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Abstract

Background: Physical exercise has been shown to increase adult neurogenesis in the dentate gyrus and enhances synaptic
plasticity. The antiapoptotic kinase, Akt has also been shown to be phosphorylated following voluntary exercise; however, it
remains unknown whether the PI3K-Akt signaling pathway is involved in exercise-induced neurogenesis and the associated
facilitation of synaptic plasticity in the dentate gyrus.

Methodology/Principal Findings: To gain insight into the potential role of this signaling pathway in exercise-induced
neurogenesis and LTP in the dentate gyrus rats were infused with the PI3K inhibitor, LY294002 or vehicle control solution
(icv) via osmotic minipumps and exercised in a running wheel for 10 days. Newborn cells in the dentate gyrus were date-
labelled with BrdU on the last 3 days of exercise. Then, they were either returned to the home cage for 2 weeks to assess
exercise-induced LTP and neurogenesis in the dentate gyrus, or were killed on the last day of exercise to assess proliferation
and activation of the PI3K-Akt cascade using western blotting.

Conclusions/Significance: Exercise increases cell proliferation and promotes survival of adult-born neurons in the dentate
gyrus. Immediately after exercise, we found that Akt and three downstream targets, BAD, GSK3b and FOXO1 were activated.
LY294002 blocked exercise-induced phosphorylation of Akt and downstream target proteins. This had no effect on exercise-
induced cell proliferation, but it abolished most of the beneficial effect of exercise on the survival of newly generated
dentate gyrus neurons and prevented exercise-induced increase in dentate gyrus LTP. These results suggest that activation
of the PI3 kinase-Akt signaling pathway plays a significant role via an antiapoptotic function in promoting survival of newly
formed granule cells generated during exercise and the associated increase in synaptic plasticity in the dentate gyrus.
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Introduction

It is well accepted that cell proliferation and neurogenesis

continue to occur in selected brain regions of the adult brain,

notably the subgranular zone of the dentate gyrus (DG) and the

subventricular zone of the lateral ventricles [1]. Different forms of

physiological and pathological conditions can promote neurogen-

esis, such as exercise [2] and environmental enrichment [3–5] and

injurious circumstances such as ischaemia or seizures [1].

Physical exercise, in addition to promoting hippocampal

neurogenesis, is also known to improve cognitive functions in

humans and rodents [6–7] and to contribute to the preservation of

cognitive performance in ageing and neurodegenerative disorders

such as Alzheimer’s disease [8–9]; both of which are associated

with deficient hippocampal neurogenesis [10]. In rodents, exercise

exerts a beneficial effect on spatial learning [2,11–12] and some

studies have associated the exercised-induced improvement in

learning with its ability to promote neurogenesis and to facilitate

long-term potentiation (LTP) in the dentate gyrus [13–14]. These

findings, together with the demonstration that immature dentate

granule cells (DGCs) are more responsive to LTP than mature

cells [15–16], suggests that the facilitation of LTP following

exercise may be a direct outcome of the increased production of

young dentate gyrus cells induced by exercise.

To date, however, the potential mechanisms that subserve the

beneficial effects of exercise-induced neurogenesis remain largely

unknown. A number of genes and proteins have been shown to be

regulated by exercise [17–18]; some of which are also associated
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with neurogenesis. Most notably, are the growth factors BDNF,

IGF, FGF-2 and VEGF that activate signalling pathways such as

MAPK/ERK and PI3K-Akt [19]. Recently, Chen and Russo-

Neustadt [20] reported activation of the serine/threonine kinase

Akt in the whole hippocampus after exercise. The PI3K-Akt

signalling pathway is potentially implicated in a number of

different functions, such as glucose metabolism, protein synthesis,

receptor insertion, cytoskeletal reorganisation and cell prolifera-

tion, however, it is most commonly associated with cell survival by

inhibiting the activation of proapoptotic proteins and transcription

factors [21–22]. Given the role of the PI3K-Akt signalling pathway

in cell survival, our aim in these experiments was to investigate the

potential role of this signalling pathway in exercise-induced

neurogenesis in the adult dentate gyrus and to measure the extent

to which the modulation of adult neurogenesis affects LTP in this

structure. We first showed that following exercise in a running

wheel, Akt is hyperphosphorylated and in turn several of its

downstream targets, FOXO, BAD and GSK3b known for their

antiapoptotic functions, are phosphorylated by Akt in the dentate

gyrus. We also showed that inhibiting PI3K by infusion of

LY294002 prevents exercise-induced phosphorylation of these

proteins and stems exercise-induced neurogenesis in the dentate

gyrus without affecting cell proliferation. Finally, as a functional

assay, we induced LTP in the dentate gyrus two weeks following

the exercise period. LTP was facilitated in parallel with the

increase in neurogenesis in control runners and inhibition of the

PI3K completely blocked facilitation of LTP in association with

the reduction in the number of surviving cells. Taken together,

these data represent a step forward in the identification of the pro-

survival role of the PI3K-Akt pathway in regulating neurogenesis

in the adult dentate gyrus.

Materials and Methods

Animals
Young male adult Sprague-Dawley rats (10–12 weeks; Charles

River, France) were housed singly in temperature-controlled

conditions with a 12 hr light/dark cycle (lights on: 8:00 AM)

following surgery. They had access to food and water ad libitum.

