin
G-induced cell condensation. MCF-7 cells were cultured in 5% FBS-containing medium on fibronectin for 24 hours. After washing, cell
condensation was induced by cathepsin G for 24 hours. Condensed cells were then subjected to serum-free medium supplemented with
400 uM EGTA for 6 hours or HECD-1 (100 ug/mL) for 24 hours and then analyzed by phase-contrast microscopy. Cathepsin G-induced cell
condensation was analyzed at the original magnification: x200.

not bring about such morphological changes. Furthermore,
tight cell condensation was not observed in the presence
of LY83583 as compared to treatment with cathepsin G
only at 24 hours. Similarly, LY83583 inhibited cathep-
sin G-promoted E-cadherin/B-catenin complex formation
(Figure 7(b)).

We next studied whether ¢cGMP signaling involves
cathepsin G-promoted E-cadherin-mediated cell-cell adhes-

ion. However, our results indicated that there is not
involvement of ¢cGMP signaling; cathepsin G did not
elevate the intracellular cGMP concentration in MCF-7
cells (not shown), and cell condensation was not induced
by 8-br-cGMP (Figure 7(c)), a membrane-permeable and
phosphodiesterase-resistant analogue of cGMP. Moreover,
induction of cell condensation by cathepsin G was not inhib-
ited by protein kinase G I inhibitor (PKGI) (Figure 7(d)).
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FIGURE 4: Rapl activation is involved in induction of cell condensation by cathepsin G. (a) MCF cells were cultured in dishes coated with
fibronectin. After 24 hours, the adherent cells were incubated in serum-free medium with 0.5 mU/mL cathepsin G for the indicated periods.
Active Rapl was analyzed by the pull-down assay. Western blotting of whole cell lysates was used to assess total levels of Rap1 (Total Rapl).
The densitometric units represent Rap1 activity relative to cathepsin G-untreated cells (0 hour) taken as 1.0. (b) The adherent MCF-7 cells
were treated with cathepsin G in the absence or presence of a Rapl inhibitor GGTI-298 (5uM) for 5 hours. Cells were then analyzed by
phase-contrast microscopy original magnification: x200.

Cat. G only

Cat. G - + + +
AT - - + -
Chymostatin - +

bbb -,

IP: anti-E-cadherin
Blot: anti-f-catenin

(®)

F1Gure 5: Enzymatic activity of cathepsin G is required for cathepsin G-promoted E-cadherin-mediated cell-cell adhesion. MCF-7 cells were
incubated in 5% FBS-containing medium on fibronectin for 24 hours. (a) After washing, the adherent cells were treated with cathepsin G
in the absence or presence of 50 ug/mL chymostatin or 200 yg/mL a; -antitrypsin (AT) for 24 hours. Cathepsin G-induced cell condensation
was observed by phase-contrast microscopy. (b) After washing, adherent cells were treated with cathepsin G in the absence or presence of
50 ug/mL chymostatin or 200 ug/mL a;-antitrypsin (AT) for 3 hours. The immunocomplexes with anti-E-cadherin were then analyzed by
immunoblotting with anti-E-cadherin using an anti-f-catenin antibody.

These results suggest that LY83583 inhibits cathepsin G- 4. Discussion

induced cell condensation by a mechanism, which is irrele-

vant to the cGMP-PKG pathway. It is important to elucidate ~ Cathepsin G, a major serine protease released by activated
the mode of action of LY83583 on the signal transduction  neutrophils, has been proposed to play an important role
cascade in future research. in tissue remodeling at sites of tissue injury [5, 33, 34].
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F1GURE 6: Cathepsin G promotes E-cadherin/PKD1 complex formation in MCF-7 cells. MCF-7 cells treated with cathepsin G for 10 hours
were analyzed by immunoprecipitation and western blot analysis as described in Materials and Methods. (a) Immunocomplexes with anti-
PKD1 antibody or whole-cell lysates (WCLs) were analyzed by immunoblotting using an anti-E-cadherin antibody. (b) After washing,
the adherent cells were treated with cathepsin G in the absence or presence of 5uM Go6976 or 5uM of the negative control compound
bisindolylmaleimide V for 5 hours. Cells were then analyzed by phase-contrast microscopy. Cathepsin G-induced cell condensation was
analyzed at the original magnification: x200. Arrowheads indicate the site of cell condensation in the cathepsin G-treated cells, while cell
condensation was not observed in the cells treated with cathepsin G and Go6976.

In addition, it is generally accepted that neutrophils often
exist in tumors and influence tumor development (8, 9,
35]. Nevertheless, the role of neutrophils in preventing
tumor development remains largely unexplained at the
molecular level. Here, we show that contact inhibition of cell
movement and cell condensation is induced by cathepsin G
in MCF-7 human breast cancer cells. However, cathepsin G-
induced cell condensation was observed in cultures in which
fibronectin or laminin was used as culture substrates but not
in those in which type IV collagen was used. It is unclear why
cathepsin G-induced cell condensation is influenced by the
type of ECM protein used. We are designing experiments to
study the possibility that collagen-dependent cell adhesion
affects the cells via integrin-mediated outside-in signaling.