Experimental procedures were conducted in accordance with

recommendations of the European Union (86/609/EEC) and the

French National Committee (87/848).

Surgical Procedure
Standard surgical procedures were conducted to implant

cannulae attached to osmotic mini-pumps. Rats were anaesthe-

tized with sodium pentobarbital (60 mg/kg), supplemented

throughout surgery as required. Cannulae, attached to the

minipump via a short length of tubing, were slowly lowered into

the left ventricle (Bregma 20.9 mm; ML 1.3 mm; DV from brain

surface 3.4 mm) and fixed in place with dental acrylic. A small

subcutaneous pocket was then opened up between the shoulder

blades of the rat to fit the mini-pump in place. The skin overlaying

the skull was sutured and topical antiseptic (exocptoplix) was

applied to the wound. Rats were then returned to home cages to

recover for two days during which time they were handled before

starting habituation to the running wheel.

Drugs and Drug Delivery
Twenty-eight-day osmotic mini-pumps (Model 2004; Alzet) with

a pump rate of 0.25 ml/hour were used. Pumps were loaded either

with 30% DMSO and aCSF for control rats or the PI3K inhibitor,

LY294002 (5 mM dissolved in 30% DMSO and aCSF (Na,

150 mM, K, 3 mM; Ca, 1.4 mM; Mg, 0.9 mM; Cl, 99 mM,

Ozyme, France); made up in pyrogen-free, sterile water according

to the instructions from Alzet). BrdU (Sigma) was injected

intraperitoneally (i.p. 100 mg/kg; dissolved in 0.9% NaCl and

0.007% NaOH (1N)) on the last three days of exercise.

Electrophysiology
Twelve to fourteen days following the end of the exercise

period, rats (Naı̈ve, n = 8; DMSO, n = 7; LY294002, n = 8) were

anesthetized with urethane carbamate (1.5 mg/kg), placed in a

stereotaxic frame, and maintained at a constant body temperature

of 37uC. Pumps and cannula were left in place and electrodes were

implanted in order to induce LTP at perforant path-dentate gyrus

synapses. The stimulating electrode was placed in the angular

bundle of the perforant path (bregma 28.0 mm, 4.2 mm from

midline, 2.6 mm depth) and the recording electrode in the DG

(bregma 24.2 mm, 2.5 mm from midline). Implantation of

electrodes was made under electrophysiological guidance as

describe previously [23]. Low-frequency test pulses (100 msec,

0.033 Hz) were delivered by a photically isolated constant current

unit. After responses had stabilized, a 20-min baseline was

recorded, followed by a tetanus to induce LTP, consisting of 6

series, 2 min apart, of 6 bursts of high-frequency stimulation

(400 Hz, 20 ms) at 10 sec intervals. This protocol was chosen as it

reliably induces saturated LTP in the dentate gyrus in vivo [24].

Evoked responses to test pulses were recorded for a minimum of

2 h following the tetanus to ensure that L-LTP was induced.

Evoked responses were stored for off-line analysis of the EPSP

slope and the population spike. Analysis of variance and Fisher

PLSD post hoc analysis were conducted on the mean of the last 15

minutes of recording of the slope of the EPSP and the population

spike, the mean basal EPSP values and the intensity required to

evoke the response.

Immunohistochemistry for BrdU Labeling and Cell
Counting

Rats were anaesthetized with an overdose of sodium pentobar-

bital and transcardially perfused with 0.1 M phosphate buffer (PB)

followed by 4% paraformaldehyde in 0.05 M PB, at 4uC. The

brains were left in the fixative overnight, and then transferred to

30% sucrose. Coronal sections (30 mm) were serially cut using a

cryostat and stored in cryoprotectant at 220uC until being

processed for BrdU labeling. Peroxide immunolabeling was

performed as previously described [25]. Sections throughout the

DG were hydrolyzed with 2N HCl at 37uC for 40 min and

incubated overnight in primary mouse monoclonal anti-BrdU

(1:1000, MAB 3424; AbCys, France) in PB containing 5% BSA,

0.5% Triton X-100 and 5% normal goat serum. Sections were

incubated in biotinylated goat anti-mouse antiserum (1:200), then

in avidin-biotin-peroxidase complex (1:100; Vectastain Elite Kit,

Vector Laboratories) and were reacted for peroxidase detection

(DAB kit, Vector Laboratories). In order to measure the area of

the DG, sections were counterstained with Nuclear fast red

(Vector Laboratories). For immunohistofluorescence, sections

were hydrolyzed as described above, followed by overnight

incubation in monoclonal rat anti-BrdU (1:400, OBT0030;

AbCys). Sections were incubated in biotinylated goat anti-rat

antiserum (1:400; Vector Laboratories), then in streptavidin Alexa-

568 (1:800; Invitrogen, Eugene, OR). Sections were then

incubated overnight in mouse monoclonal anti-NeuN (1:500;

Chemicon), in Alexa-488 goat anti-mouse highly cross-adsorbed

antiserum (1:200; Molecular Probes) and counterstained with

DNA dye bisbenzimid (Hoechst 33342, Sigma; 1 ug/mL).

Antibodies were tested with the appropriate negative controls

(reciprocal omission of primary and secondary antibodies).
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Stereological quantification of BrdU-labeled nuclei in the DG

was conducted bilaterally in every 6th section to assess cell survival

and every 4th section to assess cell proliferation as described

previously [5,25]. To avoid oversampling errors, nuclei intersect-

ing the uppermost focal plane were excluded. Absolute numbers of

BrdU-labeled cells were obtained by multiplying BrdU-positive

cell density by the reference volume. For double-labeling,

percentages of BrdU-labeled nuclei co-expressing NeuN were

determined by analyzing 100 randomly selected BrdU-labeled

nuclei throughout the DGC layer and subgranular zone (SGZ) of

dorsal DG using a Zeiss confocal microscope (Oberkochen,

Germany). Absolute numbers of new neurons (BrdU-NeuN) were

estimated by multiplying the absolute numbers of BrdU cells by

the percent of co-localisation for those two markers. BrdU-positive

nuclei were analyzed (63x oil objective) in their entire z-axis

(0.5 mm steps) and were rotated in orthogonal planes (x–y) to verify

double-labeling and exclude false double-labeling caused by

overlay of signals from different cells. Analyses were performed

in sequential scanning mode to rule out cross-bleeding between

detection channels.

ImmunoWestern Blotting
Rats were killed by decapitation and their brains removed

rapidly on ice. The DG was dissected out of the hippocampus and

frozen in liquid nitrogen. Tissue was homogenized in a lysis buffer

and centrifuged at 15493 g for 20 minutes. A Bradford protein

assay was used to assess total protein levels and all samples were

equalized to the same protein content. Immunoblots were

prepared following previously described protocols [23,26]. Fol-

lowing electrophoresis, proteins were transferred to nitrocellulose

membranes, blocked for 1 h at room temperature in 5% BSA and

incubated overnight at 4uC in primary antibodies. Membranes

were then rinsed and incubated with secondary antibody

(horseradish peroxidase-conjugated anti-rabbit IgG, Amersham)

for 1 h and then reacted with electrogenerated chemilumines-

cence, apposed to film and developed by hand. Membranes were

then stripped of antibodies and probed with non-phospho

antibodies. Optical density of protein bands on film was analyzed

with GENETOOLS analysis software (GeneGenius Gel Docu-

mentation System, UK). Phospho antibodies were pAkt-Ser473

(1:2000) and Thr308 (1:2000), pBAD (1:1000), pGSK3b-Ser9

(1:3000), FOXO1-Ser256 (1:2000) and pERK (Thr183/Tyr185)

(1:2000). Concentrations for the corresponding non-active anti-

bodies were: AKT (1:1000), BAD (1:1000), GSK3b (1:3000),

FOXO1 (1:1500) and ERK (1:3000). All primary antibodies to Akt

and downstream target proteins were purchased from Cell

Signalling (Ozyme, France). Western blotting analysis of KI-67

(Abcam, France), a reliable endogenous marker of cell prolifera-

tion present throughout the entire cell cycle phase except G0 [27],

was carried out using discontinuous (3–8%) SDS-PAGE precast

gels (Invitrogen). Proteins were transferred to nitrocellulose and

treated as above with the exception that membranes were blocked

and anti-KI-67 (1:1000, from Abcam, France) was diluted to

concentration in milk (Biorad, France). At least 3 replicates were

processed for each protein assay. Optical density values from total

proteins were analyzed to determine whether there was any

change in density and if not, phospho-proteins were normalized to

these values and results were averaged per rat. These were then

normalized to the mean of the naı̈ve group for analyses.

Experimental Protocol
Three groups of rats were used throughout the experimental

procedure: naı̈ve rats that received no treatment or exercise; rats

implanted with minipumps containing vehicle solution, DMSO

that underwent the exercise regime, and rats implanted with

minipumps containing the PI3K inhibitor, LY294002 that

underwent the exercise regime. Rats were handled for 5 days

before and 2 days after surgery. On the third day after surgery

they were habituated to a running wheel (28 cm diameter,

Campden Instruments). This started by placing the rat in the

wheel in a fixed position and then slowly over the next 4 days they

were habituated to turning the wheel at will and then to forced

running. We chose a force run protocol rather than free running as

we wished to clamp the distance run per day across animals. The

running protocol consisted of 2, one-hour sessions (AM and PM),

attempting to maintain the same speed across all animals. The

number of revolutions run by each rat was calculated as km/day.

All rats were injected with the birthdating marker BrdU on the

three last days of the running session.

To assess whether exercise regulated Akt and downstream

antiapoptotic targets, increased cell proliferation and whether this

was affected by inhibiting PI3K, rats (n = 8 per group) were killed

10 minutes following the last exercise session. In half of the rats

(n = 4 per group) DG tissue was removed for immunowestern

blotting of Akt and its downstream target proteins, FOXO1,

GSK3b and BAD and the endogenous marker of proliferation,

KI-67. As PI3K under certain conditions can interact with the

MAPK/ERK pathway, we also assessed activation of phospho-

ERK. In the other half of the rats (n = 4 per group) we conducted

stereological counting of BrdU-labeled cells. On the last three days

of exercise a single injection of BrdU was given i.p. in between the

two exercise sessions and rats were perfused 2 hours after the last

BrdU injection. Finally, to examine the effect of inhibiting PI3K in

the survival of newborn cells and on synaptic plasticity, following

the 10 days of exercise, rats (DMSO runners = 7; LY294002-

treated runners = 8; naı̈ve = 8) were returned to their home cages

for between 14 to 16 days; by which time the pumps’ content

would be spent. At this point we induced LTP as a functional

measure of the effect of running synaptic plasticity. At the end of

the recording session, rats were perfused and brains prepared for

BrdU and NeuN immunohistochemistry (see Fig. 1A). All analyses

were conducted using Analysis of Variance (ANOVA) and Fisher

Post Hoc Analyses with the probability set to 0.05.