It has been reported that cadherin-mediated cell
adhesion requires the intracellular attachment of cadher-
in to the actin cytoskeleton [14-17] and that cad-
herins associate with the cytoskeleton through cytoplas-
mic interactions with the catenins a-catenin, S-catenin,
and plakoglobin [16-18]. We elucidated that cathepsin G
markedly induced E-cadherin/catenin complex formation
on fibronectin but not on type IV collagen. Interestingly,
the E-cadherin/cytoskeleton association was transient; it
occurred at the earlier phase of cell condensation at
3 hours, disappeared after 6 hours, and reappeared at
24 hours. These results indicate that E-cadherin possibly
accesses the cell-cell contact interface and promotes the

association with the cytoskeleton in the early phase of
the reaction, and that once homotypic association of E-
cadherin molecules is formed, the cytoskeleton is sub-
sequently dissociated from E-cadherin. The formation of
tight cell condensation at the later phase (24 hours) may
probably require the E-cadherin/cytoskeleton association.
When the tight cell condensation was treated by EGTA or
HECD-1, the cell boundaries became evident. These results
indicate that cathepsin G regulates E-cadherin function
and increases the strength of E-cadherin-mediated cell-cell
adhesion.

E-cadherin plays an important role in tumor metastasis.
In some tumors, E-cadherin dysfunction occurs and the
downregulation of E-cadherin is an important step in tumor
cell invasion and metastasis [36]. It can be speculated by
the data presented here that neutrophil-derived cathepsin
G prevents tumor cell invasion by inducing tight cell-cell
adhesion. On the contrary, E-cadherin-mediated collective
migration reportedly promotes tumor cell invasion and
metastasis [37-39]. In addition, the signal induced by
E-cadherin-mediated cell adhesion replaces the integrin-
mediated cell growth signal and prevents anoikis [40]. In
these cases, cathepsin G-induced tumor cell adhesion via E-
cadherin may exert deleterious effects on tumor development
and metastasis. The in vivo effect of cathepsin G is thus an
important subject of future study to learn the role of tumor-
infiltrating neutrophils.
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FIGURE 7: Guanylyl cyclase inhibitor LY83583 has an inhibitory effect on cathepsin G-promoted E-cadherin-mediated cell-cell adhesion.
MCE-7 cells were incubated in 5% FBS-containing medium on fibronectin for 24 hours. Cathepsin G-induced cell condensation was analyzed
at the original magnification: x200. (a) After washing, adherent cells were treated with cathepsin G in the absence or presence of 1 yM
LY83583 for 24 hours. Cells were then analyzed by phase-contrast microscopy at 3 hours and 24 hours. (b) After washing, adherent cells were
treated with cathepsin G in the absence or presence of LY83583 for 3 hours. The immunocomplexes were then analyzed by immunoblotting
using an anti-B-catenin antibody. (c) Adherent cells were treated with 1 M 8-Br-cGMP, and cells were then analyzed by phase-contrast
microscopy at 3 hours and 24 hours. (d) After washing, adherent cells were treated with cathepsin G in the absence or presence of 1 yM
PKGI for 24 hours. Cells were then analyzed by phase-contrast microscopy at 3 hours and 24 hours.

It has been suggested that Rapl regulates cathepsin G-
promoted E-cadherin-mediated cell-cell adhesion. In addi-
tion, promotion of E-cadherin/PKD1 complex formation
is suggested to be required for cathepsin G-promoted E-
cadherin-mediated cell-cell adhesion. Although the relation-
ship between Rapl and PKD1 has not yet been clarified,
these factors may be key players in a novel signaling pathway
in cathepsin G-induced signal transduction. The enzymatic
activity of cathepsin G is required for the induction of cell
condensation. Cathepsin G reportedly activates protease-
activated receptor (PAR)-4 in platelets [41]. It is important
to consider whether signaling through PAR is involved in
this reaction. We also demonstrated that the guanylyl cyclase
inhibitor LY83583 has an inhibitory effect on cathepsin G-
promoted E-cadherin-mediated cell-cell adhesion. However,
intracellular cGMP was not augmented by cathepsin G. In
addition, cathepsin G-induced cell condensation was not

induced by 8-br-cGMP and was not inhibited by PKGI.
Although the mechanism of action of LY83583 is unknown
at the present time, the compound might be a useful tool
to uncover the signal transduction mechanism involved
upstream of Rap1l and PKDI1.

In summary, our results provide novel important insights
into cathepsin G functions and indicate that cathepsin G
increases the strength of E-cadherin-mediated cell-cell adhe-
sion in MCEF-7 cells, with important implications for tumor
development and metastasis. We postulate that cathepsin G
secreted by infiltrated neutrophils in tumor tissue may have
a novel modulatory role in tumor development.
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