Results

During the 10 days of exercise, as we controlled the amount of

running, DMSO and LY294002 treated rats from the three

different experiments were pooled for analyses. All animals ran an

almost identical number of kilometers per day with no difference

between rats treated with DMSO (n = 18) and those treated with

LY294002 (n = 19) across days (F(1,35) = 0.175; p = 0.678; Fig. 1B)

or in terms of total km run (F(1,35) = 0.277; p = 0.603); both

groups, however showing a comparable and significant increase in

running over the 10 days (F(1,9) = 28.8; p = 0.0001).

Exercise Activates the PI3K-Akt Signaling Pathway
Regulation of Akt and several of its downstream targets was

examined in the subgroup of rats killed 10 min following the last

session of running. Firstly, there was no significant difference

between groups in total levels for any of the proteins analysed (Akt

(F(2,9) = 3.0; p = 0.105); ERK (F(2,9) = 3.61; p = 0.0706); FOXO1

(F(2,9) = 2.27; p = 0.16); GSK3b (F(2,9) = 1.54; p = 0.26); BAD

(F(9,2) = 1.04; p = 0.393). Phosphoproteins were normalised to the

total content of their respective proteins. Secondly, in exercised

rats infused with DMSO (n = 4), Akt was hyperphosphorylated at

both serine and threonine sites compared with naı̈ve rats (n = 4)

and exercised rats infused with LY294002 (n = 4) (Ser-473:
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(F(2,9) = 13.32; p = 0.002); Thr-308: (F(2, 9) = 4.9; p = 0.036);

Fig. 2). Post hoc analyses showed that inhibiting PI3K activity

abolished exercised-induced hyperphosphorylation of Akt, as

LY294002-treated rats showed no difference in levels of pAkt at

either site compared to naı̈ve rats (p.0.05 in each case). Similar

increases in phosphorylation of the downstream targets of Akt

were observed with FOXO1-Ser256 (F(2,9) = 18.9, p = 0.00006),

GSK3b-Ser9 (F(2,9) = 6.21; p = 0.02) and BAD-Ser136

(F(2,9) = 6.33; p = 0.0192) in DMSO runners, and the increased

phosphorylation of these proteins was blocked in LY294002-

treated runners (Post hoc comparisons with naı̈ves: p.0.05 in each

case; Fig. 3A–C). These data suggest that exercise induces full

activation of Akt at both phosphorylation sites and a number of its

downstream targets known to have a function in cell survival. We

also analysed phosphorylation of ERK as PI3K can interact with

proteins of the MAPK/ERK pathway; however we found that

pERK was neither regulated by exercise nor attenuated by

inhibition of PI3K (between-group difference: (F(2,9) = 0.009;

p = 0.389); Fig. 3D).

The Effect of PI3K-Akt Signaling on Exercise-Induced Cell
Proliferation

First, we measured levels of KI-67, a protein that is exclusively

expressed in proliferating cells and is associated with the regulatory

mechanisms that drives the cell division cycle [28] using western

blotting and found a comparable increase in the levels of KI-67 in

exercising rats infused with DMSO or LY294002 compared with

naı̈ve rats ((F(2,9) = 9.49; p = 0.0061); Fisher PLSD post hoc

analyses showed that both running groups were significantly

increased compared with naı̈ve rats, p,0.05; Fig. 4A). Secondly,

we quantified the number of BrdU-labeled cells 2 hours following

the last injection of BrdU and we found that running induced a

large increase in clustered BrdU-labeled nuclei in the subgranular

zone (Fig. 4B–G). We found no significant difference between the

groups in the reference volume of the DG (F(2,9) = 2.162;

p = 0.171, data not shown). Quantitative stereological analysis of

BrdU-labeled cells revealed that the number of proliferating cells

in the DG was increased by 115% in running–DMSO group and

by 109% in running-LY294002 animals compared with naı̈ve

controls (Fig. 4H, naı̈ve: 1357694, n = 4; running-DMSO:

29296497, n = 4; running-LY294002: 28356531, n = 4;

(F(2,9) = 4.336; p = 0.048); Fisher PLSD post-hoc comparison with

naı̈ves: both p values ,0.05). Both results suggest that inhibition of

the PI3K-Akt pathway during exercise does not affect exercise-

induced proliferation of DG progenitor cells.

Influence of PI3K-Akt Signaling on Survival of Newborn
Neurons Generated during Exercise

Groups of rats were returned to the home cage for 14–16 days

following the last day of exercise; by which time the minipumps

were spent. Newborn cells in the DG were then quantified by

BrdU incorporation into nuclei of dividing cells (14–16 days after

Figure 2. Regulation of pAkt in the dentate gyrus in exercising
rats. A, Phosphorylation of Akt at serine site 473 and B, Akt
phosphorylation at threonine site 308 in DMSO-treated runners (Black
bars, n = 4) is significantly greater than both LY294002-treated runners
(Grey bars, n = 4) and naı̈ve rats (White bars, n = 4). Histograms
represent the percent change in pAkt normalized to naı̈ve controls.
PhosphoAkt levels at both sites in LY294002-treated runners are not
significantly different from naı̈ve rats. Sample blots for each group are
presented in upper panels. No change in total Akt was observed.
doi:10.1371/journal.pone.0007901.g002

Figure 1. Experimental design and exercise performance. A, Schematic representation of the experimental protocol. B, Distance run in
kilometres over the 10-day exercise period. Each point represents the combined distance covered each day for the two-hour session. Both groups
started with the same number of kilometers (DMSO, black circles: DMSO: 0.9460.05 km; LY294002, open circles: 0.8960.05 km) and increased their
distance run over the 10 days (DMSO: 1.3460.07 km; LY294002: 1.3160.06 km).
doi:10.1371/journal.pone.0007901.g001
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Figure 3. Regulation of downstream target proteins of Akt in the dentate gyrus following exercise. A, Phosphorylation of
FOXO1(Ser256), B, GSK3b(Ser9), and C, BAD(Ser136) in the three groups (n = 4 per group). For all three proteins, DMSO-treated runners (Black bars)
showed a significantly greater level of phosphorylation of the three Akt target proteins than either the naı̈ve rats (White bars) or LY294002-treated
runners (Grey bars). LY294002-treated runners show no significant increase in phosphoprotein levels compared with naı̈ve rats, although there was a
slight increase in pFOXO1. 3D. Exercise does not lead to phosphorylation of ERK. DMSO-treated runners (Black bars, n = 4) show no difference in
phosphoERK levels compared with naı̈ve rats (White bars, n = 4). Neither does inhibition of PI3 kinase effect levels of ERK, as there is no difference
between LY294002-treated runners (Grey bars, n = 4) and DMSO-treated runners or naı̈ve rats. Sample blots for each group are represented in the
upper panel.
doi:10.1371/journal.pone.0007901.g003

Figure 4. Effect of running and inhibition of the PI3K-Akt signaling pathway on dentate gryus cell proliferation. A. Expression of KI-67
in the dentate gyrus following exercise. KI-67 protein levels are increased in both DMSO-treated runner (Black bars, n = 4) and LY294002-treated
runners (Grey bars, n = 4) compared with naı̈ve rats (White bars, n = 4). Sample blots for each group are represented on the left panel. 4B–D,
Representative light photomicrographs of Nuclear fast Red-stained sections shows distribution of BrdU immunoreactive nuclei in the dentate gyrus
of (B) naı̈ve, (C) DMSO-treated and (D) LY294002-treated runners; sgz, subgranular zone. E–G, Higher magnification illustrates increased numbers of
proliferating cells in the sgz in (E) naı̈ve rats, (F) DMSO-treated runners and (G) LY294002-treated runners. H, Quantitative data 2 hours after the last of
three BrdU injections are expressed as the number of BrdU-cells (% of naives) to show comparable results with western blotting analyses of KI-67.
Scale bars 200 mm (B–D), 100 mm (E–G).
doi:10.1371/journal.pone.0007901.g004

Akt and Adult Neurogenesis

PLoS ONE | www.plosone.org 5 November 2009 | Volume 4 | Issue 11 | e7901



BrdU injections). BrdU-labeled nuclei were dark and round-

shaped, frequently with the typical morphology of DGC nuclei

(Fig. 5A–F). The comparison of the reference volume revealed that

neither running nor LY294002 treatment had any significant

effect (F(2,12) = 0.128; p = 0.881; Fisher’s PLSD p.0.05 in each

case, data not shown). There was a significant difference in the

total number of BrdU-positive cells in the three groups

(F(2,12) = 8.82; p = 0.004). As expected, running led to a large

(,3 fold) and significant increase in the number of BrdU-labeled

cells in the dentate gyrus, compared with naı̈ve controls (naı̈ve:

22106481, n = 5, Fig. 5A,D; running-DMSO: 62096885, n = 5,

Fig. 5B,E; Fisher PLSD post-hoc comparison p,0.001). This

indicates that forced running, as voluntary running (2, 14),

significantly increases neurogenesis in the dentate gyrus. In

exercising rats that were infused with the PI3K inhibitor

LY294002 the number of surviving BrdU-positive cells

(38746598, n = 5) was substantially reduced (Fig. 5C,F) compared

with DMSO-treated animals (p,0.05; Fig. 5B,E) reaching a level

close to, and not significantly different from naı̈ve rats (p = 0.108;

Fig. 5A,D).

The phenotype of BrdU-positive cells was examined by

immunofluorescent double-labeling for BrdU and the neuron-

specific marker NeuN. Confocal microscopy was used to count the

number of double- and single-labeled BrdU-positive cells in the

dentate gyrus (Fig. 5G,H). In all three experimental groups, co-

localisation of BrdU with NeuN showed that the large majority of

BrdU-positive cells expressed a neuronal phenotype (Fig. 5I).

Despite the large increase in total number of BrdU-labeled cells in

Figure 5. Effect of running and inhibition of the PI3K-Akt signalling pathway on dentate gryus neurogenesis. A–C, Representative light
photomicrographs of Nuclear fast Red-stained sections shows distribution of BrdU immunoreactive nuclei in the dentate gyrus of (A) naı̈ve, (B)
DMSO-treated and (C) LY294002-treated runners (sgz, subgranular zone; gcl, granule cell layer). D–F, Higher magnification illustrates increased
numbers of newborn cells in the gcl (arrows) in (E) DMSO-treated runners compared to (D) naı̈ve rats and the reduction in the number of BrdU-
labeled cells in (F) LY294002-treated runners. G,H, Confocal image of double-stained cells for BrdU (red) and NeuN (green) illustrates co-localisation in
dentate granule cells (arrowheads) in representative sections from animals in the DMSO-treated (G) and LY294002-treated (H) runners. I,
Representative confocal laser scanning microscope stack images depict cells double-labeled (merged) for BrdU (red) and NeuN (green) in the dentate
gyrus in animals from both groups. BrdU-NeuN double-labeled cells are shown in x–y orthogonal planes and z-sectioning at 0.5 mm intervals (right) to
confirm overlap of the two immunoreactions. J, Quantitative data 14–16 days after BrdU injections are expressed as the total number of BrdU-labeled
cells (all groups, n = 5). Scale bars 100 mm (A–C), 25 mm (D–F) and 10 mm (G–I).
doi:10.1371/journal.pone.0007901.g005
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the runners, no change was found in the percentage of newborn

cells expressing a neuronal phenotype compared with naı̈ve rats,

and similarly we found no evidence that LY294002 treatment

affected the proportion of BrdU-NeuN co-expressing cells (naı̈ve:

79.962.3%; running-DMSO: 86.162.1%; running-LY294002:

78.963.1%; (F(2,12) = 2.336; p = 0.139). Calculation of the absolute

number of cells co-expressing BrdU and NeuN in the three groups

confirmed the increase in the number of newborn neurons after

running and the significant reduction in LY294002-treated rats

(naı̈ve: 1742.96340.6; running-DMSO: 5405.26864.0; running-

LY294002: 29926398.4; F(2,12) = 10.193; p = 0.003; Fig. 5J).

Fisher PLSD post-hoc comparison showed the differences to be

between naı̈ve and DMSO runners (p,0.05) and DMSO runners

and LY294002-treated runners (p,0.05). Thus, neither running

nor inhibition of PI3K-Akt activity affected neuronal commitment

of newly generated DGC’s. In all, these results confirm that running

promotes neurogenesis in the dentate gyrus and show that most of

the beneficial effect of running on neurogenesis is abolished by

inhibition of the PI3K-Akt signaling pathway.

Exercise-Induced Neurogenesis and LTP in the Dentate
Gyrus

Previous studies have shown that the neurogenic effect of

exercise is associated with an increased capacity for LTP in the

dentate gyrus [13,14], suggesting that the addition of young

newborn neurons augments the capacity for plasticity in this

structure. We wished to extend these findings and test the

prediction that the reduction in the number of newborn neurons

surviving two weeks after exercise caused by inhibiting PI3K-Akt

signaling would suppress the beneficial effect of exercise on LTP.

Thus, immediately before taking the brains for immunohisto-

chemistry 14–16 days after the end of exercise, we examined LTP

of the perforant path-to dentate granule cell synapses in vivo in the

3 groups. Induction of LTP in the dentate gyrus showed no overall

difference between groups in short-term potentiation, measured

across the first 5 min following the tetanus (F(1,9) = 0.285;

p = 0.98). However there was a 2-fold increase in the magnitude

of LTP of the EPSP in exercised rats infused with DMSO

(57.4766.58%; n = 7; Fig. 6) compared with naı̈ve rats

(28.7262.87%; n = 8). And, importantly, although rats treated

with LY294002 did show EPSP potentiation (37.7166.51%;

n = 8), this was comparable with that of the naı̈ve rats and

considerably less than in DMSO-treated rats (Fig. 6). Analysis of

variance (F(2,20) = 5.27; p = 0.0003) and Fisher PLSD post hoc

analyses confirmed the significant facilitation of LTP in DMSO-

treated rats and the lack of facilitation in LY294002-treated rats

(DMSO vs naı̈ve and DMSO vs LY294002: p,0.05, LY294002 vs

naı̈ve: p.0.05). A similar pattern was observed with LTP of the

population spike (Data not shown). Exercised DMSO-treated rats

showed greater potentiation of the population spike

(486.8661.32%), compared with naı̈ve (246.49661.32%) and

LY294002-treated rats (205.26661.23%). The differences in the

magnitude of LTP between groups was not due to differences in

size of the baseline EPSP slope (F(2,20) = 0.038; p = 0.963),

population spike amplitude (F(2,20) = 1.20; p = 0.132) or intensity

of stimulation (F(2,20) = 0.535; p = 0.594). These data confirm that

exercise results in facilitation of LTP in the dentate gyrus [13,14]

and show that despite no difference in the number of kilometers

run, exercise-induced facilitation of LTP is abolished by inhibition

of PI3K, reinforcing the premise that enhanced neurogenesis is

directly related to the increased capacity for plasticity in the

dentate gyrus [29].

Discussion

Currently there is a great deal of effort being made to

understand the potential cell-signaling mechanisms that drive

experience-dependent neurogenesis in the adult brain. Certain

regulators of proliferation and survival of newborn cells have been

identified, that include growth factors and morphogens, hormones,

certain neurotransmitters, intracellular signaling molecules and

Figure 6. The effect of running on LTP in the dentate gyrus. The point plot represents the percent change in the EPSP recorded for 2 hours
post tetanus (indicated by the arrow). Each point represent stimulated response every 30 sec with error bar on every second point. The mean of the
last 15 minutes of recording showed 28.7263.50% potentiation of the EPSP slope in naı̈ve control rats (Grey diamonds, n = 8). In contrast, exercising
rats infused with DMSO (Black circles, n = 7) show over 64.8469.13% potentiation of the EPSP. Exercising rats infused with the PI3K inhibitor,
LY294004 (Open circles, n = 7) show near identical potentiation of EPSP (33.2666.69%) than that of naı̈ve rats. Above are representative field
potentials recorded before and after LTP induction in the three groups.
doi:10.1371/journal.pone.0007901.g006
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transcription factors [1]. Much of this knowledge however derives

from studies in cell cultures, while the mechanisms associated with

neurogenesis in the intact, behaving animal remain poorly defined.

To date, it is clear that growth factors are necessary for

neurogenesis in the behaving animal [30–31], and some studies

have shown that genetic or pharmacological inactivation of

growth-related molecules, such as VEGF, SDF-1, FGF-2, and

IGF-1 implicated in neurogenesis can abrogate the beneficial effect

of exercise or environmental enrichment on neurogenesis and on

learning and memory or synaptic plasticity [1,32–34].

The aim of the present experiments was to investigate the

potential role of the PI3K-Akt signaling pathway in exercise-

induced neurogenesis and its subsequent effect on LTP in the

dentate gyrus as a functional readout. To this end, we used a

protocol that was designed to examine both proliferation and later

survival of neurons generated during the last three days of exercise.

Our results firstly confirm that exercise (a) induces hyperpho-

sphorylation of Akt [20], (b) promotes proliferation and survival of

dentate gyrus cells [13–14]; and (c) facilitates the ability to induce

LTP in the dentate gyrus [13–14]. Secondly, they show that icv

infusion of the PI3K inhibitor, LY294002 abrogates exercise-

induced phosphorylation of Akt and of several target proteins,

survival of exercise generated newborn neurons and facilitation of

LTP, but has no effect on cell proliferation following exercise.

The PI3K-Akt signaling pathway is known to be involved in a

diverse range of cellular function [35–36] including all aspects of

neurogenesis; cell cycle progression, migration and cell survival

[36–37]. Being originally described as an oncogene, Akt was first

known for its ability to promote cell survival by inhibiting cell

death in numerous forms of cancer [37]. More recently, Akt’s role

in cell proliferation has been shown to be mediated by its

interaction with proteins directly involved in cell cycle progression

[38]. However Akt has also been shown to beneficially promote

neurogenesis following brain injury via activation of the VEGF

receptor [39].

Our results on exercise-induced hyperphosphorylation of Akt

are in keeping with those of Chen and Russo-Neustadt [20]. In

their study however, they showed that Akt was only partially

activated at the threonine site only, and this was not sufficient for

activating the downstream targets, FOXO1 and GSK3b. In our

experiments we found exercise-induced phosphorylation of Akt at

both Thr308 and Ser473 residues, a precondition for full

activation of the protein [40); and consistent with this, we found

a concomitant increase in phosphorylation of Akt’s downstream

targets, FOXO1, BAD and GSK3b after exercise. The difference

between the two studies might well be due to greater specificity of

the biochemical measures in sub-dissected dentate gyrus compared

with the whole hippocampus, as Akt may be differentially

phosphorylated by exercise in distinct hippocampal sub-regions.

Although it is not surprising that inhibition of PI3K blocked

exercise-induced hyperphosphorylation of Akt and downstream

protein targets it was surprising, given the suggestion that Akt

modulates cell proliferation [38,41] and is expressed in progenitors

[42] that exercising rats infused with the PI3K inhibitor showed an

identical increase in the numbers of proliferating cells as did the

control runners. Exercise has been shown to regulate a number of

growth factors such as IGF, FGF [21,43], VEGF [44] and BDNF

[45], that are associated with proliferation and cell survival; all of

which can activate the PI3K-Akt signaling pathway. Two possible

explanations for the lack of effect that blocking Akt has on

proliferation is that (a) either exercise-driven proliferation in the

dentate gyrus does not require activation of Akt, or (b) if it does

play a potential role in proliferation, the effect of blocking

phosphorylation if Akt may be compensated for by other proteins

that are not directly associated with the PI3K-Akt signaling

pathways. In either case, number of proteins, such as the

cannabinoids [46], Sonic Hedgehog [47], WNT [48] and b-

endorphin gyrus [49] are associated with proliferation in the

dentate gyrus. Most notably, Koehl and colleagues [49] have

shown that b-endorphin is necessary for exercise-induced

proliferation in the dentate gyrus.

We also found that ERK, a kinase involved in cell growth and

differentiation [50] that has been implicated in proliferation in the

adult dentate gyrus [51–53] and is hyperphosphorylated in the

hippocampus by exercise [18,54–55], was not activated at the end

of the exercise period in our experiments. Shen and colleagues

[54] however have shown that exercise-induced regulation ERK

occurs in a delay dependent manner, and it is possible in our

experiments ERK may be regulated at a time point other than that

we investigated.

In contrast to normal exercise-induced cell proliferation, the

number of surviving BrdU-labeled cells 14 to 16 days later was

significantly reduced in exercised rats infused with the PI3K

inhibitor. The fact that there is an increase in cell proliferation at

the end of the exercise period in both running groups, and that the

majority of newborn neurons die by programmed cell death within

the first week of generation [3], suggests that the PI3K-Akt

signaling pathway is implicated in the promotion of survival of

newborn cells following exercise by inactivating proapoptotic

proteins. Akt is known to mediate its anti apoptotic function by

negative regulation of Bcl-2 homology domain 3 only proteins,

such as the FOXO transcription factors and BAD and inactivation

of other proapoptotic proteins such as GSK3b. Akt phosphory-

lation of BAD and FOXO1 signals to 14-3-3 proteins bind to BAD

to prevent it tethering the antiapoptotic proteins Bcl-2 and Bcl-XL

[56] and to FOXO1 which leads to its nuclear exclusion thereby

preventing transcription of death associated genes [57]. GSK3b is

principally associated with apoptosis via intrinsic mechanisms such

as mitochondrial disruption and the priming the apoptotic process

via regulating transcription factors and proteins associated with

death pathways [58], and its phosphorylation by Akt functionally

inactivates it. As these proteins induce apoptosis in the

mitochondria and the nucleus, it would suggest that Akt mediates

survival of newborn cells in a cell autonomous manner [36,59],

around the time of neuron birth and/or during the two weeks

following exercise. Evidence has shown (a) a delay of 2.5 day of a

neuroprotective response by Akt to apoptotic injury in cell cultures

[60] and (b) a prolonged elevation of BDNF levels by 7 days

following exercise [61]. This suggests that survival signals can

respond in both a delayed and prolonged manner. However, the

precise temporal window during which Akt-mediated pro-survival

signals are required to prevent neurons from dying remains to be

investigated.

Although blocking PI3K-mediated activation of Akt and its

downstream targets by infusion of LY294002 drastically reduced

survival of newborn neurons generated by exercise, it did not

completely block neurogenesis, suggesting that other proteins are

implicated in the survival of newborn neurons. It is known to date

that a number of proteins, including neurotransmitters, hormones,

signaling molecules can influence the neurogenic process [62–63]

and some of these have also been shown to be regulated by

exercise, although the link between exercise and neurogenesis has

not been made. In addition, although Akt phosphorylates BAD,

FOXO1 and GSK3b, it is not the sole activator of these proteins;

members of the MAPK/ERK signaling pathway and other

kinases, such as p70S6 kinase, p90Rsk, certain isoforms of PKC

and PKA are able to phosphorylate BAD and GSK3b [18,64–66].

Therefore, there are a number of prime candidates that may well
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contribute to exercise-induced neurogenesis. Nonetheless, our

results suggest that exercise-induced neurogenesis and the

consequential facilitation of plasticity in the dentate gyrus strongly

relies on functional activation of PI3K-Akt prosurvival pathways

via inactivation of proapoptotic target proteins. Consistent with

this, an increase in survival of adult dentate gyrus progenitor cells

has been reported in mice overexpressing the anti-apoptotic

protein Bcl-2 [67] as well as mice deficient for the pro-apoptotic

protein Bax [68].

Finally, the decrease in survival of exercise-generated cells in the

dentate gyrus was accompanied by suppression of exercise-

induced facilitation of LTP. Although within the time window of

14–16 days of age, surviving neurons are considered relatively

immature, they already harbor functional synaptic connections

and have unique physiological properties that suggest they may

contribute to the increased capacity for plasticity in the dentate

gyrus and the facilitation of certain forms of memory [1,15,69].

This would suggest that activation of the PI3K-Akt signaling

pathway is an important mechanism contributing to the survival of

newborn cells stimulated by exercise, that are capable of bestowing

facilitation on synaptic plasticity in the dentate gyrus.

In conclusion, the data we present here suggest that the survival

of newborn cells generated in the dentate gyrus by exercise

requires the functional activation of the PI3K-Akt signalling

pathway, whereas it is not essential for cell proliferation. Although

a number of studies have shown that Akt does play a role in

proliferation, many of these studies have been expressly designed

to investigate its role in carcinogenic processes within a malignant

cellular environment. Our results are more in keeping with the

suggestion that certain trophic factors may be more instrumental

in regulating proliferation, whereas other mechanisms that trigger

the activation of intracellular signaling cascades would promote

survival [70]. As to how Akt promotes the survival of these cells we

suggest is via its ability to inactivate proapoptotic target proteins.

Although we suggest that activation of this signalling pathway

provides a signal for the promotion of survival of newborn cells in

the dentate gyrus generated during exercise, it is by no means the

only signalling cascade implicated in the process of neurogenesis;

as suggested by the remaining level of surviving cells in LY294002-

treated rats. Currently our understanding of the cellular and

molecular mechanisms underlying the different stages of environ-

mentally regulated neurogenesis is meagre. The present findings

highlight the contribution of the PI3K-Akt pathway in maintain-

ing experience-dependent neurogenesis in the adult dentate gyrus,

presenting a first step towards gaining a more in depth

understanding of mechanisms associated with the beneficial effects

of neurogenesis in vivo.
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